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The thermal conductivity of several NaF crystals of varying purity has been measured be-
tween 2 and 100'K. The full Callaway formalism is employed to derive phonon-phonon scat-
tering rates from the thermal-conductivity data. The data can be fitted above 37'K only by
assuming a change from the low-temperature scattering rates. Heat-pulse data and the obser-
vation of second sound are reported for a crystal less pure than that studied by Jackson et al.
The temperature region of second-sound propagation observed for several NaF crystals of
varying purity along with the derived phonon-phonon scattering rates are used to give quanti-
tative meaning to the criteria for the observation of second sound. The thermal-conductivity
measurements and the second-sound observations are consistent with a scattering rate for
normal processes between 10 and 25'K of yz —-1&&10 ~T sec '.

I. INTRODUCTION

Direct measurements of the frequency and tem-
perature dependence of phonon-phonon scattering
rates are difficult to obtain. Ultrasonic attenuation
experiments, while direct and monochromatic, have
the disadvantage of being confined to frequencies
below ]0ii Hz s Thus the thermal-phonon region is
not readily accessible by this technique. Thermal-
conductivity measurements, on the other hand, allow
study of thermal phonons but have the disadvantage
that one studies all phonons simultaneously. Ex-
traction of phonon-phonon scattering rates from
such data involves a'ssumptions and averages over
phonon spectra which leave one with less detailed
information than one would like.

In recent years the technique of heat-pulse prop-
agation has been developed. ' Under certain con-
ditions of temperature and crystal purity, one can,
in fact, observe heat-pulse propagation with char-
acteristics associated with the "second-sound"
phenomenon so well known in liquid helium. In 1966,
Ackermann et al. ' observed second-sound prop-
agation for the first time in a solid; in their case
the solid was 'He. This was followed in 1969 by
observation of second sound in solid 'He by Acker-
mann and Overton. ' Finally, in 1970 McNelly
et al. ' observed what was called the "onset of sec-
ond sound" in a conventional insulator, solid NaF.
These latter results were confirmed and extended
by Jackson, Walker, and McNelly. Thus, there
is little doubt that propagation of heat by thermal
waves, with the characteristics of second sound,
is a property of insulating solids.

The advantage of second-sound measurements is
that they allow a reasonably direct determination
both of the normal-process (N-process) phonon-
phonon scattering rate and of the resistive-scatter-
ing rate as functions of temperature. A review
article by Ackermann and Guyer demonstrates this

for the case of solid 'He.
The purpose of the present paper is to report the

results and analysis of our thermal-conductivity
and second-sound data on solid NaF. As will be
seen, analysis of these two different sets of experi-
ments allows one to extract complementary infor-
mation about phonon scattering rates. The two
together provide more confidence in the results
than either separately.

NaF was chosen because both Na and F exist in
nature with but one chemical isotope each. This
means that resistive phonon scattering by the ran-
dom isotopic mixture, common to most solids, is
automatically absent. Second, one can obtain quite
pure starting powder (-12-ppm cationic impurities),
so conventional, if onerous, crystal purification
techniques suffice for quite good final single crys-
tals (- 1 ppm). Thus, one can also reduce the re-
sistive phonon scattering due to background chem-
ical impurities to levels low enough to allow obser-
vation of second sound.

The rest of the paper is organized as follows:
In Sec. II we detail the technique of crystal purifi-
cation. In Sec. III we display our thermal-conduc-
tivity and heat-pulse data for several "pure" crys-
tals of different purity. The heat-pulse data dem-
onstrate transport by ballistic phonons, by second
sound, and by diffusion. Section IV contains an
outline of the theoretical ideas underlying an inter-
pretation of the data. In Sec. V the theory is ap-
plied to the thermal-conductivity data to obtain es-
timates of phonon scattering rates, which are
applied to the second-sound data in Sec. VI.

II. CRYSTAL PREPARATION

An extended multiple-growth technique was used
to produce the ultrapure NaF single crystals. This
technique employs repeated fractional recrystaliza-
tion to lower the impurity content in the single-crys-
tal growths. The technique was dictated since pu-
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FIG. 1. Schematic illustration of crystal-growth
procedure. Each horizontal line represents a crucible,
each arrow a crystal growth.

rification by ordinary zone refining for NaF is diffi-
cult due to its corrosive nature. To effect the re-
growth procedure, all of the crystals were grown

using the Kyropoulos seed-pulling technique in an

NRC model 284 crystal-growing furnace modified

to allow crucible handling under high vacuum. The
usual care was exercised in baking out the furnace
and especially the graphite parts, in using the fur-
nace exclusively for NaF growth, and in purifying
the ultrapure (Linde-4N6) argon-growth atmosphere.
The platinum crucibles were obtained from Matthey

Bishop, Inc. ,
' and have been used exclusively for

NaF growth.
To minimize water absorption and contamination

by OH, extreme care was used in powder handling.

