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A simple model accounting for the influence of a surface on polariton waves is introduced .
From this the extra boundary condition needed in case of a dispersive resonance is derived.

The general result is discussed in relation to actual resonances in crystals.,

The theory of

bulk waves and their boundary conditions is extended to include two or more dispersive reso-

nances.
spectra.

I. INTRODUCTION

Spatial resonance dispersion!’? may be important
y

The behavior of the measured exciton lines in ZnO agrees well with the computed

whenever crystalline excitations that couple to light
are able to move. One of the characteristic fea-
tures of this phenomenon is that two eigenmodes



1458 T.

are excited by external monochromatic light. The
presence of additional modes implies that extra
boundary conditions are necessary in order to cal-
culate reflection and transmission spectra.

The problem of the extra boundary condition
needed in the case of a single resonance exhibiting
dispersion has been discussed by several authors.'™®
Theories due to Pekar! and to Hopfield and Thomas?
prescribe that the polarization associated with the
resonance vanishes at! or near? the surface in case
of normal incidence. This condition seems to be
generally accepted by now. However, the micro-
scopic surface properties leading to this condition
have not been discussed in detail in previous pa-
pers. For example, it is not clear how strong the
surface distortion should be for a sufficient quench-
ing of the surface polarization. Furthermore, the
above condition is insufficient in the case of several
resonances, each requiring an extra boundary con-
dition.

The purpose of this paper is to clarify these
points and to discuss the boundary-condition prob-
lem on basis of a simple model of a crystal bound-
ary. The model involves a single surface layer
with specific resonance properties and thickness.
This treatment leads to a clear distinction between
situations where the polarization P or the derivative
3P/ ox vanishes at the surface. The application of
our results to actual resonances in crystals leads
to the accepted condition that P =0 at the surface.
We have derived appropriate boundary conditions
in case of two or more closely lying resonances
and applied the results to the exciton spectrum of
ZnO.

II. BULK POLARITON MODES

Let us consider a one-dimensional crystal with
a transverse undamped resonance exhibiting dis-
persion. In the absence of coupling to light the
crystalline excitations associated with this reso-
nance have eigen frequencies given by

w=wy+Ik/2M , (1)

where w, is the zero-wave-vector resonance fre-
quency, and M is the mass characterizing the dis-
persion. The coupled differential equations de-
scribing the interaction between electromagnetic
and crystalline waves may be expressed as

iz_é _(f_ a_zé = 1 8_12 (2)
o €, ax® €,€, ot ’
0P  Jfiw, 9°P 9A
_ Ny 971 2p - _ o4
th M ok +wy °P €0F8t . (3)

Here P is the polarization associated with the reso-
nance, A is the vector potential, €. is the back-
ground dielectric constant, €, and ¢ are permittivity
and light velocity of vacuum, respectively, and
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F/ woz is the zero-frequency polarizability due to
the resonance. Equation (2) is derived from Max-
well’s equations, and Eq. (3) is the equation of mo-
tion for the polarization. Thus, without coupling
(F=0) Eq. (3) yields the dispersion of Eq. (1) if
we neglect 2* terms. In the absence of the second
term of Eq. (3) we are dealing with local response
of the medium. ®

The polariton waves propagating in the crystal
are found from the eigenmodes of the coupled equa-
tions (2) and (3). Hence the polariton dispersion can
be expressed as®

B2/ w?= €+ F/(wy? — w? +liwg B2/ M) . (4)

For a fixed (real) frequency this equation has two
(possibly complex) solutions as shown in Fig. 1.
Each mode is characterized by quantities 2;, P;,
and A; (i=1, 2) related by

P;=-iwe, [(R%c?/w?) —€.]A;=— iwe€oln® — €2)A;
(5)
where »; is the refractive index.

III. POLARITON MODES AT CRYSTAL BOUNDARY

We shall discuss the influence of a surface on the .
basis of a transformation of the differential equa-
tions into difference equations. Let the crystal be
divided into cells (see Fig. 2) defined by the width
a, which must be greater than or equal to the lattice
distance. In the long-wave limit (ka<< 1) the spatial
second-order derivatives may be replaced by sec-
ond-order differences. Equations (2) and (3) are
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FIG, 1. Polariton dispersion curves shown as a k%— w?
dependence. The upper part corresponds to positive mass
dispersion of the crystalline excitation, the lower part
to negative mass. In the latter case, there is a frequency
region where %% is complex with the imaginary part shown
as a dotted curve.
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FIG. 2. Model of a one-dimensional crystal with a
single dispersive resonance. In the mechanical analog,
the lower springs have resonance frequencies as indicated.
The upper springs represent nonlocal effects responsible
for the dispersion.

