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gime gave 1/H behavior in good agreement with ex-
periments on AuFe. ' This result could be physi-
cally understood by noting that the thermopower in-
volves the derivative of the lifetime, proportional
to 1/H in high fields, while the magnetoresistivity
and the Hall coefficient involve the lifetimes them-
selves, giving lnH behavior.

We can conclude from this study that although the
experiments would be difficult it would be very in-
teresting to get systematic data in high fields and
low temperatures (say, g~H/kT- 5, 10, 20) for the
magnetoresistivity, the Hall voltage and the ther-

mopower, together with magnetization measure-
ments. Indeed, while perturbation theory does
show that lnH behavior will occur in the high-field
regime for p and R, and 1/H behavior for S, there
is considerable uncertainty about the meaning of the
spin-polarization terms which appear for large H,
and, specifically, one needs to know how much the
impurity magnetization is saturated in these large
fields.
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We report measurements of the electrical resistivity between 20 and 0. 3 K and the thermal
conductivity between 4 and 0. 6 K of a number of dilute alloys of manganese dissolved in silver.
The nominal concentration range of the alloys is from 0. 005- to l. l-at. "7p Mn. Theelectrical-
resistivity curves for the more concentrated alloys show a resistance maximum at an anti-
ferromagnetic ordering temperature T~~ which is a characteristic for this alloy system. At
lower temperatures, however, a resistivity that is approximately a linear function of temper-
ature is observed. The Lorenz number for the alloys turns out to be concentration dependent,
although the deviations from Lo, the Sommerfeld value for the Lorenz number, are generally
not more than about 4/p. The results are interpreted in terms of a phenomenological model
based on the classical Kondo theory, together with a Lorentzian distribution of internal mag-
netic fields that exist at an impurity site.

I. INTRODUCTION

If certain magnetic impurities are dissolved in
sufficient quantity in the noble metals, then at a
low temperature a minimum followed by a maximum
at lower temperatures is generally observed in the
electrical resistivity of these alloys. ' 3 %'ell below
the maximum, an experiment by McDonald on
Au-Fe seemed to indicate that the resistivity can be-

come a linear function of temperature. This inter-
esting observation made it desirable to us to make
low-temperature transport measurements on other
noble metals containing magnetic impurities. We
report here measurements of the electrical resis-
tivity between 0. 3 and 20 K and the thermal conduc-
tivity between 0.6 and 4. 2 K of a number of silver
alloys containing manganese as impurities. Our
results confirm the findings by other authors of a
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resistance maximum which is approximately con-
centration dependent. Below the maximum the re-
sistivity curves for the more concentrated alloys
show a portion that is a linear function of T with the
slope of this section being only a weak function of
concentration. The thermal results, furthermore,
suggest that the Niedemann-Franz law does not
strictly hold in these alloys, although the Lorenz
number does not deviate from Lo, the Sommerfeld
value, by more than about 4%.

A manganese impurity in silver has a magnetic
moment corresponding to a spin $ = 5/2. In one
attempt to understand the low-temperature specific
heat and the resistance maximum in a system like
Ag-Mn, it is assumed that the Ruderman-Kittel-
Yosida (RKY) interaction between the impurities
leads to an ordering of the impurity moments below
a certain temperature. In the Ag-Mn system the
ordering is of the antiferromagnetic type. The form
of the RKY interaction between impurities requires,
however, that any two moments are strongly corre-
lated only if they are not too far apart, that is, only
if they are within some coherence range R, . Below
the ordering temperature, one is therefore consid-
ering a frozen-in arrangement of impurity moments
with antiferromagnetic ordering within some coher-
ence range R, , where p, is concentration depen-
dent. The random arrangement of the impurities
then makes the internal magnetic field that exists
at a given impurity site a statistical quantity; and
transport properties are discussed in terms of a
probability distribution P (gp, s H ) which gives the
probability that the magnetic energy of a given im-
purity due to the internal field H caused by all the
other moments will be between gp, ~H and gp, ~
x (H+dH), where g is the Lande g factor and p, s is
the Bohr magneton.

No rigourous derivation of P (gpsH ) for any
system has yet been given. The assumption that
the impurity spins are distributed according to an
Ising model allowed Marshall' and Klein and Brout'
to derive an expression for P(gpsH). The T=0 K
form of the distribution for Ref. 8 is well approxi-
mated by a Lorentzian of the form

1
P(gpsH)=2t g4 n2 I H)2 for gpsH&4&2tan 4 & +&gp. ~&

for gp. ~H&4&,

where & is the width of the distribution and is pro-
portional to the concentration. It is necessary to
cut the distribution off at some value of g p. ~H, since
otherwise ((gpsH ) ) diverges. The choice of 4& is
somewhat arbitrary, however.