The starting powder was Merck "Suprapur. " It
was exposed only to purified He gas, purified Ar
gas, or vacuum. To charge the crucible, for in-
stance, a vacuum dry box was evacuated, backfilled
with high-purity dry He gas through a liquid-nitro-
gen-cooled activated-charcoal trap, loaded with the
crucible and powder through a port, reevacuated,
and finally backfilled again for the actual transfer
of powder to the crucible. In addition, the OH

impurity was minimized by pumping on the furnace
before growth and while slowly warming the powder
to 650 'C. Above 650 'C, a one-third atmosphere
of carefully purified argon gas was admitted for the
growth process. The argon was purified by passage
through a dry-ice-acetone-cooled trap, followed by
passage over a zirconium-titanium getter at 550 'C,
followed by passage through a dry-ice-acetone-
cooled activated-char coal trap.

The actual procedure for repeated fractional re-
crystalization is schematically illustrated in Fig. 1.
Each horizontal line represents a crucible; only the
first-growth column of crucibles is initially charged
with powder. Half the melt of crucible 1 is grown
and remelted into crucible 9. Similarly, half of

crucible 2 is grown and remelted into crucible 9.
The same process is repeated for crucibles 3, 4,
and 10. Then half of the melt of crucible 9 is
grown and remelted into crucible 13. Similarly,
half of crucible 10 is grown and remelted into

crucible 13. At this point, the furnace is briefly
opened in order to charge crucibles 5-8. The
entire procedure above is repeated until crucibles
14 was filled. Half the melt of both crucible 13
and 14 was grown and remelted into crucible 15.
Finally, the last (fourth) regrowth is pulled in its
entirety.

III. EXPERIMENTAL RESULTS

A. Thermal Conductivity

Thermal- conductivity- vs-temperature data for
the purest crystal are shown in Fig. 2. The sample
was sawed with a diamond string from the top of a
fourth-regrowth boule and sanded with 600-grit sand-

paper to 0. 51 && 0. 51-cm cross section. The sample
was then annealed for 40 h at a peak temperature of

950 'C. The peak thermal conductivity, a sensitive
indicator of impurity content, is seen to be 240 W/
'K cm. The position of the peak at 16.5 "K is to
be compared to crystals of lesser purity. Figure 3
shows thermal-conductivity-vs-temperature data
for several samples of differing purity. A typical
single growth from the Merck powder, for instance,
has a peak thermal conductivity of 58 W/'K cm at
only 13 'K. For a typical Harshaw NaF crystal, the

peak thermal conductivity of 30 W/'K cm occurs at
about 11 'K. The movement of the peak to higher
temperatures is evidence for the removal of the

Rayleigh-type impurity scattering and an approach
to a peak value determined solely by the intrinsic
phonon-phonon processes. The shape of the curve
in Fig. 2 emphasizes this point of view because we

see a very steep —in fact, exponential -dropoff
following the peak. This behavior was one of the
early predictions by Peierls' for umklapp-process
(U-process) scattering and is seen to some extent
in other insulating crystals of high purity.

B. Second Sound

In a recent paper we have reported on second-
sound propagation in our purest crystal. Here we

wish to present results showing the effect of im-
purities on the second-sound mode. Figure 4 shows
heat pulses in a crystal whose peak thermal conduc-
tivity K'„,„ is 150 W/ Kcm (curve B, Fig. 3). The
topmost trace (11 'K) shows well-defined longitudinal
and transverse first-sound peaks, and there appears
to be a slight shoulder on the decaying transverse
peak. By 13 'K, th~ee peaks can be clearly iden-

tified, longitudinal and transverse first sound, and

second sound. By 14. 5 K, the second-sound pulse
is already superimposed on a broad diffusive ramp.
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FIG. 2. Thermal conductivity vs temperature for
purest NaF sample.

A plot of heat-pulse arrival time vs temperature
for this crystal is shown in Fig. 5. For thepurpose
of discussion, a similar plot for our purest crystal
is reproduced in Fig. 6. In both instances one sees
ballistic longitudinal and transverse pulses at the
lowest temperatures; the second-sound pulse begins
to appear at 10 'K. In the less pure crystal, how-
ever, the second-sound pulse cannot be followed

I I I I I

2 5 4 5 6
ARRIVAL TIME (rLsec)

FIG. 4. Heat pulses in a pure NaF sample Q = 7. 9 mm)
in the (100) direction for several different temperatures.
L and T mark the peaks of the longitudinal and trans-
verse ballistic pulses, respectively. Note the appearance
of a third distinct pulse {second sound).
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FIG. 3. Thermal conductivity vs temperature for NaF
samples of varying purity: A, best fourth-regrowth sam-
ple; B, a less pure fourth-regrowth sample; C, best
single-growth sample; D, an average single-growth sam-
ple; E, best Harshaw sample.

much past 14 K. In both figures the behavior at
highest temperatures is dominated by diffusion.
This difference between Figs. 5 and 6 shows the
extreme sensitivity of second-sound propagation to
background impurity content, since the impurity
content of the 150-W/'Kcm crystal was only about
6 ppm in contrast to the -1 ppm of the 240-W/'Kcm
crystal.

