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The propagation of short th~, rmal pulses has been studied in very pure samples of NaF, Li'F,
and NaI in various crystallographic directions. In each of these crystals the florv of heat at
high temperatures is by diffusion, and at the lowest temperatures, by the direct flight of pho-
nons from heater to detector. In the ballistic region, the elastic anisotropy gives rise to a
channeling of mode energy into certain preferred directions. Over a limited intermediate tem-
perature range, the effect of normal-process scattering on the propagated heat pulse has been
observed in NaF and Li F: In the best NaF crystals the pulse velocity approaches the expected
second-sound velocity. The observations can be explained satisfactorily in terms of the hydro-
dynamics of a weakly interacting phonon gas. Computer solutions generated to fit the observed
thermal pulse shapes suggest that in NaF, the mean free path for normal-process scattering
can be represented by /& = 1.42 &103T "3'" cm in the temperature range 10-20 'K.

I. INTRODUCTION

At low temperatures, when phonon free paths
become comparable with sample dimensions, the
study of the propagation of short heat pulses yields
valuable information concerning the phonon scatter-
ing processes in dielectric crystals. This informa-
tion ean be obtained for low-frequeney phonons from
ultrasonic attenuation measurements, but the mean
phonon frequency in a heat pulse is detexmined by
the thermal energy kT and can be much greater
than the available ult'rasonic frequencies.

Much of the current interest in heat-pulse ex-
periments centers on the mutual scattering of pho-
nons in the three-phonon normal processes (N pro-
cesses) which conserve the phonon guasimomentum.
The scattering cross section for these pxocesses,
which do not contribute directly to the thermal re-
sistance, can only be inferred with difficulty from
steady- state thermal-conductivity measurements.
In transient measurements, however, the N pro-
cesses can play a more dramatic role. By coupling
together the various phonon modes, they make
possible the collective oscillation in phonon density
which has been called second sound. The inertia
necessary to sustain this oscillation is provided by
the phonon quasimomentum; the resistive scattering
of phonons in which this quasimomentum is de-

,stroyed will cause damping of the second-sound dis-
turbance.

The possibility that under certain conditions
such a temperature wave might propagate in a good
thermal conductor was first considered in detail
by Ward and Wilks, following an earlier sugges-
tion by Peshkov. 7 On the basis of a phenomeno-
logical model they predicted that the velocity of
the second-sound disturbance would be I/VS
times the mean phonon velocity. More recently,

the pioneering work of Krumhansl and his co-
workers ' has stimulated a good deal of theoreti-
cal interest and provided a more rigorous justifi-
cation for the concept of second sound in solids.
We shall make only passing refexence to the rather
extensive theoretical literature which has been
well reviemed in the papers of Enz'~ and of Acker-
mann and Guyer.

By contrast, there is a paucity of successful ex-
perimental work': A fully developed second-sound
pulse has only been observed in solid ' ' He and
solid He'. " These crystals are unusually anhar-
monic because of their large zero-point motions;
it is of interest to consider whether second sound
can also be observed in more normal solids. Work
on several alkali halides, '6 synthetic sapphire, '7'
quartz, ' and more recently the semimetal bis-
muth, ~ has yielded inconclusive results.

Krumha. nsl and Guyer have suggested that for
second sound to occur the folloming inequalities
must be satisfied:

Eg&& A. &d, E~&&d.

E~ and l~ are, respectively, the mean phonon paths
between resistive and N scattering processes; d is
a typical sample dimension; and X is the wavelength
of the disturbance. The crux of the matter is
clearly the relative strength of the resistive and
N-process scattering of phonons, and it must be
remembered that variations in isotopic mass are
known to give rise to strong resistive scattering. '

For this reason me have in the present work
concentrated upon the isotopically pure alkali ha-
lides NaF, NaI, and Li F. In a preliminary report
it mas noted that in good NaF crystals the trans-
verse pulse mas somewhat delayed in the region
of the thermal-conductivity maximum. Further
work 3 has shown that this delay represents the
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onset of second sound in the crystal; it is the pur-
pose of this paper to discuss these results in more
detail.

As will be seen, the full development of the
second-sound pulse in even the best NaF crystals
is inhibited by the resistive scattering of phonons.
The presence of this resistive scattering makes
fox' diff lculty ln lntex'px'etlng the dRtR. IQ ox'del to
be more certain of the analysis, we have studied
in some detail the effects of resistive scattering
at both high and low temperatures. For a given
material, temperatures are judged high or low
relative to the position of the thermal-conductivity
maximum. In the presentation of the experimental
results it proves convenient to adopt a threefold
division of the temperature range in which inter-
mediate temperatures are considered separately.
We term the three temperature regimes ballistic,
intermediate, and diffusive, xespectively: The
ballistic regime is characterized by the direct
flight of phonons from heater to detector at the
first-sound velocity; at high temperatures, the
transport of heat is by diffusion; under certain
circumstances the N processes may give rise to
hydrodynamic effects at intermediate temperatures.

II. EXPERIMENTAL ASPECTS

A. Crystal Growth and Preparation

The various crystals used in this investigation
were all seed pulled from the melt using the
Kyropoulos technique. Crystal growth took place
in an inert atmosphere of high-purity argon which
had been further purified before entering the fur-
nace. The basic techniques have been described
in some detail by Peech et al.

We were fortunate to have available Thacher's
excellent I i F crystals ' ready grown, and sought
in the present work to grow NaF and NaI crystals
of a comparable quality using the same basic meth-
ods.

In the case of NaF, the crystals were grown
from two starting materials: Merck ultrapure pow-
der and Harshaw chippings. A preliminary attempt
wRS made to ixnpx'ove these mRtel'1Rls by bubbling
HF through the melt, but the best available gas
donated more impurities —principally Cl —than
lt removed. The col x'oslve nRtul 6 of the molten
NaF made purification by zone refining impractica-
ble. However, we tried to achieve the same xesult
by the repeated regrowing of the crystals 6; at
each stage some of the impurities were left behind
with the residue of the melt. The final crystal was
regrown from its predecessor without breaking the
argon atmosphere in the furnace.

As a preliminary check on purity, the absorption
spectrum of each boule was measured in the range
1000-4000 cxn using a modified Beckman IRV in-

frared spectrophotometer. The OH ion is known

to give rise to an absorption peak near 3600 cm '.
It was particularly important to look for this im-
purity because of its large-resonance cross section
for phonon scattering. The best NaF crystals
were free of absorption peaks in the near infrared,
apart fx'om a weak line in the intrinsic absorption
edge at 1140 cm '. The strength of this line did

not, however, correlate with variations in the
thermal quality of the crystals. As might be ex-
pected, the visible and ultraviolet absorption spec-
tra proved to be a less sensitive guide to crystal
purity. Even the pooxer samples, with the obvious
exception of those containing I' centers, showed
no absorption in this region.

