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The microscopic GrGneisen parameters of 13 alkali halides have been calculated over the
entire Brillouin zone by solving the lattice dynamical problem at different pressures. A six-
parameter shell model has been used and the variation of the parameters with pressure was
deduced from the pressure dependence of the three elastic constants, of the two dielectric
constants, and of the infrared absorption frequency. The quasiharmonic-model values of the
macroscopic Griineisen parameter at 295'K were obtained by appropriate averaging over the
microscopic mode gammas. The results are in good agreement, but are systematically
larger than Gruneisen parameters deduced from thermal-expansion data.

I. INTRODUCTION

The Gruneisen parameter' of a solid is defined
by the relation

rG = &P&rl~v

in terms of macroscopic variables: P —the coeffi-
cient of volume expansion, V —the volume, Ca, —
the specific heat at constant volume, and B~ —the
isothermal bulk modulus. On the other hand, within
the quasiharmonic approximation, the Gruneisen
parameter can be expressed in terms of the micro-
scopic Griineisen parameters (mode gammas) de-
fined by

d inn&

d lnV

where e; is the frequency of the ith normal mode.
Although yG. values for many alkali halides are
known, a systematic interpretation in terms of mi-
croscopic variables has not been given to our knowl-

edge.
The results of measurements of the pressure de-

pendence of the elastic constants have been used in
the past to calculate the mode gammas of the low-
frequency acoustic modes from

6 2C] 8P ~

where C, is the appropriate elastic constant. The
Gruneisen parameter has been estimated by aver-
aging over these acoustic mode gammas. Such
a procedure is justified at low enough temperatures
at which only the nondispersive acoustic modes are
excited. It fails in principle, however, at higher
temperatures, where dispersive acoustic modes as
well as optical modes begin to contribute, and
should be replaced by a detailed lattice dynamical
calculation.

Arenstein et al. have calculated the mode gam-
mas of NaCl from the rigid-ion model with nearest-
neighbor forces only, using a perturbation method.
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In the version of the shell model used here, gen-
eral first-neighbor forces and central second-neigh-
bor forces between the negative ions are included. '
It is further assumed that all short-range forces
between ions act through the shells, that only the
negative ions are polarizable, and that the ionic
charge Z is equal to unity. This model contains six
parameters, the force constants A, B, A", B",
k, and the shell charge Y (in the notation of Peck-
ham'). These six parameters were calculated from
the following six macroscopic quantities: the elas-
tic constants C», C», and C44, the dielectric con-
stants co and e„, and the k = 0 transverse optical
frequency v». The transformation from the mac-
roscopic data to the shell-model parameters is giv-
en, e. g. , by Peckham.

The phonon frequencies were obtained at zero
pressure and at closely spaced higher pressures.
The derivatives of the individual mode frequencies
with respect to pressure were evaluated numeri-
cally at I' = 0 and from these the mode gammas were
derived from

dP

which follows from (2). The notation i is used for
(k, S), where S=1, 2, . . . , 6 denotes the phonon
branch and k is the phonon wave vector. The cal-
culation was performed for 1000 wave vectors in
the Brillouin zone. The room-temperature value
of the Gruneisen parameter was calculated from the
quasiharmonic-model formula

y =Q(c~y&)/Qc&, (6)

where c, is the Einstein heat capacity of the ith
mode.

In order to calculate the frequencies at different
pressures, the pressure dependence of the six mac-
roscopic parameters and of the lattice constant has
to be known. The latter was calculated from the
Murnaghan equation of state

V/Vo ——[1+Br(P/Bz, )) u r (6)

The mode gammas of NaI and KBr have been ob-
tained by Cowley and Cowley. ' The nine param-
eters of the shell model which they have used were
determined by fitting dispersion curves to neutron
scattering results. They extended the shell model
in a simple way to include anharmonicity.

In the present work the room-temperature values
of the mode gammas and of the Gruneisen param-
eter are calculated for Na, K, and Rb halides and
for LiF. The six pressure-dependent parameters
of the shell model to be used are determined by six
macroscopically measurable quantities and their
pressure derivatives.

II. SHELL MODEL AND MODE GAMMAS

(n/6)(o' 2a ——2) —m
&TO

n(o —2) —2w
(6)

where o =ro/p. The values of o are given in Table
I and were obtained following Born and Huang' us-
ing the values of ro and B~ given in Refs. 11-13.