A dramatic illustration of the effects of impurity
content is given by Fig. 7, where one sees a com-
parison of four different NaF crystals of varying
purity, two grown at Cornell University'~ (A and C)
and two grown at Northwestern University (8 and
D). The data were taken at approximately the same
temperature and on samples of approximately
(within 1(F%%d) the same Ien~&h, so that one may see
the effect of impurity content directly. In A (K„,„
=60 W/ K cm) only longitudinal and transverse
ballistic pulses are seen, and the transverse pulse
is superimposed on a large diffusive ramp. In 8
(K„~=150W/'Kcm) one sees longitudinal and
transverse ballistic pulses and also a clearly sep-
arated second-sound pulse. In this case, the sec-
ond-sound pulse has an amplitude somewhat less



THERMAL CON DU CT IVITY, SECOND SOUND, 1431

NaF

HEAT P UI SE ARRIVAL

7.9mm LONG SAMPLE

o PEAK
h LEADING EDGE

V-
II

LLI

0
K
0

2—

~o
~o~o

SECOND-SOUND PEAK-

—0 —0—0—p—p—o-
h h h —h—h—h—h—h—$—g—

TRANSVERSE PULSE

I—

LLJ
Cl

LLI
I

LL 2
Ci

2 5 4 5

—0 p 0 o—o—o—o—o-—h—h—h—4—h—h—h—h—
LONGITUDINAL PULSE

I I I I I I I

9 IO I I I 2 I5 14 I5

TEMPERATURE ('K)

LLI
(A

CL
.7 K

FIG. 5. Arrival times vs temperature for leading edges
and peaks of longitudinal ballistic pulse, the transverse
ballistic pulse, and the second-sound pulse for the sam-
ple of Fig. 4.

than the transverse pulse amplitude. In both C
(K„~=150W/'Kcm) and D (E'„~=240 W/'Kcm),
the "transverse" pulse is considerably broadened
and of greater relative intensity than the transverse
pulses in A or B. In C, the signal does not quite
return to the base line because of the diffusive back-
ground. Comparison of crystals A-D demonstrates

NaF
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FIG. 6. Arrival times vs temperature for leading
edges and peaks of longitudinal ballistic pulse, the trans-
verse ballistic pulse, and the second-sound pulse for the
purest sample. V~~ is the expected arrival time for fully
developed second sound.
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FIG. 7. Heat pulses in the (100) direction in four dif-
ferent NaF samples of varying impurity (A=7. 4 mm,
8=7.9 mm, C=7. 3 mm, D=8. 3 mm). The traces A-D
are in order of increasing purity. Samples A and C were
grown at Cornell University, and samples 8 and D at
Northwestern University.

clearly that the purer the crystal, the greater the
ratio of energy in the second-sound mode to the
first-sound modes.

We shall now analyze the thermal-conductivity
data in order to determine the temperature and fre-
quency dependence of the phonon scattering rates.
With these known we can see whether they are con-
sistent with the second-sound data.

IV. THEORY

A. Thermal Conductivity

We shall use the phenomenological model of lat-
tice thermal conductivity at low temperatures de-
veloped by Callaway. ' Such a model is not, of
course, developed from first principles, but its
ability to describe the data has been well established.

Callaway's central contribution was his treatment
of momentum-conserving or N processes in a cry-
stal. X processes alone can be shown to lead to an
infinite thermal conductivity. The N process, then,
is quite different from U or impurity scattering
processes which are momentum nonconserving and
lead to a finite conductivity. The difference between
momentum-conserving and non-momentum-conserv-
ing processes is reflected in the Boltzmann equation,
which in the presence of temperature gradient is

c
~N &N—c VT—=0.

c
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K=K(+K~,

where

y 4Z3 e/r x e"B
2 &@3 c x 12 (4)

8/T
&

4 ~
C

p v'saba (e" -1)'

ka is the Boltzmann constant, x =ha/pT, and 8 js
the Debye temperature. The same result has been
more rigorously obtained by Krumhansl' as a
special case of a general operator form of the
Boltzmann equation.

For the usual case where resistive scattering
dominates. (7„»7a), the correction term in Eq. (3),
1+P/7. ~, becomes equal to 1 and the usual thermal-
conductivity expression K& obtains. For the
case of a very pure crystal, however, the N pro-
cesses may dominate the distribution (~s« ~a) and
we then find that the so-called correction term is
the dominant term; that is, K-K2. A graph of the
relative sizes of K, and K2 for varying impurity
content may be found in Ref. 14. If we look at the
form of Ifp, Eq. (5), we note that when N processes
become infinitely frequent,

K Kz- z „zdx

N is the phonon distribution function, c the phonon
group velocity, T the temperature, and (SV/&f),
the rate of change of N due to collisions of any type.
Callaway wrote the collision terms as

(
sN N(A ) Vp N-

c N R

where T„ is the relaxation time for N processes and
TR the relaxation time for all non-momentum-con-
serving processes. Equation (2) shows that resis-
tive processes relax the phonons to an equilibrium
Planck distribution N, and that N processes relax
the phonons to a displaced Planck distribution N(X).
The separation of N and resistive processes leads
to an expression for the thermal conductivity of
the form

(3)
N

where Tg = T~ + TR Cph is the phonon specific heat,
and P is independent of the phonon wave vector k.
The factor 1+.P/~„ is the "correction" caused by
the special treatment of the N processes. Equation
(3) may be written, using the Debye model, as the

sum of two terms

J x'e"x e
7'a

( „)pdx.