Steady-state thermal-conductivity measurements
were made by Rollefson on those crystals that
passed the preliminary spectroscopic screening.
The height of the thermal-conductivity maximum

is a measure of the integrated scattering of pho-
nons by impurities. These data proved to be the
best guide to crystal purity for our purposes.
Following ea,rlier practice, the conductivity sam-
ples were cleaved to a square cross section of

roughly 5 mm on a side. The NaF crystals were
then annealed for one hour at 900'C. Before they
were mounted in the cryostat, the crystals were
lightly sand blasted to ensure uniformity of be-
haviox' in the boundary scattering region.

The conductivity data plotted in Fig. 1 show

the success of the crystal-regrowing technique. '
A marked improvement in crystal quality is evident

in the sequence of curves A to C for the Merck
material. It should be noted that the lowest of

these curves corresponds roughly with Walker's
data ' for the best NaF crystal previously mea-
sured. The Harshaw material did not respond
nearly so well to the regrowing approach; curve
D represents the best regrown Harshaw crystal.

Samples were prepared for the heat-pulse ex-
periments in much the same way as for the con-
ductivity measurements, although in this case a
flat-plate geometry was used where possible. The

[100] sampies were cleaved from the boule, but

a string saw was used to prepare the [110]and

[111]samples. In either case it was necessary to
polish the ends of the crystals which were to carry
the evaporated films. Prior to annealing, the
samples were etched in HF solution to remove sur-
face contamination.

The prepax ation of I.i~F and NaI samples followed

closely the procedures we have described for NaF.
NaI, with its affinity for water, presented particular
difficulties. In this case the starting material was

Merck ultrapure powder, which was always out-

gassed at 150'C for 2 or 3 days under vacuum in

the furnace before crystal growing was attempted.
The regrowing technique was again utilized with a
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FIG. 1. Thermal conductivity of samples from various
boules of NaF: heat flow in [100] direction. Cross sec-
tions: A, 4. 9 x 4. 7 mm"; B, 5. 2 x 5.2 mm; C, 4.9 x 5.6
mm2; D, 4.7 x 5.0 mm2.

carbon resistance thermometer mounted on the
crystal provided a measure of its temperature.
The spring-loaded clamp which held the sample
was faced with indium to avoid introducing strains
into the crystal.

Thin metallic films evaporated onto the ends of
the sample served as heater and bolometer; for
both purposes a film thickness of about 1000 A
proved to be convenient. Constantan was generally
used for the heater, and the resistance of the film
was arranged to match the output impedance of the
pulse generator. Pure Pb' was chosen for the
bolometer film which acted as a resistance ther-
mometer. The lead detector was particularly
sensitive at its transition temperature of 7. 2 K,
but it could also be used at lower temperatures
when a magnetic field was applied to destroy par-
tially the superconducting state. Above 7. 2 K,
use was made of the ordinary variation of the re-
sistance with temperature. The i"esidual resistance
of a film was typically 4'0 of its room-temperature
value, and the fractional sensitivity d(lnR)/d(lnT)
was greater than unity down to about 13'K. It
will be seen from the data in Fig. 3 that the lead
films had a usable sensitivity down to 7. 2 K.

The detector was biased with a constant current
so that resistance changes gave rise to a signal
voltage across the film. At a given bias power
dissipation, the voltage sensitivity for a given

measure of success which can be judged from the
conductivity data of Fig. 2. The NaI heat-pulse
samples were polished in a glove box and trans-
ferred to and from the evaporator in an evacuated
container. Before mounting a crystal in the cryo-
stat, its surfaces, including those which carried
the thin metallic films, were coated with J oil to
exclude moisture.

As a third check on the purity of the various
crystal boules, mass spectrometer analyses were
obtained. While there was some ambiguity in
the results, the analyses consistently suggested
impurity levels which were considerably higher
than those specified for the original starting mate-
rials. Even the best NaF boule (No. 611-284-2,
curve C in Fig. 1) appeared to contain 70+ 20 ppm
of impurity by weight. Chlorine, which contributed
nearly half this total, was probably the main source
of phonon scattering.

B. Measurement Techniques
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The heat-pulse experiments were performed in
a simple metal cryostat. The sample was mounted
in vacuo on a stainless-steel post anchored to the
helium bath which could be pumped to 1.8 K. A
heater on the post allowed the sample temperature
to be raised above the bath temperature, and a
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FIG. 2. Thermal conductivity of samples from various
boules of NaI; heat flow in [100] direction. a, single
grown from Merckpowder; b, double grown; c, double

gl own.
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FlG. 3. Fractional sensitivity of typical lead bolo-
meter.

temperature change varies as the square root of
the resistance of the detector. In order to increase
their resistance, the lead films were evaporated
in a zig-zag pattern of some 60 lines to the inch.
With this arrangement, the film resistances at
room temperature were typically in the range
400-2000 A. The detector bias dissipation ranged
typically from 0. 1 mW at the lowest temperatures
up to 0. 1 W at high temperatures. However, the
associated temperature differences within the crys-
tals rarely exceeded a few millidegrees because
of their high thermal conductivities.

A Hewlett Packard type 214A pulse generator
supplied the input pulses to the crystal heater;
the pulses were typically between 0. 1 and 0. 5 psec
duration mith energies in the range 0. 2-200 erg.
Assuming a uniform radiation of heat from the
heater into the crystal at the mean phonon velocity,
the calculated rise in temperature in the region of
the heater was generally =1%, and always less
than 5%, of the mean sample temperature. The
signals from the lead detector mere usually of a
sufficient amplitude to allow their direct display
on an oscilloscope after some wide-band preampli-
fication. A Tektronix 1121 amplifier was used in
conjunction with a type 547 oscilloscope for this
purpose, and the traces were recorded photograph-
ically. In a second arrangement, devised to handle
weaker signals, a Hewlett Packard 10514A mixer
unit was used as the gating element in a box-car
circuit in which the gating pulse width was 0. 1
psec; the integrated signal was in this case recorded
graphic ally.

III. THEORETICAL CONSIDERATIONS

In the theoretical analysis we shall adopt an
overtly phenomenological viewpoint. Such an ap-
proach receives some justification from the work
of those authors & who have considered the phe-
nomenon of second sound in solids in terms of the

dynamics of microscopic processes, but the present
treatment is perhaps best judged a posteriori by
its success or otherwise in describing the experi-
mental observations. We shall not concern our-
selves mith the distinction that has been made be-
tween drifting and driftless second sound""; we
have only observed the approach to second sound,
and our measurements would not be sensitive to the
predicted 6% velocity difference.