Harrison and Klein have used this distribution to
calculate the electrical resistivity of a statistical
antiferromagnet to second order of the Born approx-
imation. Their calculations reproduce most of the

features of our experimental curves such as a re-
sistance maximum at a temperature which is approx-
imately proportional to the impurity concentration,
a linear temperature dependence of resistivity at
low temperatures and a relatively weak concentra-
tion dependence of the slope of this linear region.
A more quantitative comparison of that theory with
our resistivity results requires numerical evaluation
of a number of complex integrals. Furthermore,
the theory has not been extended to cover the some-
what more difficult case of the thermal conductivity.
It is for these reasons that we prefer to discuss our
results in terms of a simple physical model which
enables us to obtain a fairly good qualitative under-
standing of both the electrical resistivity and the
thermal conductivity.

In Sec. II we describe the experimental aspects
of this work while the electrical and thermal con-
ductivity results are presented in Sec. III. Our
model is introduced in Sec. IV where a comparison
of the theoretical ideas with the results is attempted.

II. EXPERIMENTAL DETAILS

A. Alloy Preparation

The starting materials for the alloys were high-
purity (99.999%~ ) Cominco silver and 99. 99&p-pure
manganese supplied by Johnson-Matthey. The alloys
were prepared by the successive dilution of a Ag-Mn
master alloy containing 3. 2-at. +~ Mn, The accurate-
ly weighed quantities of the constituents (pure silver
and an alloy material) were placed in a spectroscop-
ically pure graphite crucible which was previously
degassed at 1000 'C. The crucible was located in
a similarly degassed quartz tube filled to a pres-
sure of 1 atm of pure helium after being evacuated
to a pressure of less than 10 Torr. An induction
furnace was used to melt the constituents in the
crucible, and each melt was given three minutes to
homogenize before the power was turned off. Elec-
tron-beam microprobe analysis, as well as resis-
tivity measurements on materials obtained from dif-
ferent parts of the same alloy ingot, showed that the
alloys were homogeneous.

The ingots were roQed into thin strips approxi-
mately 0. 2 mm thick. After each rolling step the
strips were etched with a dilute nitric acid solution.
They were then shaped with a spark-cutting machine
into a rectangular shape about 10 cm long and 2&0. 2
mm in cross section. The spark cutting was done in
such a way that on one side of the sample, two nar-
row (& 0. 5 mm in width ) fingers of silver alloy sep-
arated by about 4. 5 cm remained. These acted as
the potential and thermal probes. Before mounting
in the cryostat, all samples were annealed at 700 'C
for 24 h in high vacuum. At this temperature the
vapor pressure of Mn should be sufficiently low so
that loss of Mn during the heat treatment should not
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be very serious. This is confirmed by the propor-
tionality of the low-temperature resistivity to the
nominal manganese concentration for the more con-
centrated alloys.

B. Measurement Techniques

The electrical and thermal conductivities of the
samples were measured in a He' cryostat. The cry-
ostat (except for the magnetic thermometer ) is sim-
ilar in design to that described in Ref. 9. As the
samples were very thin, they were supported by two
sets of crossed wires mounted inside a rigid stain-
less-steel frame. The total thermal resistance of
the crossed-wire support was at least 10 times big-
ger than that of the samples, and therefore the heat
leak through the support was negligible.

The thermal conductivity was measured by the
steady-state method using apair of 10-0 $-W Allen
Bradley resistors as thermometers. The thermom-
eters were attached to the fingers on the sample de-
scribed before with Bi-Cd nonsuperconducting solder.
To the same pair of probes were also soldered the
potential leads for the electrical-resistivity mea-
surement. Thus the same geometrical factor could
be used for the calculation of the thermal and elec-
trical conductivities. Between 4. 2 and 0. 8 K the
thermometers were calibrated against the vapor
pressures of He' and He' using the 1958 He' and
1962 He' temperature scales. Temperatures below
0.6 K were obtained by extrapolating a plot of lnR
vs lnP (P =He~ vapor pressure ) to lower pressures,
and then using the 1962 He~ temperature scale to de-
termine the temperature for the observed resistance
values of the carbon thermometers. The procedure
should be sufficiently accurate for our purposes.
Temperatures above 4. 2 K were measured with a
calibrated Germanium thermometer. Three cali-
bration points were used for each carbon thermom-
eter to calculate the three constants ~ t Qp and

~,, in the Clement-Quinnell" equation

1/T *=a, /lnR + rz 0 +a„lnR,

and a correction curve (T~-T ) vs T ~ was used for
interpolation. In this way the temperatures could
be measured correct to a fraction of 1 mK. For the
thermal measurements the heat input was adjusted
such that a temperature difference ~T of 200 mK
at 4 K and about 60 mK at the lowest temperatures
was obtained.