The expression then depends only on the resistive
relaxation rate. In other words, one learns little of
the exact strength or functional form of r„' from
this term, but rather, one learns about TR. Berman
and Brock' were first to utilize this behavior to
check the forzn and strength of 7 R for isotope scat-
tering by comparing the predictions of the full Cal-
laway model to a fit of thermal-conductivity data for
LiF: 'LiF mixed crystals with a wide range of is-

otope concentrations. Only using the full Callaway
model were they able to fit their data.

In order to fit the thermal-conductivity data, both
the forms and strengths of all the phonon relaxation
rates must be known. Namely, relaxation rates for
N processes (7 „'), U processes (7 v), boundary
scattering (7. a), dislocation scattering (i D), and
impurity scattering (7,') are needed. The strengths
of the relaxation rates are not predicted theoretically
for intrinsic processes and are somewhat uncertain
for such extrinsic processes as dislocation scattering.
There exist a number of functional forms for these
processes, but with the exception of isotope or
mass-difference scattering, these are not well con-
firmed experimentally. Furthermore, the func-
tional forms for the intrinsic phonon relaxation rates
change (presumably in a continuous fashion) as a
function of temperature, and we must therefore
decide whether a low-temperature functional form
or a high-temperature form is appropriate for a
particular temperature region.

B. Second Sound

The possibility of observing second sound in solids
was first suggested by Peshkov in 1947." In 1951,
Ward and Wilks' considered a phenomenological
Boltzmann equation to show that a density fluctuation
in a phonon gas could propagate as a second-sound
wave with velocity V» —-c/v 3 (c =is the first-sound
velocity). Subsequently, second sound has been
placed on a much firmer theoretical footing by Guyer
and Krumhansl, and others, using both semi-
phenomenological and microscopic approaches. We
shall use the Guyer-Krumhansl results for our brief
discussion below.

The continuity equation for heat transport in an
isotropic one-polarization Debye -model phonon

gas is
aT

C —+ V ~ q=0" at
where C„ is the specific heat per unit volume and
T is the temperature. In the phonon gas at low
temperatures where the N-process mean free
path A~ is much shorter than the resistive mean
free path A.R, momentum conservation may be
written
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y~))d,

t t«dna/c, (12)

where ). is the second-sound wavelength (X =-2v c/Q),
d is the sample thickness, and Lt is the heat-pulse
duration. Equation (10) suggests that to have a
collective propagation of phonons (the second
sound), many N processes must occur within X;
and Eq. (11) suggests that if the temperature dis-
turbance is to propagate as second sound, resistive
processes which remove momentum from the sec-
ond-sound pulse must not be present. It is crucial
then that &„«&R, a condition that is obtained in a
pure crystal at low temperatures. Second- sound
data give a temperature range where these inequal-
ities are satisfied and where they begin to fail.
From these data, one may obtain a quantitative
measure of the strengths of scattering processes.

If the conditions for second-sound propagation
by heat pulses are satisfied, we may solve Eqs.
(7) and (8) in the limit' Xs» 1 to find the shape of
the detected pulse':

T(l t) AT&t -~~&a~ 10m (l —Vxi t)

Consideration of the last term in Eq. (7) shows that
as r„(or X„/c) becomes larger (fewer N pro-
cesses), the pulse broadens. The broadening oc-
curs because there are fewer N processes to keep
phonons in the second-sound pulse; that is, the
viscosity term of Eq. (8) is becoming effective.
Using Eq. (13), then, one may analyze pulse broad-
ening to determine a direct value of X„. Such an
analysis has been carried out in detail for solid
He by Ackermann and Guyer.

Finally, if conditions yet more stringent than
those for second sound obtain

X„«R,
A.g A, ~ &&A,

(14)

(»)
where R is the radius of sample and X~ is the mean

—+ —q+-,'C„c'VT--', cX„[V'+2m(V )] q=0.
R

(8)
If the N-process mean free path approaches zero,
then one can combine Eqs. (7) and (8) to obtain a
dissipative wave equation':

8T c dT z 2
Qt2 g gt 3+ —+ —+ -'c'V'T =O.

If one has not only very frequent N processes but
also very rare resistive processes (Xs- ~), then
we find that a temperature disturbance may prop-
agate undamped with velocity c/M3. These ideas
led to the following criteria for second-sound ob-
servation:

K= —', C„c y(R /cX~). (18)

Thus far Poiseuille flow of phonons has been ob-
served only in solid helium. Such an observation
gives a second direct measurement of X~.

V. DATA FITTING

We have investigated various theoretical fits to
our thermal-conductivity data using the above full
Callaway formalism. Our impurity content is low
enough that the second integral (Kz) plays a dom-
inant role in our fits. We have first fitted our
purest-crystal data (Fig. 2) and then used these
parameters to attempt a fit on the less-pure sam-
ples, changing only the strength of the impurity
scattering.