We assume that the thermal excitations in a di-
electric crystal can be represented adequately as
an isotropic gas of localized weakly interacting
phonons, and that the motion of this phonon gas can
be described by the usual hydrodynamic equations. '
In the general case, the equation of motion of a
viscous fluid is

Bv
p —+ p(v grad) v

at

= —gradP+gV v+(5+ —,
'

rl) graddivv,

where v, P, and p are the Quid velocity, pressure, and

density, respectively, and p and K are the first and

second viscosities.
This equation, when applied to the phonon gas,

must be rewritten in terms of the heat-flux vector
F, which is the product of the phonon energy density
8 and the fluid velocity v. On the left-hand side of
the equation, the second term is of second order and

can be neglected for small v, but a further term is
needed to represent the resistive scattering of
phonons by defects and by the lattice. This fixed
obstacle term can be written in the relaxation-time
approximation as (F/c, vs), where c, is the average
phonon velocity and v~ is the relaxation time for
the resistive scattering of phonons. (Whether or
not v ~ equals 7 R, the Ziman limit for resistive scat-
tering, will depend upon the strength of the three-
phonon N processes. )

Sincethe fluid momentum Q= F/c~ and the fluid

pressure P = —,
' F., the equation for the conservation

of momentum becomes

1~F F C—+ ~ +~ gradT
cf Bt cqv's 3

qV + f+- V(V )
F

3
(2)

where T is the temperature and C„the specific heat
per unit volume.

The corresponding equation for the conservation
of energy is

8T
C —= —divF .vat

The viscous damping term on the right-hand side
of Eq. (2) tends to zero in the limit of strong N
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processes, and in this limit the two equations com-
bine to give

92T 1 8+ K
+~ ~ ~ Ijjf g —0

Bt y~ 8 t Cv'g
(4)

(a}

where the thermal conductivity &= &C~, 7~. This
equation, which has been used by a number of
authors, ' yields the characteristic second-sound
velocity ca =c, /W3 when rs- ~ .

It cannot, however, describe the transition with
decreasing phonon-phonon interaction from the
second- to the first-sound regime. In our experi-
ments we have been concerned with this transition,
alld tile tel'nls oil tile l*lgllt-llalld side of Eg. (2) al'8
essential in the analysis.

Ackermann and Guyer have considered these
terms in the limit v&~ «1, where y& is the relaxa-
tlon tlIQe fol N-process scRttex'lng Rnd & ls the Rn-
gular frequency of the thermal disturbance. The
first viscosity is then given by q =-,' E7„.In this
limit the second viscosity has the same form and
is just twice the first viscosity. Kith increasing
7&, q eventually tends to zero and the dominant
damping IQechRnlsm ls px'ovlded by the second-
viscosity term. By analogy with the hydrodynamic
case ' we shall write the second viscosity as

rz(l —c,'/cia

1 —ico7'

where v
' = v'&' +7'& is the combined relaxation

rate for all phonon scattering processes. Neglect-
ing q, the wave equation then becomes

Substituting the plane-wave solution T = T0e'"" "~',
we obtain the dispersion relation

2 2 2

3k& =~c =v + +a a a a a ajd a~k 1(~1 ~a)v„1-i&~

The real and imaginary parts of k determine,
respectively, the phase velocity e~ and the attenua-
tion of the wave. The relative phase velocities and
the ratio of' the imaginary and real parts of k, k, /k„
are shown in Figs. 4(a) and 4(b). For the case of
zero resistive scattering, represented by the solid
lines, the phase velocity is e2 for ~7 «1 and in-
creases to c& at high frequencies. Near (d v = 1 the
velocity varies rapidly with frequency and, as ex-
pected, there is strong attenuation. The opposite
limit of ~~ = v is represented by the dotted lines:
There is little change in the velocity of high-fre-
quency disturbances, but the wave velocity tends
to zero as (d -0 and there is strong attenuation at
low frequencies.

For simplicity we consider a crystal which is

t2-
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FIG. 4. Graphical presentation of dispersion relation-
ship, Eq. (7): In both figures the solid line is for7~=~
and the dotted line for ~=z~ . (a) Phase velocity of ther-
mal wave of angular frequency (d relative to second-sound
velocity; (b) Hatio of imaginary to real parts of propa-
gation constant k.

bounded by the planes x= 0 and L and examine the
propagation of heat pulses in the x direction. Vfe

wish to investigate the solutions of Eq. (6) when a
temperature pulse closely resembling a 5 function
is injected in the plane @=0at time zero. If nec-
essary, the finite length of the crystal can be al-
lowed for by simultaneously introducing similar
temperature pulses in each of the planes x=+ 2nL,
where n takes integer values from 1 to ~. Since
the Fourier transform of a 5 function is a uniform
distribution of equal-amplitude waves of all k vec-
tors from zero to infinity, the initial spatial dis-
turbance can be represented by

T(x) =f cos(k„x)dk„, (8)

T{x,t)= »m Z exp[-(k, )„n„tj
n=1

xcos{n&kn x- ~„t)hk„, (la)
where aj„,&u„, and (k, )„are, respectively, the phase
velocity, frequency, and imaginary propagation

where k~ is the real part of the propagation con-
stant. (A norma1izing constant is not relevant here
and is omitted. ) We can replace the integral by the
summation

T(x) = lim Z cos(n&ksx) &kz .
&0@~ 0 a=1

The propagation of each of the component waves in
this summation will be determined by the dispersion
relation (7). At time t the spatial disturbance
can therefore be represented by
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constant of the wave with real wave vector n&k„.
An approximation to the solution in this form can

be generated numerically by taking a finite interval
&k~ and setting a finite upper bound to the summa-
tion.

~ ~ ~ ~ i
~ I ~ ~

I
~ ~

IV. NUMERICAL ANALYSIS

LLI
I/I ILI

Q

Q
QX
Z 4

K q {max)
a -50
b - 500

-3 02 .l .2

FIG. 5. Simulated input heat-pulse shapes in computer
model.

The response of the system at a fixed distance
L from the heat source is obtained when x is re-
placed by L in Eq. (10). For the purpose of the
analysis, L was usually taken to be unity. The
lower bound to the range of k~ vectors needed to
approximate the summation is broadly determined
by this choice: Wavelengths considerably greater
than L are required to represent changes that are
slow compared with the time for a phonon to travel
this distance. The minimum k~ must, therefore,
be much less than 2m/L. In the opposite limit, the
upper bound in the summation determines the spa-
tial extent + 5x of the simulated 5 function centered
on x= 0 at t=0: 5m=v/k„(max). By varying
kz(max), the effect on the propagating pulse of

changing the duration of the input pulse can be
studied.

Within the limits suggested by these considera-
tions, the number of terms used in the summation
was dictated by the speed of the available Elliott
4130 computer. The range of k~ values was usually
chosen to span some three orders of magnitude,
and a summation over 500 equally spaced terms
proved generally satisfactory. The input pulse
constructed by simply summing over a finite set
of k~ vectors was not an ideal 5 function. As one
would expect, although the pulse could be made
arbitrarily narrow, there were always substantial
oscillatory disturbances on either side of the cen-
tral peak. These unwanted oscillations were can-
celed by superimposing three adjacent wave pack-
ets of the simple type.