A four-probe arrangement was used to measure
the electrical resistivity. The current passed
through the samples was limited to a maximum of
50 mA. The voltages were measured using the tech-
nique of phase-sensitive detection with a relay mod-
ulator in the He bath as described by Jericho and
March. " To satisfy the low-impedance requirement
of the modulator circuit and also to minimize the
heat leak, a pair of Nbp» Zr, » superconducting

wires (0.003 in. diam ) were used as potential leads.
The voltage across the sample was compared with

the voltage on a reference resistor in the He bath.
Any voltage difference was chopped at a frequency
of 80 cps using a DPDT Micro-Scan relay (Model
No. C-2350, James Electronics lnc. , Chicago).
The technique of phase-sensitive detection was then
used to obtain the null point. The minimum detect-
able voltage was 10 V and the potential difference
across the samples was measured with an accuracy
of about 0. 3~~.

The largest error in the absolute values of the
electrical and thermal conductivities arises from
the sample-shape factor determination. The thick-
ness of the sample was measured with a micrometer
and the width and the distance between the two probes
with a traveling microscope. The total estimated
error in the determination of the shape factor was

However, since the same shape factor enters
in both the electrical and thermal conductivities it
should not affect the Lorenz parameter. The over-
all accuracy in the measurement of the Lorenz pa-
rameter is estimated to be about 1 to 1.5&~. Meas-
urements of the electrical and thermal conductivities
of one Ag+In ' as well as one Cu+Ag alloy gave the
Sommerfeld value of the Lorenz number within the
experimental error.

III. RESU LTS

A. Electrical Resistivity

The e1.ectrical resistivity of the alloys is shown
in Figs. 1-3. The most dilute samples, such as
Nos. 5and6, showa resistance minimum near 7 K.
For lower temperatures the resistivity rises and
soon follows a lnT temperature dependence which
goes all the way down to 0. 3 K for alloy No. 6. As
the Mn concentration is increased a maximum as
well as a minimum in the resistivity is observed.
This general behavior of the electrical resistivity
was already seen by Malms and Woods for Ag-Mn
alloys, and this aspect of the resistivity variation
is similar to the behavior of the Cu-Mn, 3 Cd-Mn,
and Zn-Mn systems. ' As the temperature is de-
creased sufficiently below the temperature of the
maximum, a new feature appears, however. The
resistivity becomes an approximately linear function
of the temperature and the higher the concentration
the wider the temperature range over which the re-
sistivity is a linear function of T (Fig. 2). For the
three most concentrated alloys, the slopes of the
linear regions as well as the resistivity values at
T =0 K obtained by linear extrapolation of the straight
lines are given in Table I. The slopes seem to have
only a relatively weak concentration dependence
while the intercepts are proportional to the concen-
tration. Also recorded in Table I are the tempera-
tures of the observed resistance maxima and minima
for the alloys. T seems to be approximately pro-
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-2.00

- 496

- I.92

given in Table I. The error in A is probably quite
large for the higher-concentration samples, since
the range over which we can follow this logarithmic
dependence of resistivity on temperature is rather
restricted.

B. Thermal-Conductivity Results

The thermal conductivity of all samples was meas-
ured between about 0. 6 and 4. 2 K. For purposes of
analysis we assumed that the total thermal conduc-
tivity K could be written in the usual form

K=K~+ Kg,

-1,80

i l I I I I I I I I I ~ ~ I I I I I

0.5 & 5 10
T 'K

I I I I I I I

50

FIG. 1. Electrical resistivity as function of tempera-
ture for alloys Nos. 2-4. The solid curves represent
the theoretical results according to Eq. (7). Addition
of the ideal electrical resistivity to Eq. (7) will produce
the resistance minima as well.

portional to the Mn concentration.
The electrical resistivity of a 99.99990O-pure

Cominco silver sample was found by Fenton et al. '
to be described by the equation

p=6. 64&10 +2. 0&10 ' T ' for T& 16 K,

where the second term represents the ideal electri-
cal resistivity. In alloys Nos. 5 and 6, we can re-
move the resistance minimum and thus extend the
region where the resistivity is proportional to lnT
if we let the ideal resistivity p, =1.0~10 ' T ',
which is half the value quoted above. This same ex-
pression for p, also removes the resistance minimum
for alloy No. 4 but removes the minimum only par-
tially for alloy No. 3 (possibly due to a breakdown
of Matthiessen's rule). The resistivity of the linear
portion above T for alloys Nos. 3 and 4 was then
found to have an approximately logarithmic-temper-
ature dependence as well. The small separation be-
tween T ~ and T „in alloys Nos. 1 and 2 made an
analysis of this type impossible for these samples.