Even with the uncertainties in strengths and func-
tional forms of phonon relaxationprocesses men-
tioned above, a reasonable fit may be made to the
data because different phonon relaxation rates
dominate in diff erent temperature regions. Below
about 16'K, the U scattering rate is insignificant
compared to the other resistive processes. We
have used calculated values of the boundary scat-
tering rate &~' and the dislocation scattering rate
7D' and an approximate value of the impurity scat-
tering rate 7~' to determine 7„' for a good fit below
16 'K. We make use of the unusual behavior of
K2 [Eq. (5)] in this determination. We then add a
U term for the fit above 16'K. Above 35'K, the
fit breaks down as the relaxation times change their
functional forms and new functional forms are sub-
stituted. We discuss each term in the relaxation
rate next.

A. Extrinsic Process Scattering

1. Boundary Scattering

Since the original work of Casimir, boundary
scattering has been carefully investigated by That-
cher 4 and others and is well understood;

ws' = c/1. 12l (17)

for a sample of square cross section, where / is a
characteristic phonon mean free path limited by
the boundaries of the sample and c is an averaged
phonon velocity. We have used the average tech-
nique due to Slack. ~' A proper treatment of the
averaged velocity would require separation into the
longitudinal and transverse components as Holland'~

has done for germanium and silicon. No such at-
tempt was made here. The calculated boundary
scattering rate for a crystal size of 0. 51&&0. 51 cm

free path for momentum loss in the bulk of sample,
then Poiseuille flow of phonons should be observed. 20

Phonons scatter via N processes to the walls where
momentum loss occurs. In this case, the thermal
conductivity exhibits a steep T -to-T rise just
before the peak value and may be represented2' by
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is

& '='7. 0&&10' sec ' (18)

where a length correction of 15/0 according to Ber-
man, Ziman, and Foster is included. If &~' is
regarded as a parameter whose value is found by
fitting to the low-temperature data, one obtains

=8. 8&&10' sec '

D -rDNo (20)

where Np is the dislocation density and I is the
scattering strength. The va.lues of the scattering
strengths differ in these theories, all of them some-
what underestimating the experimentally observed
strength. We shall use Ohashi's scattering strength
because it is closest to past experimental values.
We have observed the dislocation density directly
in our samples using the etch of Davisson and
Levine. " The etch-pit counts were made using a
Leitz MM5 metallograph with oblique lighting.
Since we did not wish to cleave in two the purest
thermal-conductivity sample, we examined a num-
ber of crystals which had been grown and treated
in the same manner as the purest thermal-conduc-
tivity sample. The random dislocation density in
the interior of these samples varied from 5x10'/
cm' to a maximum of 1 x10 /cm'. We shall see
later that this dislocation density has a dramatic
effect on the thermal conductivity of very pure crys-
tals. For these dislocation densities, Ohashi's
theory would predict

7 = 1. Vx10 v sec (21)

Using 1 D as an adjustable parameter, the best data
fit is obtained with

7D' —- 4 ~ 10 co sec ', (22)

indicating that Ohashi's theoretical scattering
strength, although a substantial improvement over
Klemen's and Carruther's, is still too small.

in reasonable agreement with the prediction. Closer
agreement between experiment and theory would
require examination of the procedures used to ob-
tain the average phonon group velocity. For in-
stance, the difference between the theoretical and
experimental values above would be reduced to 10%
had we chosen the group velocity obtained by Hous-
ton's method.

2. Dislocation Scattering

Dislocation scattering, in contradistinction to
boundary scattering, is not so easily calculated
with confidence. Theoretical attempts have been
made by Klemens, Carruthers, ' and more re-
cently by Qhasi. " Each obtains the form

intrinsic phonon-phonon interactions, we must have
a knowledge of the impurity scattering rate for our
crystals. The choice of NaF for these experiments
was intentional, for its natural isotopic purity elim-
inates a major impuritylike scattering mechanism.
We are left, of course, with ordinary chemical
impurity scattering. The starting powder was
"guaranteed" to contain & 5-ppm Ca", & 5-ppm K',
and & 12-ppm total. " The crystal-growthtechnique
reduced the number of impurities to the 1-ppm
level. At impurity concentrations on the order of

ppm, standard laboratory techniques of impurity
analysis become difficult. Consider, for example,
infrared (ir) absorbtion, a standard technique for
detecting OH impurity content. In NaF crystals,
without any indication of OH from ir-absorbtion
measurements, Harrison et al. ' has found evidence
from specific-heat anomalies implying a 0. 1-0.3-
ppm OH concentration. Even flame- emission
spectroscopy becomes difficult unless one engages
in high-purity wet chemistry. We may, however,
utilize the results of ionic-conductivity measure-
ments on our crystals" combined with the ionic-
conductivity data on NaF of O' Brien and Plovnick. '
O' Brien and Plovnick constructed an isothermal
plot of ionic-conductivity vs divalent-impurity con-
centration obtained using a Jarrell-Ash emission
spectrograph. We may then note the ionic conduc-
tivity of our sample and then read off the divalent-
impurity concentration. Since the method of crys-
tal purification is essentially purification by zone
refining, we may expect that both the monovalent
and the divalent impurity will be reduced and the
divalent-impurity value obtained will represent a
value somewhat smaller than the total impurity
concentration.