equivalent to
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where A" and P" are the vector potential and polar-
ization in the nth cell. The second and third term
of Eq. (7) represent “nonlocal forces” on the po-
larization. For example, the microscopic mech-
anisms responsible for the second term may be in-
terpreted as a nearest-neighbor interaction be-
tween cell No. n -1 and cell No. ». This is visual-
ized in the mechanical analogue in Fig. 2. Let the
outermost cell ina semiinfinite crystal be cell No. 0.
Then Eqgs. (6) and (7) are valid for nZ1. An in-
coming wave from the left (vacuum) excites three
modes, namely, a reflected wave and two right-run-
ning polariton waves. It is easily shown that the
amplitudes of these waves are established from
Maxwell’s boundary conditions (continuity of A and
9A/0x) and the equation of motion for the polariza-
tion in cell No. 0. This equation of motion there-
fore provides the extra boundary condition needed
in this model.

At this point we want to specify our model of a
boundary. First, it is reasonable that the second
term in Eq. (7) vanishes for n=0. There is simply
no “nonlocal force, ” on the polarization from vacu-
um. Second, we shall account for a distortion of
the resonance in a surface layer by assuming that
cell No. 0 has a resonance frequency , different
from that of the bulk crystal. On the other hand,
we specifically assume that all other cells (#21)
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are perfectly tuned to the common frequency w,.
Thus, in our model the length g should be chosen to
be the width of the surface layer with a resonance
frequency considerably different from w,. How-
ever, for relevant polariton modes we still assume
that ka<< 1.

According to our model, the equation of motion
for cell No. 0 is

7 0
(szoz—wz)P"—M“—;Q (%) = jwey FA? 8)

where we have inserted a harmonic time variation
given by w and used

0
P' - P'» a<—3£> .
ax
Splitting up the polarization and vector potential
of the Oth cell into contributions from the uncoupled
polaritons [Eq. (5)], we obtain

P'=pYypY, (9)
aP\° . . o
<§> =ik, PY+ik, PY, (10)
and
A=A+ A) . (11)

From Egs. (4), (5), and (8)-(11), we find
P, [Q2 - i — (wy/M) B — i(liwy/Ma) by

+ P[5 - wi - (Hwy/M) K} - i(fiwy/Ma) k] =0 . (12)

The third term in each bracket is ignorable when

compared to the fourth term since ka<<1. Then
P} Q- wi-ikfiwy/Ma
Ff T2 - wi—ikiwy/Ma (13)

It is convenient in the further discussion to intro-
duce the quantity d describing the “relative detun-
ing” of the surface layer by the definition

d= (9% - wy?)/wew , (14)
and the “Compton wavelength”

Ny =h/Mc (15)
associated with the dispersion. Then

Py 1-ingny/(2rad)

PY " 1 —iny N,/ (2mad)
or

P (%)020 (16)

The general boundary condition derived from this
model then requires that a linear combination of

P and (8P/dx) should vanish at the surface. This
is consistent with the result of Deutsche and Mead®
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stating that only this type of boundary conditions is
allowed in a causal system.

We are now able to distinguish between two ex-
treme types of surface effects:

(a) Large detuning (d~1) in a surface layer con-
siderably larger than X, , such that

2mad/x, > |n,| and |n,| .
Then
PY+PI=P°~0,

(17)

which is the boundary condition reported in Refs,

1 and 2.
(b) Small detuning (d<< 1) and/or small width of the
surface layer, such that
21ad/Ny < |ny| and |m, . (18)
Then

n PY+n,PI~0

0
(22) ~0.
ax

IV. APPLICATION TO PHYSICAL CRYSTALS

or

In this section we shall insert appropriate magni-
tudes for M, a, and d in the condition derived in
Sec. III. The dispersions of crystalline excitations
encountered in nature are usually characterized by
a magnitude of the mass M of the order of, or lar-
ger than, the free-electron mass., This holds for
free excitons in II-VI compounds and for optical
lattice vibrations in ionic crystals (in the latter case
M<0). Thus )\, is smaller than 10% A, The small-
est meaningful width of a surface layer is the in-
teratomic distance of the order 5 i’x, and all micro-
scopic resonances are expected to be considerably
detuned (d=~ 1), at least in the outermost atomic

layer. Then
2nad/X, > 102,

From this we conclude that the condition (17)yield-
ing P%=0 is fulfilled unless the refractive index
(n, or n,) is of the order 10 or larger. However,

a detailed investigation of a typical resonance

(€. <10 and F/wy?<1) indicates that modes with

Inl > 10 are negligibly excited whatever boundary
condition is applied [case (a) or (b) above].