UJ
Cl
D
I

Q
X

~ ~ ~ ~ I ~ ~ ~ I I I a

2 3
DELAY TIMES (in units of to)

FIG. 6. Detected heat-pul. se shapes in computer model
at~=I =1: k~(max)=50, vz=~. &~, in units of to, is for
for various curves: (a) 0, 4; (b) 0.2; (c) 0.14; (d) 0.1;
(e) 0.07; (f) 0.05; (g) 0.02; (h) 0.0017.

Figure 5 shows the resulting approximation to a
5 function for kz (max) = 50 and 500. For the limit-
ing case 7~ = v~ - ~ of negligible phonon scattering,
such pulses are propagated without attenuation or
change of shape at the phonon velocity c&. The
effect in the computer model of progressively in-
creasing the strength of the intrinsic N-process
interactions is shown in Fig. 6. Here kz (max)
= 50, and the unit of time to is the time for a pho-
non to travel the distance L (= 1). The influence
of the N-process scattering is first seen in a rise
in level to the right of the ballistic pulse. The di-
rect pulse can be distinguished from this scattered
part of the disturbance as long as l„&QL, where

lN is the mean free path between N processes. For
the case lN = ~~L, the beginnings of adistinct second-
sound pulse can be seen. The velocity of this pulse
falls as the strength of the N-process interaction
increases and approaches the second-sound veloc-
ity proper for l„&~~L.

In the true second-sound regime, a decrease in

lN reduces the width of the propagated pulse as re-
quired by the calculations of Ackermann and

Guyer. We note, however, that where l„is
small, the first viscosity, which is neglected in

the present model, will be appreciable. Its effect
will be to broaden further the second-sound pulse.

The foregoing pattern of computed results is
not much altered by changing the width of the initial
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heat pulse. Differences only arise where the pulse
(at L = I) has both direct and scattered components.
For a given v„,very high-frequency components
in a pulse will travel at the ballistic velocity [see
Fig. 4(a)], and we would therefore expect a reduc-
tion in the input pulse width to increase the relative
amplitude of the direct component. This proves to
be the case, and in the analysis of the results we
have chosen our pulse widths to match the experi-
mental observations.

It is implicit in our discussion that variations in
L will have no effect on the manner of propagation
of the heat pulse. The important parameters in
the calculation are L/I„, Lk~(max), etc. , and if
these are kept constant the results remain the
same. However, if lN is kept constant and L is
varied, rapid changes in the pulse profile are to
be expected. It will be seen in Fig. 7 that the
same l„cangive rise to either ballistic or second-
sound propagation depending upon the length of the
crystal.

In the computer model, sources at x=+ 2L,
+ 4L, etc. , can be easily simulated to represent the
reflections of the pulse at the planes x = 0 and L
in a finite crystal. However, these sources can
only begin to change the pulse shape at x = L for
times greater than 3to or 3v 3 to in the ballistic and
second-sound regimes, respectively. As we shall
see, the reflected signals will generally be masked
by the presence of resistive scattering, and we
shall ignore them in the subsequent discussion.

When the scattering of phonons by both normal
and resistive processes is allowed in the analysis,
the range of possibilities becomes too wide for
every combination to be considered in detai. '.. We
confine our attention here to just two values of the
parameter l~, ~4L and ~00 L, and examine the
effects of resistive scattering in these two cases.

The first represents an intermediate situation
in which the velocity of the peak of the disturbance
lies between the first- and second-sound velocities;

Vl

C

I-
L=3

4 I I ) I I I

2 4 6 8 10 12 14
DELAY TIMES (in units of to)

FIG. 7. Computed thermal pulse shapes for different
crystal thicknesses: kz(max) =50, w&=0. 2t p, 7'g= ~.
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C
b
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I I I I I
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Delay Times (in units of t, )

I
l/l

LL 0—

2 4 6

Delay Times (in units of t, )

FIG, 8. Effect on computed pulse shapes of resistive
scattering. (a) 7N=0. o7tp &z, in units of tp, is for
various curves: a, ~; b, 0.95; c, 0.48;d, 0.24. (b) wN

=0.002tp. 7'p inunits of tp, is forvarious curves: a, 0.35;
b, 0.j.7; c, 0.085; d, 0.043.

Fig. 8(a) shows computed curves for several values
of the resistive mean free path l~. For small
amounts of resistive scattering, a vestige of the
direct pulse reappears as a knee in the curve at
tp This suggests that the resistive processes act
preferentially on the scattered rather than the di-
rect component in the pulse, and thus give rise to
the unexpected increase in apparent pulse velocity.
At the same time, heat scattered out of the main
pulse reappears as a long diffuse tail. With in-
creasing resistive scattering the distinct pulse is
lost in this diffuse tail.

As a second example we examine the effects of
resistive scattering on a fully developed second-
sound pulse [Fig. 8(b)]. In this regime, the pat-
tern of computed curves varies little with l„;here
the important parameter is l~/L. The pulse is
easily destroyed by weak resistive interactions and
can only be distinguished from the diffuse tail as
long as l~ &4L. This requirementis considerably
weaker than the condition obtained by Krumhansl
and Guyer. On the basis of the present analysis
we suggest that a recognizable second-sound pulse
will be observed if

apl~ &L &4/
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In the limit of strong resistive scattering, l„«—,
' L,

the computed curves approximate closely the known
exact solutions of the modified heat equation (4}.

In view of its simplicity one would not expect
the model considered to account for every detail
in the experimentally observed pulse profiles.
Different phonon modes and a wide range of phonon
frequencies are involved in the real problem, and
neither TN nor 7.~ is independent of mode or fre-
quency. At best we hope to be able to describe
the general features of the experimental results.

V. EXPERIMENTAL RESULTS AND DISCUSSION

For convenience of discussion we divide our pre-
sentation of results into three sections according
to temperature.

[100j L = 1.52 cm
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FIG. 9. Heat-pulse propagation in the [111]direction
in NaF. Input pulse duration=0. 2 psec.

At temperatures much lower than that of the
thermal- conductivity maximum, phonons are
scattered only at the boundaries of a single crystal,
and in a long thin sample there is the familiar T
variation with temperature of the steady-state heat
flow. With the usual crystal geometries, the heat-
pulse experiments are insensitive to boundary scat-
tering and most of the phonons reach the detector
by direct ballistic flight from the heater at their
respective mode velocities.