The resistivity of alloy Nos. 5 and 6 and of alloys
Nos. 3 and 4 far above the resistance maximum can
then be represented by the expression

p(T)=-A lnT+D,

where 4 and D are independent of temperature.
Representative values of the parameter A are

where K, is the conductivity due to the conduction
electrons and K, due to phonons. Of particular in-
terest to us is the study of the effects of magnetic-
impurity scattering on the heat conductivity of the
conduction electrons. Since the effects that we ex-
pect are of a rather small magnitude, an accurate
knowledge of K~ seems essential for an accurate
determination of K, from the measurements. In
the temperature range of interest here, the phonon
mean free path is limited mainly through phonon-
electron interactions. No theoretical estimate of
this interaction is sufficiently precise, however, to
permit an accurate determination of K, . %e have
therefore assumed that the phonon-electron inter-

T'K
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FIG. 2. Electrical resistivity as function of tempera-
ture for alloy No. 1 and the low-temperature results for
alloys Nos. 2 and 3. The straight solid lines were drawn
through the linear temperature-dependent part of the
resistivity curves. The dashed lines are the theoretical
results according to Eq. (7).
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FIG. 3. Electrical resistivity as function of tempera-
ture for the two most dilute alloys. Vertical arrows
mark the positions of the resistance maxima according
to Eq. (7).

action in silver containing magnetic impurities is
essentially the same as that in silver containing
ordinary impurities; and we have then used avail-
able lattice-conductivity data for nonmagnetic silver
alloys to obtain an estimate of K~ in our Ag-Mn sys-
tem. A least-mean-square fit to available data' in
the resistivity range of our samples suggests that

K, = l.4x10 '(Ti'2/p' ) Wcm 'deg '.
From the magnitude of K, suggested by this expres-
sion we see that K, is negligible for alloys Nos. 5
and 6 and that a rather large error in K, can be tol-
erated for all alloys below 1 K.

If we define a Lorenz parameter L through the
expression

then any deviation from unity of the expression

L/L =(K-K, ) p(T)/L T

can be used as a measure of the breakdown of the
Wiedemann-Franz law in our alloy system. In Eq.
(3) L, is the Sommerfeld value of the Lorenz number
and is equal to 2. 448&10 Wcm 'deg . We have
calculated L/L, for our alloys with the help of Eq.
(2) and with the smoothed electrical-resistivity
curves shown in Figs. 1-3, and the results are
plotted in Fig. 4. We believe that a large portion
of the detailed structure that these curves exhibit
should not be taken seriously, since many of the
features are within the experimental error, but the
general trend of having L/Lo ( 1 for the concentrated
alloys and L/Lo) 1 for the dilute alloys is significant
in our opinion. The Lorenz numbers for alloys Nos.
5 and 6 seem to decrease as the temperature is in-
creased. This is not very surprising since for these
dilute samples the ideal thermal resistance is not
negligible above about 2 K. The thermal resistance
due to electron-phonon scattering is expected to be
of the form

8'; =BT

The magnitude of B was taken to be equal to 6&10 '
cmdeg 'W ', the value used by Van Baarle et al. '
in their lattice-thermal- conductivity calculations
for silver. If we correct the results for alloys Nos.
5 and 6 for the ideal thermal resistance in this way
we obtain Lorenz numbers for these samples which
are constant below 4 K to within our experimental
error of about 1.5%.

Neglect of 8', does not affect the results of alloys
Nos. 5 and 6 below 1.5 K and has no effect on any of
the other alloys below about 4 K. The data points in
Fig. 4 for alloy No. 7 are those that were reported
before in Ref. 12. These results will be discussed
more fully in Sec. IV.

IU. PHENOMENOLOGICAL INTERPRETATION
OF RESULTS

The observation that in the very dilute alloys, as
well as above the maximum in the more concentrat-

A
(np, Q cm)

Slope of linear
region (np, Q cm/K)Alloy No.