From these considerations, we see that it is rea-
sonable to apply the condition P =0 at the surface
throughout the spectrum for all dispersive reso-
nances of practical interest,

It should be emphasized that our results strictly
concern the long-wave limit. If the detuned layer
has a width comparable to the reciprocal wave
number (1/2, or 1/k,) the boundary-condition prob-
lem is much more complicated. Such situations
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are also difficult in the absence of spatial disper-
sion since the optical properties of a surface change
significantly if one introduces a surface layer with
a polarizability different from that of the bulk and
with a considerable optical retardation. Such sur-
face layers associated with Wannier excitons have
been investigated by Hopfield and Thomas.?

V. SEVERAL RESONANCES

So far we have only considered a single resonance.
This treatment is easily generalized to include sev-
eral dispersive resonances, Each extra resonance
introduces an extra equation of motion for the con-
tribution to the polarization. Hence, if there are
¥ resonances taken into account one obtains » +1
coupled equations analogous to Eqs. (2) and (3)which
determine the propagation of the polariton waves.
The dispersion of these waves is given by

F;

r
kzcz/wzse + P 3 5 .
° 1;; Wo;—w +h’w0jk /MJ

(19)

This equation is of the order » +1 in k% and the » +1
roots determine the wave vectors of the eigenmodes.
When setting up the boundary conditions we assume
(as justified in Sec. IV) that all resonances are suf-
ficiently detuned at the surface. Then we arrive at
the boundary conditions given by the » equations

r+l

> Piy=0, 1353y (20)
i=1

at the surface. Here P, ; is the polarization con-
tribution of the jth resonance to the ith polariton
mode:
P - —-iweyg FiA,

BTl —wi i wo koM,
Hence, if more dispersive resonances are present
in a material (20) requires that the contribution
from each resonance to the polarization must van-
ish at the surface because of the detuning in the
surface layer.

VI. COMPARISON WITH EXPERIMENTS

(21)

Here we shall apply the theory outlined above to
the A- and B- exciton lines in ZnO.” In order to
establish clearly that the spatial-resonance disper-
sion effects are present in the ZnO low-tempera-
ture spectrum we shall concentrate on optical data
which are less sensitive to damping, namely, the
refractive index (measured by Fabry-Perot inter-
ference fringes) and the reflectivity. This is im-
portant since the exciton collision frequency may
be so small that the mean free path becomes com-
parable to the sample thickness and to the magni-
tude of the reciprocal polariton wave vectors. The
damping term may therefore contain contributions
from complex nonlocal loss mechanisms such as
exciton scattering at the surfaces. Hence the in-
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FIG. 3. Low-temperature exciton spectra of ZnO. (a)
Points indicate measured reflectivity (Ref. 9), while the
curve is computed by including two dispersive resonances
and applying the boundary condition of Eq. (22). The
background dielectric constant was €,=6.2 (Ref. 12) the
exciton mass (equal for A and B) M=1,8m,. The reso-
nance parameters obtained from the fit were (Fwq) 4
=3,3772 eV, (Fwyp) g=3.3828 eV for the transverse reso-
nance energies, and f,=2.6x10"%, fp=5.2x10"3 for the
oscillator strengths per molecule. The reflectivity was
rather independent of damping for 0<T'<0.1 meV, Here
we used I'=0.1 meV. (b) Attempts to fit reflectivity
curves derived from two dispersive resonances and the
boundary condition of Eq. (23) to the measured reflectivity
The parameters used for the dashed curve are the same
as in Fig. 3(a), while the damping was increased to I'=1.5
meV for the other curve. (c) Points indicate measured
refractive index (Ref, 8). The dashed curve is the re-
sult of a Kramers-Kronig analysis of the measured re-
flectivity [Fig. 3(a)]. Also shown are the refractive indices
of the three polariton modes used in the calculation of
Fig. 3(a). (d) Points indicate measured transmission
(Ref. 15), given in the form L1 log (T"Y), where T is the
transmission and L the sample thickness, L =2500 Z\,

I and II are transmission curves computed with parame-
ters and boundary conditions as used in Figs. 3(a) and
3(b), respectively.

terpretation of absorption spectra is more trouble-
some,

First, we compare the Kramers-Kronig analysis
of the measured reflectivity with the observed
spectrum® of the refractive index. The result is
shown in Fig, 3(c). It is seen that the observed
refractive index deviates considerably from that
derived classically from the reflectivity data. This
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indicates that the crystalline resonances responsible
for the A and B lines are subject to spatial disper-
sion,