The three oscilloscope traces in Fig. 9 show the
detector response when a 0. 2- psec heat pulse is
propagated at low temperatures in the [111jdirec-
tion in NaF. In this direction in the crystal the
transverse modes are degenerate and only two
pulses are seen. The broadening of the pulses is
mainly a geometric effect due to the finite heater
and detector areas, and we assume that the initial
rise marks the true flight time of each pulse. The
first echo of the transverse pulse is seen in the
second trace, and when the signal is expanded in

FIG. 10. Heat-pulse propagation at 7.2'K in the three
principal directions in Li F. Input pulse durations: [100],
0.3 @sec; [110], 0.1 @sec; [111],0.2 psec.

the third trace, a second and perhaps a third echo
appear. The diffuse nature of the reflected beam
results in a large apparent attenuation. In the best
traces no more than four echoes can be resolved.

The velocity of energy propagation in the in-
dividual phonon modes can be determined from the
oscilloscope traces with a typical accuracy of
a 1 or 2%. These velocities, corrected for thermal
contraction, are compared in Table I with energy
velocities computed from the elastic constants.
In directions of high symmetry in a cubic crystal,
the energy and phase velocities do not differ sig-
nificantly, but the 'distinction between these veloc-
ities is important for a discussion of the relative
amplitudes of the pulses which represent the various
phonon modes. It will be seen that for the case of
I,iF in Fig. 10, the relative mode energies vary
considerably with crystallographic direction.
Taylor et al. have shown that, if it is assumed
that phonons are generated at a heat source with a
uniform angular distribution of wave vectors, the
elastic anisotropy will give rise to a channeling of
the energy into certain directions. Broadly speak-
ing, the thermal energy in a given mode will be
radiated in those directions in which the velocity
and the curvature of the wave surface are at a
maximum, but in the three materials studied there
are cusps in each of the transverse-wave surfaces
which complicate the simple picture.

The density of phonon states in the various modes
will also influence the relative amplitudes of the
thermal pulses propagated in a given direction.
In an isotropic solid, the mode energy for a given
temperature rise is inversely proportional to the
cube of the mode velocity.

In Table II the observed relative pulse intensities
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TABLE I. Measured and calculated thermal energy velocities in NaF, LiF, and NaI.

Heat-pulse velocities
(10 cmsec ')

Longitudinal Transverse Transverse

Energy velocities
(105 cm sec ')

Longitudinal

NaF

NaI

L17F

[100]
[110]
[111]

[100]
[110]

[100]
[110]
[111]

6.01
5.56
5.52

2. 96
2.71

(6.97)
7.59

3.89

1.98

4.79

3.15

1.40

4.96

4.19

3.19

1.43

6.22
5.79
5.65

3.16
2. 85

6.86
7.49
7.69

3.92
3.64

1.98

4 95
4. 28

3.21

1.44

4.95'

3.21
3 57

1.44

3.94
4. 22

Highest velocity, where there is more than one energy velocity associated with a particular mode in a given
direc tion.

Unlike the phase velocities, the energy velocities for the two transverse modes are not exactly degenerate in the
[111]direction.

in the principal crystallographic directions for the
various materials are compared with intensities
calculated for the combined effect of elastic anisot-
ropy and the density-of-states factor. For simplic-
ity, the phonon channeling effect has been estimated
by calculating points on the wave surface in the
principal crystallographic planes; an angular spread
of + 5 in the ray vectors was assumed. The cal-
culated enhancement factors are found to be in
quite good agreement with the more detailed cal-
culations of Taylor et al. when allowance is made
for the difference in the assumed angular spread
in ray vectors. We note, however, the importance
of the density-of-states factor in the analysis. In
the [100]direction in NaF, for example, the elastic
anisotropy gives rise to an enhancement of the
longitudinal pulse by a factor of 2. 5, but the trans-
verse pulse is reduced by a similar factor and the
dominance of this pulse experimentally arises be-
cause of the difference in the mode velocities.

It will be seen that there is generally quite good
agreement between the predicted intensities and

the experimental observations. Some variation
from the calculated intensities is to be expected
in the observations because of differences in the
heater-bolometer geometries for the various sam-
ples; where there is a cusp in the wave surface for
a particular mode, as for example in the fast trans-
verse sheet in the [110]direction in LiF, the calcu-
lated relative intensities critically depend upon the
assumed angular spread of ray vectors. However,
for the case of pulse propagation in the [111]direc-
tion in LiF, there are no cusps in the velocity sur-
faces, and it is difficult to account for the differ-
ence between the observed and calculated intensities
in purely geometric terms.

In an attempt to explain the rather extreme varia-
tions in pulse intensity in LiF, experiments were
carried out, in which the plane of the heater was
not perpendicular to the direction of heat-pulse
propagation. The results were essentially un-
changed. For example, in an experiment with the
heater perpendicular to the [100]direction, the
propagated pulses were monitored simultaneously

Calculated relative
pulse intensities
(% total energy)

Longitudinal Transverse

TABLE II. Comparison of observed and computed relative pulse intensities.

Observed relative
pulse intensities
(% total energy)

Longitudinal Transverse

NaF

NaI

Li~F

[100]
[110]
[111]

[100]
[110]

[100]
[110]
[111]

25
4
7

32
10

&0.4
3

63
97

68

100
&2

33
2. 5
6

1
8

29

89 9
94

52

99
84 8
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in both the [100] and [111]directions; the observed
longitudinal pulse was stronger than the transverse
pulse in the [111]direction but was zero, as before,
in the [100]direction. These observations are con-
sistent with the concept of phonon channeling, but do
not rule out the possibility that an aeoustie mis-
match between the heater and the crystal may in-
fluence in some measure the relative pulse in-
tensities. ~ However, Nichrome, Constantan, and

Manganin heaters were variously used without any
change in the observations. It was clear from the
results of several experiments that if there was
such an acoustic mismatch, it did not depend criti-
cally upon the thickness of the heater film.

There is, nevertheless, some evidence that the
generator-crystal interface can play an important
role. Hanson experienced considerable difficulty
in generating high-frequency longitudinal acoustic
waves in the [100]direction in pure LIF with thin-
film nickel transducers, but found that weak waves
could be generated using oxidized films. Moreover,
the longitudinal waves could be readily generated
in doped crystals.

It is natural to ask whether the anisotropies in
mode intensity which are observed in heat-pulse
experiments have any counterpart when there is a
steady flow of heat. At high temperatures the
thermal conductivity is required to be isotropic by
the cubic symmetry of the lattice, but in the bound-

ary-scattering region, anisotropy in the phonon-

mode velocities and intensities could give rise to
an anisotropy in the transport of heat which would

vary with crystal geometry. Brock49 has calculated
that, for a LiF crystal of square cross section with

&=3 C„((c,)/(c, ))I„. (12)

The velocity averages were approximated by
Houston's method. Data for solid He and syn-

a side-to-length ~atioof 1:10, the apparent conduc-

tivity in the [111]direction would be some 3% higher
than in the [100]direction because of the anisotropy
in the mode velocities. The effect of phonon chan-

neling would be to enhance further the preferential
heat conduction in the [111]direction.