TABLE I. Manganese concentrations and some electrical-resistivity parameters for the alloys.

p atT=OK
Nominal conc. Tme Tmin (Extrapol. )

(at . %) (K) (K) (pQ cm) Q~

p&

(p, Q cm)

1.12
0. 332
0. 125
0. 0558
0. 007
0. 005

7.4
3.3
1.9

&0. 3
(0.3

15
13
11.5

8
7

30. 3
24
20

1.602
0.47
0. 175 5.4

3.1
0.44
0.38

0. 031
0. 039
0. 043
0.052

1.605
0.468
0. 1706
0. 0769
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classical Kondo effect. To discuss the transport
properties over the whole temperature range, we
assume that the internal field distribution has a I o-
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I'IG. 4. Temperature dependence of the Lorenz
numbers for the alloys. The Lorenz numbers were
determined as explained in Sec. III.

ed alloys, the resistivity has a lnT dependence sug-
gests that we are dealing in these situations with a
Kondo type of phenomenon. Below the resistance max-
imum the Kondo effect thus seems to be inhibited.
We can see what might be happening in that region
if we briefly consider the classical Kondo effect. In
order to obtain a low-temperature resistivity which
depends on the temperature, it is necessary to con-
sider conduction-electron scattering by the mag-
netic impurities in second-order perturbation theory.
The second-order terms in the scattering involve
the density of available intermediate states. The
density of available intermediate states, however,
depends on the Fermi function for the conduction
electrons so that the electron-scattering time will
now depend on temperature. In this model the spin-
flip scattering of the conduction electrons by the im-
purity spins is still an elastic process. The lnT de-
pendence of p thus results from elastic spin-flip
scattering of the conduction electrons in second-
order perturbation theory. The ordinary Kondo ef-
fect should thus be quenched if the impurities are
placed in a magnetic field so that the degeneracy of
the magnetic-impurity states is removed and spin-
flip scattering becomes an inelastic process. We
now argue that if the separation of the energy levels
of an impurity is g p. ~H then only those conduction
electrons that have a thermal energy k~T &g p. ~H can
flip impurity spins and can thus contribute to the

p(gpaH) =&l&tn'+(aueH)' j (4)

=p, ——p„. lnT- ' P' - tan ' 32 (p — ) u 7'

7T pa

To this we must add a resistivity p, which is tem-
perature independent and which represents the con-

P(yteH)

+- 2ksT

II
IIIIr

0
(gpgH)

FIG. 5. Lorentzian probability distribution of internal
magnetic fields. The Kondo effect is assumed to be
quenched for fields outside the shaded region.

The distribution is symmetric and is shown in Fig. 5.
Within a region about the center of width 2AI3T we
assume we have a Kondo type of behavior for the re-
sistivity, while outside that region we assume that
the resistivity is po, a constant. For this model to
be applicable requires the Kondo temperature to be
much lower than the lowest temperature of the re-
sistivity measurements. It is not clear what the ac-
tual Kondo temperature of the Ag-Mn system is, but
it is probably as low as T~ for the Cu-Mn system,
i. e. , T, & 0. 1 K. The fact that down to 0. 3 K no de-
viation from a lnT behavior is discernible in our
most dilute alloy confirms the belief that T, is indeed
very low for Ag-Mn. The lack of a precise value of
T„makes it even more difficult to decide which form
of the resistivity expression to adopt, since the orig-
inal expression derived by Kondo should, strictly
speaking, be valid Only when T&(T~T, )'". Thus,
instead of relying on any theoretical model we take
the phenomenological approach and write the Kondo
type of resistivity in the form

p. (T ) = p2»T+-ps,

where p2 and p, are temperature independent.
The magnetic part of the el.ectrical resistivity is

then given by

pu(T)=P(gp, &)p(T)d(gu, ,H)
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tribution from nonmagnetic-potential scattering of
the conduction electrons by the impurities. Further-
more, the width of the distribution & is proportiona, l
to the impurity concentration c so that we can set
ksT/& =a2T/c. We thus obtain the following expres-
sion for the resistivity of our alloys:

p(T) =p, [1—(2/v)e, (1nT-ez)tan (&2T/c)],

(6)
where p, = (p, + po), ~i =P2/(Pr + Po) and u3
= (p, -p, )/p2. The resistivity has thus been expressed
in terms of a number of parameters which can be de-
termined by comparing Eq. (6) with the experimental
results.

It is instructive to consider Eq. (6) in the limits
T/c» 1 and T/c« l.

When T/c» 1, tan '(a, T/c) = v/2 so that we have

p( T) = p, [ I-a, ( In T-a, ) ],
which is the Kondo type of resistivity that we started
from. When T/c «1, tan '(~zT/c ) =~2 T/c and we
obtain

p ( T ) = p, [1-(2/v) ~, ( InT-~3 ) 72T/c ] .

For the more concentrated alloys the low-tempera-
ture resistivity should thus contain a term propor-
tional to T lnT and a term proportional to T. This
is essentially the result of Harrison and Klein.
Furthermore, as T-0 K, p (T )-p, .