Klemens has predicted that random point de-
fects should have a scattering rate

&4 —+2 ——13.44 -—

(22)
where n is the impurity concentration, U, is the
unit cell volume, v is the average group velocity,
~M is the mass difference between host and im-
purity atom, M is the average molecular mass, &F
is the change in the force constant, and hA is the
change in nearest-neighbor distance. Berman and
Brock' have carefully confirmed both the propor-
tionally constant (hM/M) and the functional form
(~~) for isotopic phonon scattering in 'LiF LiF
crystals. In the simplest approximation, phonons
are scattered by chemical impurities in the same
way as phonons are scattered by the random distri-
bution of pure-crystal isotopic masses; that is,

3. ImPurity Scattering

Before we can consider our central concern, the
UO g f &M( 4

I 4& 3 i (24)
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where M is the average mass of the host lattice,
4M the difference between the impurity mass and

M, and f, the fraction of unit cells having mass M, .
Since K' and Ca" represent almost all of the im-
purity content, and since AM=16, 17, respectively,
we need write only one expression for v', ' whose
coefficient will yield the fractional concentration
of impurities in our crystals. Using the numbers
from the ionic-conductivity results and the formula
above, we have an explicit expression for the im-
purity-scattering rate:

7,'= (1.6X10 ")&&(ppm)

neglecting any force-constant changes. Finally, of
course, this value must be put into the thermal-
conductivity integrals and compared with experi-
ment. Because the peak thermal conductivity is
extremely sensitive to impurities in these very pure
crystals, we should expect the fitted value, which
includes both the mass-difference and the force-
constant change scattering from all impurities, to
be larger than the value calculated above.

B. Normal Process

I
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Three phonon-momentum-conserving interactions
(N processes) have been considered by Herring. Sv

He has suggested that for a cubic crystal like NaF,

~-1 ~ ~n T 5-n
N )

where n=1 for transverse phonons and n=2 for
longitudinal phonons. Furthermore, this form is
expected to change to

~-1 ~ ~nTS (27)

-1 4~N Tp co T (26}

We shall attempt to fit our thermal-conductivity
data below 16 'K using the previously determined
relaxation rates along with 7'„- above. This fit will
give us estimates of the scattering strength I'„. In
Fig. 8 we have plotted the computed thermal con-
ductivity for different impurity scattering strengths
as well as for different N-process scattering
strengths along with the experimental data. At low
impurity concentration (curve A} we see that the
N-process rate has relatively little effect. This is
the effect of Eq. (2) mentioned before: For low con-
centration of impurities when N processes dominate,
it is only the resistive scattering rate that affects

at high temperatures. Phonon-transport measure-
ments like the thermal conductivity of Fig. 2 not
only average over all phonon polarizations, but ex-
tend across both the low- and high-temperature
regions as well. For temperatures below about
16'K, however, we are in the low-temperature
region where a majority of the heat flow is composed
of transverse phonons. In that case we should ex-
pect

pgG. 8. Thermal conductivity vs temperature for varying
N-process strengths and varying purity. The open circles
are the experimental data for crystals of indicated im-
purity content. The N-process strengths illustrated are:
dot-dashed lines, I'&-—10-; solid lines, Fz ——10
dashed lines, I'&=10

the computed thermal-conductivity curve. Curves
B, C, and D show that a value of I"&= 1 &10 ' gen-
erates curves in reasonable agreement with the
data. A value of I'„=1~10",for instance, is far
too high and gives an incorrect temperature for the
thermal-conductivity peak. A value of I'~= 1 &10
is far too low and also gives an incorrect temper-
ature for the thermal-conductivity peak. The un-
certainty in the final strength is primarily the
uncertainty in the impurity content of the crystals.

An attempt was also made to use the functional
form rN' oc ~T' to fit the data. The fit was slightly
worse than r„'actdT and the latter was then used
exclusively.

C. Umklapp Processes

We must now consider the intrinsic momentum-
nonconserving phonon-phonon interaction —the U

processes. By considering the number of phonons
with the minimum wave vector necessary to undergo
an umklapp collision, Peirels'0 showed that the U-

processes rate must diminish with temperature as
e ",where y is less than 1. A more complete
analysis ' suggested that

Krumhansl'9 has suggested, however, that



1436 H. E. JACKSON AND C. T. WALKER

&-10(-&2T2+-te/ (so)

200

IOO '

50

ILI
fL

I- Zo—

IJJ
CL

UJ

X

I—

I-

C)

O
O

X
CL
IJJ

I-

05—

0.2—

O,l—

0.05—

I I I

CL05 004 085

I/TEMPERATURE ('K ')

I i

0.02

FlG. 9. Semilog plot of thermal-conductivity data for
purest crystal times powers of temperature vs inverse
temperature. Note the exponential form of the thermal-
conductivity data.

is probably more appropriate for NaF. The purer
a crystal, the larger the temperature range where
only the above U scattering dominates. In this tem-
perature range, then, in the absence of the other
resistive processes, one expects the thermal con-
ductivity to vary exponentially. Can one determine
the temperature dependence of the coefficient pre-
ceding the exponential term of the relaxation rate?
Using the thermal-conductivity data from the best
crystal, we have plotted KT" vs 1/T on a semilog
plot, Fig. 9, to attempt to obtain the coefficient.
The exponential function is so strong, however, that

varying n does not sharply affect a straight-line fit
over a reasonable temperature region. We do see
unequivocally that the thermal conductivity decreases
exponentially with temperature over a wide range of
temperatures —from about 20 to 35 'K. It might
be noted that when significant co impurity scattering
is present, a combination of impurity and U scat-
tering produce a "flattened" TC curve which may
yield an apparent but false exponential region.