However, the experimental results in the bound-

ary-scattering region suggest, if anything, a max-
imum thermal conductivity in the [100]direction:
Thacher's ' data for [100]crystals are consistently
some 20%%ug higher than those of Herman and Brock
for randomly oriented single crystals. Moreover,
the mean free paths for phonons in Thacher's crys-
tals are some 20% greater than the Casimir limit
for boundary scattering. ' In the present work it
proved convenient to look for anisotropy in the
thermal conductivity of NaF, and measurements
were made in the three principal crystallographic
directions on samples cut from the same crystal
boule. The conductivity in the [110]direction ap-
peared to be somewhat lower than in the [100]and

[111]directions, but the differences between sam-

ples in the boundary-scattering region were not

more than 5% and were barely significant.
It is of some interest to compare phonon mean

free paths for the materials studied. Those plot-
ted in Fig. 11(b) have been derived from the
thermal-conductivity data of Fig. 11(a) using the
simple kinetic-theory expression for the conduc-
tivity:
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FIG. 11. (a} Comparison of thermal conductivities of some very pure single crystals: NaF and NaI data, curves C

in Fig. 1 and b in Fig. 2; LiYF, Thacher- (Bef. 25) (cross section =4. 2&&3.8mm~); A1203, Holland (Bef. 51) (cross section
=3.2 x3.2 mm ); He, Mezhov-Deglin (Bef. 5) (diam = 2mm). Dotted lines represent a T variation. (b) Besistive mean

free paths derived from conductivity data in (a).
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In the high-temperature limit, the flow of heat
in the crystals will be by thermal diffusion, and the
response of the system to a thermal disturbance
must satisfy the usual Fourier heat equation

C„BT 1 BT
V' T= —"—=——

Bt Q Bt (13)

where n is the thermal diffusivity. Two limiting
cases arise when we consider a heat-pulse experi-
ment in an infinite slab of solid bounded by the
planes x = 0 and L: the 6-function heat impulse at
time t = 0 can either be distributed uniformly over
the plane x = 0 or be generated at a point in that
plane.

The one-dimensional form of Eq. (13) is clearly
sufficient to describe the first of these cases, and
its solution when a 6-function pulse of heat is in-
jected at x = 0 and time zero takes the well-known
form

n, T(x, f)~1/vt e """' . (14)

As before, reflections at the faces of the slab can
be allowed for by superimposing on this fundamental
solution contributions from image sources placed
at the planes x= +2nL. The solution at x= L which
satisfies the boundary conditions is, therefore,

&T(x, t)o- P ~ exp —
4 &

— . (15)
—(2n + 1)a L'„,vt

The summation is easily performed numerically
and yields a solution which rises asymptotically to
its maximum value with increasing time. Following
Parker et al. and Ackermann and Guyer, we
use the tangent to this curve at its steepest point
to provide a measure of the thermal diffusivity.
This tangent intersects the time axis at time t',
where t'=0. 05La/n. We note, however, that
the first term in the summation in Eq. (15) gives
a good approximation to the shape of the leading
edge of the disturbance and yields for t' the ex-
pression

thetic sapphire are included for comparison, but

the differences in the sample cross sections should

be noted.
It will be seen that in the boundary-scattering

region, the phonon mean free path in NaI is roughly
25% more than in NaF for crystals of the same
cross-sectional geometry, and that in both materials
l~ is substantially less than the Casimir length of
= 5. 6 mm. The 50% difference in the phonon mean
free paths in NaF and LiF is certainly significant.
Heat-pulse observations rule out the possibility
that the phonon path length in NaF is limited by
scattering processes within the body of the crystal,
but it is possible that detailed calculations of the
effect of phonon channeling on the steady-state
flow of heat may resolve the discrepancy.

B. Diffusive Region

f'=0. 048 L'/o . (18)

In the opposite limit of a point source at x=y=z
= 0, the solution of Eq. (13) in an infinite medium
takes the form

(1/f 3/2
)

+-1'a/4u f

where x is the radius vector. It is more difficult
in this case to include the effects of reflection in
a finite slab of material, but the divergence of the
thermal disturbance should make this less neces-
sary. We should expect that in this case, also,
the leading term in the solution, Eq. (17), will
fairly well approximate the initial shape of the
rising edge of the diffuse waveform. " For the
point x= L, y =z = 0, this term gives for t' the rela-
tionship

f ' = 0. 0375L / a.
The delay times which correspond to t' can be

determined with fair accuracy from photographs
of the diffuse thermal waveforms. When thermal
conductivities are calculated using these times and
the known heat capacities, there is better agree-
ment with the steady-state measurements if Eq.
(18), the point-source expression for f', is used.
This is not very surprising, for in order to reduce
boundary effects, the heaters and bolometers were
generally confined to the centers of the faces of
the crystals.

The general solution of the Fourier heat equation
for the case of a finite source of heat in an infinite
medium is very complicated, but it reduces to a
simple form at points on the x axis for a disk-
shaped source which is centered on the origin in
the x= 0 plane. For a source of radius a, the solu-
tion for the point x= L can be written'

L2 (L2~ g2)
& T~ exp — — —exp — — — . (19)4~t

It is of interest to see how t' derived from this ex-
pression varies with a: For a &L, the solution ap-
proaches that for an infinite source and t' = 0. 048
x I- /n; if a &r'L, the solution is close to that for a
point source and f' = 0. 0375I /o.

The second of these inequalities was usually sat-
isfied in the experiments. We have assumed the
validity of the point-source solution in calculating
conductivities from the data. Thermal conductivi-
ties derived from both transient and steady-state
measurements on Li F are compared in Fig. 12.
The samples were all taken from the same crystal
boule, but it will be seen that the apparent conduc-
tivity values derived from the heat-pulse observa-
tions are nearly 50/o higher than the steady-state
measurements. This overestimate of the conduc-
tivity is typical of all the values derived from the
heat-pulse measurements in the three materials
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FIG. 12. Thermal-conductivity data for Li'F: Steady-
state data obtained by Thacher, &&; values derived from
heat-pulse data using Eq. (18) and known specific heats,
0(I =3.1 mm), (1-=6. 4 mm). Oblique error bar rep-
resents effect on calculated conductivity of temperature
error of +2 K.

studied. Neither the response time of the bolom-
eters nor their finite areas could account for
this discrepancy, for both tend to increase rather
than decrease the observed values of t'. The high-
temperature observations were invariably made as
the cryostat warmed up in a situation which only
approximated thermal equilibrium. It should be
noted that the analysis is particularly sensitive to
errors in the temperature measurement: A +2 K
uncertainty at 43 K gives rise to the error bar
shown in the figure. It seems unlikely, however,
that there was an undetected systematic error of
+ 5% in temperature measurements which spanned
the range 6-74'K.