According to Thomas’s assignment,” both lines
are due to free excitons, Estimates of the exciton
mass of the A and B excitons in ZnO vary from
0. 9my to 2m,.'%"'2 Since we shall demonstrate the
importance of spatial dispersion, we insert in our
calculation the rather conservative value of M=1. 8
m,. Using this value we have fitted the 2 =0 reso-
nance frequencies, the oscillator strengths, and a
bulk (frequency-independent) damping to the mea-
sured reflectivity. We have used Eq, (19) with »
=2 and with the addition of a damping term equal to
2Tw in the denominator on the right-hand side of
Eq. (19). For simplicity we used the same value
of T for both resonances. The result of this fit'
is shown in Figs. 3(a) and 3(b) for the two kinds of
boundary conditions

3
S Py,=0, j=1,2 (22)
i=1
and
3 8P
iz_l;—-;j;l:o, j=12 (23)

corresponding, respectively, to detuning (22) and
perfect tuning (23) in the surface layer. It should
be noted that the poor agreement in regions of high
reflectivity is expected since minor irregularities
of the surface tends to reduce the reflectivity in
such regions. The fit in Fig, 3(a) (with the vanish-
ing polarization at the surface) is rather insensitive
to damping in the region 0 =T <0.1 meV. Asin
Ref. 14 we find a satisfactory agreement between
the calculated refractive index associated with the
most dominant polariton mode and the experimental
results [see Fig. 3(c)]. Furthermore, the oscil-
lator strengths obtained in this fit are well ex-
plained in a previous paper.!®

It has already been seen that the unlikely bound-
ary condition of Eq. (23) is unable to reproduce the
sharp reflectivity structure near the A exciton, In
order to demonstrate further the validity of the con-
dition of Eq. (22) we have calculated the trans-
mission of a slab applying the two extreme pairs
of boundary conditions [Egs. (22) and (23)] on both
surfaces. In this case, the incoming wave will ex-
cite six polariton modes (three in eachdirection) and
two waves outside the slab. Thus the total of eight
boundary conditions provide the necessary equations.
The results are shown in Fig. 3(d), where we have
deliberately averaged out the interference fringes
in both experimental and calculated spectra. Again
the experiments favor the boundary condition pre-
dicted by theory [Eq. (22)]. It should be noted that
the discrepancies still existing between calculated
and observed transmission spectra might be ex-
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plained by incorporating nonlocal loss mecha-
nisms.

VII. SUMMARY

In this paper we have introduced a simple model
which is believed to describe the relevant influence
of a boundary on the polariton waves. In contrast
to the considerations in Ref. 2, we do not neglect
the coupling to light in the boundary-condition prob-
lem. Generally, our treatment leads to the condi-
tion that an appropriate linear combination of P
and 9P/dx vanishes at the surface [see Eq. (16)].
However, when inserting actual parameters of crys-
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talline resonances we find that P=0 at the surface
is an adequate condition throughout the spectrum.
The influence of the thickness a of the surface layer
has been treated strictly in the long-wave limit.
Thus, if a polariton mode carrying a considerable
part of the energy has a wave vector comparable

to 1/a, then a more elaborate calculationis neces-
sary.? We have also extended the theory of bulk
waves and boundary conditions to include two or
more dispersive resonances. Finally, we have
demonstrated the agreement with experiment of the
boundary condition in case of the exciton lines in
ZnO.
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Large differences (up to a factor of 100) have been observed in the intensity of phonons of
different polarizations propagating ballistically in LiF, KC1, and Al;,03. These observations
were made by means of heat-pulse experiments carried out on single crystals, in the tempera-
ture range 1.5-3.5°K. The results are explained in terms of phonon focusing due to the fact
that in elastically anisotropic crystals the phonon phase and group velocities are, in general, not
collinear. Calculations of the focusing effect, to determine the relative intensities of phonons
of each polarization in many crystal directions, have been carried out for a number of solids.
The results of these calculations are in good agreement with the experimental results obtained
in this study, as well as with those obtained by other investigators on Si, Ge, and NaF.

I. INTRODUCTION

In heat-pulse experiments, ! phonons are gener-
ated in a thin metallic film on one face of a crystal
by means of short electrical, microwave, or laser
pulses. The phonons are detected, after propagat-
ing through the crystal, by means of a suitable bo-
lometer. Metallic films which undergo a super-
conducting-to-normal transition when the phonon

energy arrives are very effective detectors. For
heat-pulse experiments, a crystal with phonon mean
free path comparable to its linear dimensions is
required so that the phonons will propagate ballisti-
cally rather than diffusively. Pulses due to phonons
of different polarizations then arrive at the detector
at different times and therefore can be studied in-
dependently. These experiments have considera-
ble advantages over thermal-conductivity studies