With the relaxation time of

~-1 I- 2T2e-ye/ T~p — pe)

we fit the thermal-conductivity curves directly since
all the other relaxation times have been determined.
The results for the best fit are shown in Fig. 10,
with F~=4. 6&& 10

We note that the fit seems to fail badly above
40 'K. But remember that at higher temperatures,
the scattering rates are expected to change. For
high temperatures

transverse phonons: T„~~T (Herring);

longitudinal phonons: y~ cc~ T,
while

(33)

-1
7~ cc T p

T,'~ w'T/(e" 1).

(s4)

(s5)

The final fit is seen in Fig. 11.
Equations (19), (22), (25), (28), (31), (34), and

(35) represent the various phonon scattering rates
for our purest crystal. Particular attention is
drawn to Eqs. (28) and (34), which contain the X-
process rates, and to Eqs. (19), (22), (25), (31), or
(35), which can be added to give the total resistive
scattering rate.

Now that a theoretical fit has been obtained, we
may calculate a number of interesting quantities.
It is instructive, if unreal, to let the coefficient of
the impurity scattering term go to zero. The peak
thermal conductivity then becomes 310 W/cm 'K.
If we then eliminate the physical imperfections, that
is, the dislocation scattering, we obtain a peak
thermal conductivity of 400 W/cm 'K. So we have
produced a crystal whose maximum thermal con-
ductivity of 240 W/cm 'K closely approaches the
maximum intrinsically limited value. Further prog-
ress will require close attention not only to re-

Tv'o:~ T (Krumhansl).

For our "high"-temperature fit we iaave left the coef-
ficient of the scattering strength. the same and allowed
the functional form to vary from ti1e low-temperature
form. The high-temperature forms no doubt evolve
continuously from the low-temperature forms, but
for the sake of simplicity we have normalized both
forms at 37 'K and used the following high-temper-
ature ones thereafter
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FIG. 10. Thermal conductivity of purest sample vs
temperature: comparison of experimental data to the
theory.

ducing the chemical impurities, but also to elim-
inating physical imperf ections.

VI. DISCUSSION

FIG. 12. Mean-free-path vs temperature diagram
from thermal-conductivity analysis. Xz, Xps& XU& and
X& are the boundary scattering, Poiseuille-flow (see
text), U-, and N-process mean free paths, respectively.
Xz is the total resistive mean free path for the thermal-
conductivity sample. X~ is the resistive mean free path
for a second-sound sample size (2&& 2 cm).

To use the results of the thermal-conductivity
analysis for examinations of the sound data, we
construct a mean-free-path diagram using the re-

I I I I I

~ 4ex 4 4x e(v) = 7'( „1),dx
( „1),d~

0

to obtain for the important N processes

(as)

laxation times found above. We have averaged over
the frequency dependences

200— (r„') =60T' (sec ') (a'I)
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FIG. 11. Final fit of thermal-conductivity data using
the full Callaway model and modified scattering terms
above 37'K.

and averaged similarly for the resistive processes
to obtain

(wU')= 2. 2x 10'T's-e~" (as)

where d is the sample thickness. These conditions
require that the N-process mean free path be much
shorter than the sample thickness so that a macro-
scopic description is appropriate, and that the re-
sistive-process mean free path be long compared
to the N-process mean free path. That is, there
must be a "window" in the mean-free-path diagram,

The resultant diagram is shown in Fig. 12. X„ is
the N-process mean free path and XU is the U-pro-
cess mean free path. XR represents the addition of
all the resistive scattering in the best crystal.

We review the two essential conditions for second-
sound propagation:
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TABLE I. Ratio of resistive mean free path to N-pro-
cess mean free path. Boundary scattering is excluded
from Xz because the samples are large ( 2 &&2 cm).

Temp. X& 1-ppm sample
(' K) (mm) (second sound

10 —18 'K)

6-ppm sample
(second sound

10—14 'K)

25-ppm sample
(No

second sound)

9. 06
10.0
11.5
13.0
14.5
16.5
18.5
20. 0
22. 5
25. 0

0.9
0.5
0.3
0. 1
0. 08
0. 04
0. 03
0. 02

0. 009
0. 006

14
20
31
43
53
57
66
36
23
15

9.0
12
16
20
23
26
29
22
17
13

3. 6
4. 2

5. 1
6. 0
6. 8
7. 7
8. 7
8.3
7. 9
7. 1

inside which second sound is possible. We note from
the mean-free-path diagram that conditions seem
favorable for second-sound propagation in our crys-
tal over the region 10-25'K.