To compare Eq. (6) with the experimental results,
we note first of all thatwhen T/c» I we can deter-
mine p,n, from a plot of p(T) vs lnT. The values
for some of the alloys are given under A in Tab1e I.
If p, is strictly proportional to the concentration,
then we can use the three values of p, for alloys
1, 2, and 3 obtained by extrapolating the linear re-
sistivity regions to T =0 to determine ~, . The values
of ~, calculated in this way are also given in Table I.
The parameter ~, should be concentration indepen-
dent. The variation in ~, suggested by Table I is thus
most likely caused by the inability to measure slopes
accurately for the concentrated alloys and by the un-
certainty of the exact impurity concentration for
alloys Nos. 5 and 6. In analyzing the results we
have therefore taken an average value and set a,
= 0.043.

The impurity concentrations given in Table I are
only nominal values. We have therefore determined
p, by fitting Eq. (6) to the data at T = 1 K so that if
p (1) is the experimentally determined resistivity at
T = 1 K we can write

( )
p(1)

1+ (2/ v) c,a, tan '
( a,/c )

At this stage we would like to point out that any given
resistivity curve could be fitted extremely well with
Eq. (7) if the parameters a2 and a~ were adjusted for
each alloy separately. These parameters should,
however, be the same for each alloy, and a good
over-all fit to all the alloys was obtained when n~
= 0. 12 and n, = 6.0.

With this choice of parameters we obtained the
solid curves shown in Fig. 1 and the dashed curves
in Fig. 2. These curves do not include the ideal
electrical resistance. The general agreement is
encouraging if we keep the simplicity of the model
in mind. It is difficult to quote an error for the
parameters ~» ~» and ~,. If we fix a, and n, as
above and let ~3=6. 7 instead of 6, we get a very
good fit to the data of alloy No. 1 in Fig. 2. We
therefore suggest that the values of the parameters
are as given above to within 10 or 157().

With n» ~» and n~ determined we can calculate
p, and these values are given in Table I. The agree-
ment with the values obtained through extrapolation
is as good as can be expected. Below the resistance
maximum the resistivity is determined mainly by
the tan '(azT/c) term, so that since p, is propor-
tional to the concentration of impurities we expect
[p ( T ) —p, ] /p, to be a function of T/c If th. e results
are plotted in this way we find indeed that such a
relationship is obeyed below the resistance maximum
to within 10 to 15'V&. Our resistivity results thus re-
present additional evidence for the validity of the
reduced diagram representations for statistical anti-
ferromagnets suggested by Tournier and Souletie.

A. Thermal Conductivity

Our main objective in this section is to obtain a
qualitative understanding of the temperature and
concentration dependence of the Lorenz number of
the alloys. We therefore again assume that we can
add the reciprocal relaxation times due to various
scattering mechanisms, and we furthermore re-
strict the discussion to a spin s =

& system.
We can apply the same considerations that we

used in the discussion of the electrical resistivity
to the thermal resistance. It was shown by Taylor'
that at least in the situation where the magnetic-
scattering problem can be treated in second-order
perturbation theory one finds an expression for the
thermal resistance quite analogous to Eq. (6). If
8'Ois the thermal resistance for the situation when
g p. ~H & A~T then we can write for the thermal re-
sistance caused by the elastic scattering of the con-
duction electrons 2, ( Ws —Wo!,ksT

W ( T ) = W + W ——W2 ln T —— ' tan
W

& 1 ——,lnT-as tan '
(6)

In addition to the elastic scattering we must now
also make allowance for the fact that the internal
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FIG. 6. Variation of the function f(&), defined
through Eq. (10), with &.

in relaxing a thermally perturbed distribution so
that this type of scattering must be considered. An
expression for the thermal resistance of a metal
where the impurities can exist in two energy states
separated by an amount &E was given by Ziman, ~~

and we adopt his result and write

IV (T)I=,9.~ + * 9 — 9), (I)1.072 sinhx
I

~\

where x =gpsH/ksT and where p, »d po are pro-
portional to r and contain the scattering cross sec-
tions. If we are dealing mainly with forward scat-
tering then po» p(I so that we can write W~ (T, H )
= 3pp x /[2LOT ( slnhx ) v '

] .
Since we have a distribution of internal fields we

must multiply this expression by P (g psH ) and in-
tegrate over the fields. If we truncate the distribu-
tion at g p, ~H = 4~ then we obtain

magnetic fields cause a Zeeman splitting of the
impurity states so that inelastic scattering of the
conduction electrons is possible. This part of the
scattering was neglected in the discussion of the
electrical resistivity since only large angle scat-
tering is effective in returning an electron distribu-
tion shifted by an electric field back to equilibrium.
Inelastic scattering is, however, very effective

t'dt
W4(T)= R p . , —= f(a),

LOT (1+I }sinh (at) L,T

(10)

where n = &/ksT and R =6po/v tan "4 .
The integral in Eq. (10) was evaluated numer-

ically, and the variation of the function f (o. ) with

a is shown in Fig. 6. The total thermal resistance
is then the sum of Eqs. (8) and (10).