While the heat-pulse data proved a useful and
reliable guide to the comparative conductivities
of different samples, it would seem that consider-
able care must be exercised if the absolute values
of the conductivities are to be trusted. The sample
geometries were far from ideal for these measure-
ments. It may be that more precise results would

be obtained with a geometry approaching more
closely that of a thin slab with an infinite source. '
It will be seen jn Fig. 13, however, that the point-
source solution does fit the observed diffusive wave-
forms quite well.

NaF (L=0.43cm, T= 25.5 K)

I

10

race Broadened by Noise

-6
T= exp

I & I i I

20 30 40

Delay Times (@sec)

FIG. 13. Comparison of observed diffusive thermal
waveform in NaF with Kq. (17). Noise envelope of ex-
perimental trace is shown, and electrical breakthrough
of the input pulse is seen at time zero.

C. Intermediate Region

The foregoing analysis breaks down when the dif-
fusive delay t' is of the order of the time to for a
phonon to cross the crystal. The temperature at
which this occurs will depend upon the length of
the crystal since I' ~ toI./l„. At lower temperatures,
ballistic propagation will obtain when the mean
free path for N-process scattering l~ & I.. Thus,
the range of temperatures which we consider in
this section will vary with length from sample to
sample.

The existence of a third distinguishable tempera-
ture range, the hydrodynamic region, depends, as
we have seen, upon the strength of the three-pho-
non N processes relative to resistive scattering.
Where the normal interactions are weak we expect
that as the temperature is reduced, the diffusive
mode of energy transfer will lead directly into
the ballistic regime when t0= t'. This proves to be
the case in the best NaI crystals we have studied.
The main features of the profile of the detected
pulses are plotted as functions of the temperature
in Fig. 14:The curves, in order of increasing de-
lay, represent, respectively, the leading edge,
half-height, and maximum of the ballistic trans-
verse phonon pulse, the maximum of the diffuse
pulse, and the peak of the first echo. These ob-
servations could imply that the 3nharmonic cou-
pling between phonons in NaI is relatively weak, but
the mean-free-path data of Fig. 11(b) suggest that
the strength of the resistive scattering may be the
limiting factor.

A rather different pattern emerges when one
considers the heat-pulse data, for the best NaF crys-
tals. The data shown in Figs. 15(a)-15(c) are for
heat-pulse propagation in the [100]direction, but
essentially similar results were obtained in the
[110]and [111]directions. The two-dimensional
representation in Fig. 15(a) is best understood by
comparison with Fig. 15(b), where some of the
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FIG. 14. Heat-pulse propagation in I100j direction in
NaI: I = 3.69 mm; input pulse width = 0.4 JL(eec. Curves
represent the leading edge, forward half-height and peak
of transverse pulse, and the peaks of the diffuse pulse
and echo.

same data are presented as a three-dimensional
graph. The curves in this latter diagram are taken
directly from photographs of oscilloscope traces
such as those in Fig. 15(c); amplitudes were nor-
malized roughly for convenience by varying the
gain of the amplifiers. Two additional features of
the main pulse profile are mapped in Fig. 15(a):
the solid triangles represent the backward half-
height of the pulse; the curve starting at 16 'K
represents the leading edge of the main pulse
which is distinct from the transverse pulse over
R limited temperature range. Delays correspond-
ing to the leading edge and maximum of the longi-
tudinal phonon pulse are also marked on the
dlRgram.

There is a clearly defined range of temperatures
about 10-18'K over which the mode of thermal en-
ergy transfer is neither wholly ballistic nor diffu-
sive. In this range, the tx'ansverse pulse is in-
creasingly delayed and broadened as the tempera-
ture is increased. The separation of the delayed
pulse from the remnants of the transverse pulse
and the behavior of the longitudinal pulse provide
clear evidence that the observed delays are real
and not instrumental in origin. Moreover, in the
temperature 1ange whex 6 this separation 18 ob-
served, the leading edge of the main pulse is
steeper than is the initial rise at lower tempera-
tures. %'6 would expect from the computer analy-
sis that, starting in the ballistic region, the effect
of increasing the strength of the three-phonon N
processes initial]. y would be to delay and broaden
the transmitted thermal pulse. The strength of

the N processes in the crystals will certainly in-
crease rapidly with temperature (- T ), and the
data suggest that we are observing the effects of
this increase in three-phonon scattering in the
intermediate temperature range.

%6 assume that the second-sound velocity is
given by c~ = —', v» where vD is the Debye velocity;
for the [100]direction in NaF, c, defined in this
way is very close to 1/v3 times the transverse
velocity. Delays corresponding to e2 are marked
for both direct and reflected pulses in Fig. 15(a).
It 18 lnterestlllg to see thRt these coll espond qult6
well with the maximum observed delays. Unfortu-
nately, it appears that just as the second-sound
pulse begins to take shape, it is destroyed by a
rapid increase in resistive scattering.

These tentative conclusions receive support when
the computer model is used to generate curves to
fit the observed wave profiles. In the cux ve fitting
it proved necessary to include resistive scattering.
For example, to fit the trace shown in Fig. 16 it
was necessary to assume a mean free path of 1.4
mm for resistive scattering. This is twice the
mean free path obtained from steady-state measure-
ments at the same temperature, but in view of the
preceding discussion concerning diffuse delays, the
assumed resistive scattering seems not unreason-
able. The N-process scattering needs to be some
five tixnes stronger than the resistive scattering to
account for the observed trace, In view of the
simplicity of the isotropic model assumed, the
computer-generated curves fit the observed ther-
mal pulses in the intex mediate temperature range
quite well. %'here l~ is large, a detailed fit de-
pends critically upon the choice of pulse width in
the computer program, for, as we have seen, this
determines the relative heights of the ballistic and
scattex'ed pRrts of the cux've. Howevex', this RQlbi-
guity has little inQuence on the choice of l~ in the
region where the main pulse is appreciably delayed.

By using a series of crystals of different lengths,
measurements were made in the intermediate tem-
perature region covering a wider range of tempera-
tures than mould have been possible with a single
crystal. The extent of the intermediate region for
these various crystals is shown in Fig. 17. The
lower bound plotted on this graph is the tempera-
ture at which a delay in the ballistic pulse first be-
comes apparent. If one assumes that this occurs
when the ratio 1./f„has a certain value, one would
expect this curve to represent the temperature
variation of E~. In the opposite limit, the upper
bound to the region is taken to be the temperature
at which there is a sudden rapid increase in the de-
lay of the maxima of the observed pulses. The
significance of this temperature is less clear since
both normal and resistive scattering processes are
involved.
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variation of the N-process scattering than the T
variation observed in solid He .