Figure 6 showed the second-sound data for our
best crystal. One sees that the "new" pulse first
appears at 10 'K and becomes dominated by the dif-
fusive flow at about 18 K. In Fig. 5, similar behavior
is seen for a crystal whose peak thermal conduc-
tivity is 150 W/cm 'K. In this case, however, the
second sound is dominated by the diffusive flow at
about 14. 5 'K. For a crystal whose peak thermal
conductivity is 65 W/cm 'K no second-sound pulse
is seen at all.

In Table I we show values Xs/A.„for these three
crystals of different purities, where the ratio is
computed from the values of 7 ~ and 7. „' obtained
by computer fits to the thermal-conductivity data.
In the table it is seen that Xs/X„& 1 over a large
temperature range. The heat-pulse data, however,
suggest that the actual condition Xs/X„»1 is sat-
isfied only above 10 'K, and only for the purest
crystals since no second-sound pulse is seen for
the K'„~=65 W/'Kcm crystal Thu. s, the condition
AR/1„» 1 is apparently not satisfied for XR/X„= 4, but
is satisfied for X~/&„&10. The second-sound sample
size d -1 cm can be compared with A „in Table I;
it is seen that X„&d at all temperatures.

Table II contains the values of A.„used in comput-
ing Xs/X„given in Table L As can be seen,
becomes of the order of 2mm at 17'K in the purest
sample and at 11 'K in the least-pure sample. In
order for the second-sound pulse to be detected the
sample cannot be more than a few X~ thick, or else
the phonons will all have scattered out of the pulse.
For realistic samples of 5-8-mm thickness, this
means that if ~~ is less than about 2 mm, there will
be no observed second sound, even if the A.„/A.„con-
dition is satisfied. The second-sound pulse forms,
at least in principle, but it never reaches the detec-
tor. This explains, for example, why second sound
is not observed at 25 'K in our purest sample, even

TABLE II. Resistive mean free path in cm vs temperature
for several samples of different purities.

TemP 1-ppm sample 6-ppm sample 25-ppm sample
(K)

9, 06
10.0
11,5
13.0
14.5
16.5
18.5
20. 0
22. 5
25. 0

Second
sound
observed

12
11
8. 3
6. 2

4. 5
2. 5
1.7
0. 62
0. 23
0. 08

Second
sound
observed

8. 0
6. 2

4. 2

2, 8

1.9
1.1
0. 73
0.37
0. 16
0. 07

No
second
sound
observed

3.2

2. 3

1.4
0. 88
0. 58
0.34
0.22
0. 14
0. 08
0. 04

though the As/A. „condition for second sound is sat-
isfied as seen in Table I. Quantitatively, then, the
inequalities allowing second-sound detection should
1ead

AR/A. „&10, (40)

(41)

(42)

(43)

where d is the sample thickness.
The obvious solution when X~ is short is to shorten

the heat-pulse samples. We have done this and in-
deed the temperature to which one can follow the
second-sound pulse is raised slightly. But since
X„at high temperature is almost entirely due to
U scattering, and that is decreasing ) R exponen-
tially, shorter crystals help only slightly.

One can also use the shape of the received second-
sound pulses to deduce information on the various
scattering lengths. Were we to draw a comparison
to the solid 'He data, we might judge the variation
of the second-sound velocity observed here to be no
more than temperature-dependent broadening —as
N processes become scarcer for lower tempera-
tures, not enough momentum-conserving collisions
occur between the phonons to keep them in the tem-
perature pulse. Thus, the pulse should broaden
as temperature is decreased. An analysis of
the pulse broadening as done by Ackermann and
Guyer for solid 'He would allow us to deduce X„as
a function of temperature directly. However, in-
spection of Fig. 5 shows the second-sound pulses in
NaF continuously broadening as the temperature is
increased. If this is due to the N-process rate, we
must conclude that N processes become less fre-
quent as the temperature is increased, which is
clearly not correct.

Lastly, we may examine the mean-free-path plot
for the likelihood of Poiseuille flow of phonons. The
criteria for this phenomenon are more stringent
than for second-sound propagation, namely,
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As can be seen by examination of the mean-free-
path plot, the second condition is not met in our
sample. Samples of smaller cross section would
relax the second condition somewhat and might
allow Poiseuille flow to be observed.

Note added in proof. An analysis of heat-pulse
data in NaF, with an accompanying deduction of the
various phonon scattering rates, has been done
independently by Rogers [Phys. Rev. 8 (to be pub-
lished)]. The difficulties with the temperature
dependence of the pulse width [discussed briefly
between Egs. (41) and (42)] are clear in Roger's
paper. His deduced values for T„' differ in some
respects from ours. It should be borne in mind

that Rogers's analysis and ours start from very dif-
ferent points and attempt to converge on the same
answer. He analyzed heat-pulse data directly to
determine scattering rates. We analyzed thermal-
conductivity data to determine scattering rates
and then examined these rates to see if they were
compatible with the observation of second sound.
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