The Lorenz number for the alloys is then

p(T) ps+pa-(2/v)p2[lnT-(p()-po)/p2]tan (k T/t9)
TW(T) QWz+ Wo-(2/v) Wz[lnT-(Ws —Wo)/Wl] tan (ksT/r9)+W4(T)}T

Experiment shows that the magnetic effects are
small, so that all electrical-resistivity terms are
small compared to p&+ p0 and all thermal-resistivity
terms are small compared to 5'&+ W0. If we retain
only first-order terms we can then write

L 2 Ip~ ~W)~
L() v ~(~)q W, ]

6 P0n' ' t'dt
v' (tan'4) p, J, (I+t')sinh(at) '

conform to the general trend is most likely caused
by an overestimate of the phonon conductivity in
these samples. For example, an error in K, of
only 20% could easily bring the high-temperature

o '1.12 at.%
a 0.33
o 0.125
~ 0.0558
() 0.011
~ 0.007
+ 0.005

1.04- ++ +++

where L() = p, /TW~, p2/p, = W2/W„and po/p~ = W()/W, .
This expression shows that since 4 is propor-

tional to c and p, and p, are both proportional to c
the Lorenz number should be a function of T/c. If
we plot the data of Fig. 4 in this way the T/e depen-
dence of the Lorenz number seems to be followed
by most samples. The higher-temperature points
for alloy Nos. 1 and 4 do not follow this general
pattern very well, however. The reason that the
high-temperature points of some samples do not

096

I ~ ~ I I ~ I I ~ ~ I ~

10 100 1m
T/c ('KA)1.%)

FIG. 7. Lorenz numbers of the alloys below 1.5 K
as a function of T/c. The solid curve represents the
theoretical result according to Eq. (11).
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points of alloy No. 1 in line with the general trend.
The data points below about l. 5 K should, however,
be essentially unaffected by an error in K~. Fur-
thermore, it seems unlikely to us that an apprecia-
ble lattice conductivity should be present in samples
Nos. 5 and 6 even at 4 K. In Fig. 7 we have there-
fore plotted as a function of T/c the data points be-
low 1.5 K for all the more concentrated alloys,
while we plotted all the data points for alloy Nos. 5
and 6. For this plot, the results for alloy Nos. 5
and 6 were corrected for the ideal thermal resis-
tance asdiscussed in Sec. III. From Fig. 7 we see
that L/Lo does seem to be a function of 1/c although
the dependence on temperature is less well estab-
lished. The deviations of the Lorenz number from
the Sommerfeld value are never larger than about
4', however. When T/c is around 2 or 3, the Lo-
renz number is depressed below I.o by about 4%%u(), and
I. approaches a constant value about 3 or 4V() above
L, when T/c &10'. These observations are in agree-
ment with the predictions of Eq. (11) if we assume
that actually a minimum exists in I. (T)/L0 when
T/c =2 or 3. When T/c is small the behavior of
L (T)/Lo is dominated by W4 (T), and since this func-
tion possesses a maximum we expect a minimum in
L/Lp, When T/c is sufficiently large W4 (T) is neg-
ligible, and Eq. (11}predicts a constant value for
[L (T } L, ]/L, equ-al to (o,/p, ) —( W,/W, ). Sec-
ond-order perturbation theory suggests that

and thus predicts about a 39~ effect, which seems to
agree with the experiments. The maximum in W, (T)
occurs at o =2. 75. Then if we let ca=0. 12, the
value that was determined from the resistivity
curves, weexpectaminimuminL/Lowhen T/c =3
which is not inconsistent with the experimental re-
sults. Whether a minimum actually does exist near
T/c = 3 can only be decided, however, through fur-
ther thermal measurements on a l%%u& Mn alloy to
much lower temperatures.

If we use in Eq. (11) the values of ~, and nz that
were determined from the electrical-resistivity
curves and determine po/p, by taking L/L, =0. 95
at the minimum we obtain the solid curve in Fig. 7.
The agreement is perhaps as good as can be ex-
pected in view of the various assumptions made.