It might be argued that the effects we have dis-
cussed could be interpreted in terms of some re-
sistive scattering mechanism. If this were the
ca,se, it is hard to see why the best Na, F crystals
should differ so markedly in their behavior from
other materials. The scattering strength of most
possible crystal defects is either independent of
phonon frequency or varies a,s some positive power
of the phonon wave vector q; the scattering of pho-
nons at internal crystallite boundaries, for example,
will be frequency independent, but the scattering
effect of the strain field surrounding a line disloca-
tion will be proportional to q. At low temperatures,
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FlG. 17. Variation with crystal length of the extent of
the intermediate temperature region for the [100j direc-
tion in NaF.

FIG. 18. N-process mean free paths in NaF derived
from the observed heat-pulse profiles by curve fitting
with computer model. Dotted line representing resistive
scattering is from Fig. 11(b).

the mean energy @~ of a thermal phonon will be
roughly the same in each of the various phonon
modes, and this means that the wave vector q of
a typical phonon will be proportional to the mode
velocity. Transverse phonons will, on the average,
have la, rger wave vectors than longitudinal phonons
and will thus be more subject to those resistive-
scattering processes which increase with wave
vector.

We expect, therefore, that depending on the
nature of the process involved, the effect of re-
sistive scattering in a heat-pulse experiment will
be either to decrease the amplitude of the trans-
verse pulse relative to the longitudinal pulse or to
leave the amplitude ratio unchanged. In the NaF
data of Fig. 15, however, it is evident that with
increasing temperature the amplitude of the longi-
tudinal pulse den eases in comparison with the
broadened transverse pulse. The magnitude of
this decrease is best seen in Fig. 19, where the
ratio of longitudinal to transverse pulse heights is
plotted against temperature. This graph under-
estima, tes the effect, for no account is taken of the
simultaneous broadening of the transverse pulse.

In a series of control experiments the effects on
heat-pulse propagation of deliberately introducing
resistive scattering centers into the NaF was con-
sidered. The first defect chosen for study, the
I' center, was produced by irradiating the NaF with
140-kV x rays. After 2 h of irradiation with
a 10-rnA beam, the thermal conductivity' at 7 'K
was reduced by a factor of 2. There was little
change in the relative amplitudes of the longitudi-
nal and transverse pulses over the temperature
range in which measurements were made, but
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FIG. 19. Ratio of longitudinal to main pulse amplitude
for data in Fig. 16. Upturn of the curve at 16'K may be
due to the resistive scattering of phonons.

there was an over-all increase in diffuse scatter-
ing. When chlorine was introduced as an impurity
into the I aF, the expected preferential scattering
of the transverse phonons was observed. In the
temperature range where the resistive scattering
was appreciable in long crystals, the ratio of the
transverse to longitudinal pulse heights was found

to decrease rapidly with crystal length. The mea-
surements in Fig. 20 were all made on the same
single crystal cleaved progressively; the Cl con-
tent of the boule was 600 atomic ppm. It is some-
times said that the Rayleigh scattering of phonons
varies as &; the data show directly that it is the
wave vector, not the frequency, which determines
the scattering cross section.
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FIG. 21. Heat pulse propagation in [100] direction in
Li F: I =6.38 mm; input pulse width =0.1 @sec. Curves
represent the leading edge, forward half-height and peak
of the main pulse, and the peak of the echo. There is no
longitudinal heat-pulse in this direction in the crystal.

For our present purposes, however, a more
important conclusion can be drawn from these ex-
periments, namely, that the two types of resistive
scattering considered do not give rise to effects
which are in any way similar to those observed in
the best NaF crystals. We conclude that the
broadening and delay of the main heat pulse in the
pure NaF crystals is best accounted for in terms
of the nonresistive mutual scattering of phonons.

There is no more than a hint of these effects in
the heat-pulse measurements on the best Li'F
samples. Figure 21 is typical of the data for vari-
ous crystal lengths. It will be seen that with in-
creasing temperature there is only a slight broad-
ening and delay of the transverse phonon pulse.
Resistive scattering increases rapidly before the
N-process interactions become strong, and it is
difficult to extract l„from the data. Pfe estimate
tentatively that at 22 'K, I„=0. 025 cm, but we are
not able to ascertain its temperature dependence.
This value of lN is consistent with those obtained
from the analysis of the steady-state thermal con-
ductivities. It is, however, three times larger
than our estimate of l„for NaF at the same tem-
perature.

VI. SUMMARY AND CONCLUSIONS

2 3 I 5
LENGTH (cm)

FIG. 20. Ratio of transverse to longitudinal pulse
amplitude for heat-pulse transmitted in [100] direction in

Cl-doped NaF at 7.2 'K; Cl content was 600 atomic ppm.

A study has been made of the propagation of
short thermal pulses in very pure samples of NaF,
Li'F, and NaI, and steady-state thermal-conductiv-
ity measurements have been used as a guide to the
interpretation of the results. In each of these
materials, the resistive scattering of phonons in-
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hibits the full development of a second-sound pulse,
but at intermediate temperatures in Li'F, and
particularly NaF, the mutual scattering of phonons

by N processes has a marked effect on the pulse
profiles. In NaF, the transition from the first-
to the second-sound regime is found to occur in
the temperature range 10-20'K and depends upon
the length of the crystal.

This transition can be described phenomenologi-
cally in terms of the hydrodynamics of a gas of
weakly interacting phonons. The second viscosity
is mainly responsible for the damping of the ther-
mal waves in such a gas, and also gives rise to a
rapid variation in phase velocity when the angular
frequency of the disturbance to = 1/7„. The solu-
tions of the hydrodynamic equation which have
been generated on the computer give a reasonable
representation of the observed pulse shapes when

the weak resistive scattering of phonons is taken
into account. Qn the basis of the computer analy-
sis we find that the mean free path for N-process
scattering in NaF can be represented by l„=1.42
0&10 T~' cm in the temperature range 10-20 'K.

A study of the effects of the resistive scattering

of phonons both at high temperatures, where the
flow of heat is by diffusion, and at low tempera-
tures, where the heat pulses propagate ballisti-
cally at the phonon-mode velocities, has convinced
us that our interpretation of the phenomena at in-
termediate temperatures is essentially correct.
At low temperatures, the relative pulse intensities
are consistent with an analysis in terms of the
anisotropic channeling of mode energy into certain
crystallographic directions.
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A simple model accounting for the influence of a surface on polariton waves is introduced.
From this the extra boundary condition needed in case of a dispersive resonance is derived.
The general result is discussed in relation to actual resonances in crystals. The theory of
bulk waves and their boundary conditions is extended to include two or more dispersive reso-
nances. The behavior of the measured exciton lines in ZnO agrees well with the computed
spectra.

I ~ INTRODUCTION

Spatial resonance dispersion' may be important

whenever crystalline excitations that couple to light
are able to move. One of the characteristic fea-
tures of this phenomenon is that two eigenmodes