V. DISCUSSION

The simple physical model that we introduced
seems to give a fairly good qualitative explanation
of the electrical resistivity and perhaps also of the
thermal conductivity of the silver-manganese alloy
system. If we use Eq. (7} to determine the expected
positions for the maxima in the resistivity curves
for alloys Nos. 5 and 6 we find T& = 0. 298 K for No. 5
and T~ = 0. 225 K for No. 6. These values are indicated
by arrows in Fig. 3. We see that for alloy No. 5 the

lowest-temperature points seem to fall below the
straight line that represents the lnT dependence of p,
and a T~ of -0.3 K is not impossible. It would be very
interesting to continue such measurements to low-
er temperatures to see when the present model does
break down as it inevitably has to.

It might now be supposed that the success of the
model in explaining most of the characteristic fea-
tures of the electrical and thermal conductivity im-
plies that the probability distribution for the internal
fields must be a Lorentzian. This we think, how-
ever, is not the case. For example, the temperature
at which the resistance is maximum is approxi-
mately proportional to the concentration, but that
result should follow as soon as we assume that the
width of the distribution is proportional to c, and
the small field probability is proportional to I/c.

Furthermore, the approximately linear temper-
ature dependence of the resistivity at low temper-
ature simply suggests that in a range k~T, corre-
sponding to the temperature range of the linear re-
sistivity region, the probability distribution varies
slowly with field. A Lorentzian distribution can
satisfy all these requirements, but our experiments,
which are limited to temperatures above 0. 3 K, do
not enable us to distinguish between the Lorentzian
distribution of Fig. 5 or a distribution of the type
shown in Fig. 8 where the width of the "hole" near
gp. ~H=O is of the order of 0. 2k~ for our most con-
centrated alloy.

The predictions of the model in the thermal-con-
ductivity case are perhaps less well confirmed by
the experiments, due both to the much larger ex-
perimental error in the thermal-conductivity mea-
surements and to the difficulty in separating the var-
ious transport terms. Nevertheless, it is inter-
esting to note that the fit to the data shown in Fig. 7
was obtained by the adjustment of only one parameter,
p, /p, . As in the electrical-resistivity case, further
measurements to much lower temperatures are
highly desirabl. e.

In connection with our thermal-conductivity re-
sults, we would like to mention the results of Spohr
and Webber' on one Mg-Mn alloy and one Mg-Fe

P(gp~H)

0~ (gpgH)~

FIG. 8. Another possible model for the probability
distribution of internal fields ~
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alloy. Their electrical- resistivity results on these
samples can be put in the form of the high-temper-
ature limit of Eq. (6) with a ~i = 0.09 for Mg-Mn
and ~, =0.02 for Mg-Fe. The predicted values of
l./L, = l. 06 and 1.01, respectively, are in close agree-
ment with the experimentally observed values of 1.0&
for Mg-Mn and 1.02 for Mg-Fe.

Vl. SUMMARY

The most interesting aspect of our resistivity re-
sults is the approximately linear temperature de-
pendence of the resistivity below the resistancemax-
imum for the more concentrated alloys. In that re-
spect the Ag-Mn system behaves similarly to the
Au-Fe system investigated by McDonald. ' The
assumption that internal magnetic fields at an im-
purity site are given by a Lorentzian distribution
together with the assumption that the conduction
electrons can undergo a Kondo type of scattering
only when the local magnetic field H(ksT/gp, s,
where A~T is the thermal smearing of the Fermi
surfa. ce, enable us to derive a phenomenological
expression for the electrical resistivity which de-
scribed the experimental results suprisingly well.

Thermal-conductivity measurements on the same
alloy series enabled us to determine Lorenz num-
bers for the alloys. Because of the difficulty of
obtaining an accurate estimate of the phonon heat
conductivity the results for the more concentrated
alloys above about 1.5 K should be considered with
caution. Below this temperature the results are
thought to be free from errors caused by separation

of the various transport terms. The Lorenz number
was then found to be 3 to 4%%u() above I.o, the Sommer-
feld value, for very dilute alloys and about 4% below
I.o for the most concentrated samples. The positive
deviation for the dilute samples seems to agree with

a perturbation calculation for the Lorenz number
due to Taylor, ' while the negative deviation was
interpreted tobe causedby inelastic electron scat-
tering due to the Zeeman splitting of the impurity
states.

Our interpretation of the resistivity results was
done entirely on a phenomenological basis in terms
of a three-parameter expression. The uncertainty
in the correct value of the Kondo temperature for
the Ag-Mn system makes it difficult to decide which
theoretical resistivity expression one should adopt
above the resistance maximum, and we have there-
fore not attempted to relate our three parameters
to more fundamental quantities such as the exchange
energy J.
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