(b) Values calculated from the rigid-ion model
with an inverse-power potential of the form

u= —ne /r+br"
In this case, yTo is given by' '

(n/6)(n 1)(n+—2) —v

n (n —1)—2v

where n=a-1.
(c) Experimental values for those few materials

for which the pressure dependence of ur To has been
measured. ' '"

The values of yTo obtained with method (a),

TABLE I. Three sets of yTo values which are used as
input data: (a) calculated from Eq. (8) using values of 0.

given in the first column; (b) calculated from Eq. (10);
(c) experimental results from Refs. 17 and 18.

LiF
NaF
NaCl
NaBr
NaI
KF
KCl
KBr
KI
RbF
Rbcl
RbBr
RbI

6. 88
7. 98
8. 69
8. 94
9.28
8. 90
9.59
9.75

10.01
9.60

10.16
10, 32
10.50

(a)

2. 70
2. 44
2. 44
2. 46
2. 48
2, 45
2. 50
2. 52
2. 54
2. 50
2. 56
2. 58
2. 60

~TO
(b)

3.59
3.00
2. 91
2. 90
2, 90
2. 90
2. 90
2. 91
2. 92
2. 90
2. 93
2, 94
2. 96

(c)

2. 59
2. 95

2. 9
2, 6

where Br = (& Br/8 P)r. For the dielectric constants
and their pressure derivatives we have used the
data cited by Barsch and Achar. 'o (H&r the few ma-
terials for which no data were given we obtained
estimates by extrapolation from the available data
of a given halide series. ) For the elastic constants
and their pressure derivatives, the experimental
data cited by Roberts and Smith"' and by Miller
and Smith' have been used. As to the pressure de-
pendence of the frequency &u» (or, equivalently,
the Gruneisen parameter yTo of this mode), experi-
mental data are still scarce. %e have used the

following three different sets of input data for yTo
(Table I):

(a) Values calculated from the rigid-ion model
with a Born-Mayer potential of the form

u=- ne /x+ae "i' .

yTo in this model is given by"
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mostly 2. 5, are always smaller than those derived
from (b), mostly 2. 9. We note further that the
available experimental data all fall in the same
neighborhood. Because the input value of yTp af-
fects many modes, we give results for all three
versions in what follows.

III. RESULTS

3.0—

2.0—
y
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~TO
~LA
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2.0
Rb Halides

l.5—

I.O
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FIG. 1. Comparison of calculated values of the mac-
roscopic Gruneisen parameter with experiment.
thermal-expansion values y&,. X —values of y calculated
by using experimental data for yTp; upper curves —using
the power-law estimates of y Tp, lower curves —using
the exponential-law estimates of yTp.

The values of y that were computed from Eq. (5)
using the shell-model values of y, and c, are shown
in Fig. 1. The Na-, K-, and Rb-halide sequences
are seyarated for clarity. Thermal-expansion val-
ues y~"' are included in the figure for compari-
son. The nearest-neighbor distance was chosen as
abscissa as a convenient method of displaying the
results.

It has already been remarked that two versions
of the rigid-ion model were used to estimate val-
ues of y», the input parameter needed to deter-
mine the pressure variation of ~Tp and the only in-
put parameter for which experimental values are
sparse. The power-law estimates of yTp resulted
in values of y (upper curves of Fig. 1) that lie above
the corresponding exponential-law values (lower
curves) by about 0. 1 and are higher than yo by no
more than 0. 25. Both thermal-expansion and
shell-model values of y are noticeably constant in
a given sequence with only very slight and consis-
tent upward trends. A salient feature of this com-
parison is the very systematic magnitude difference
between y and y~. In further support of these ob-
servations are the values of y and yG for LiF which

I

I.O
I I I

0 0.2 0.4 0.6 0.8
Reduced Wave Vector

FIG. 2. The [100] mode gammas of LiF vs reduced
wave vector. The arrows represent results of calcula-
tions by Barsch and Achar (Ref. 10) at the zone edge.

are 1. 78 (using the experimental value of yro) and

1.63, respectively. Experimental values of y»
are also available (Table l) for NaF, KCI, and

KBr.' ' Their use resulted in values of y which
in each case fell between the two values of y that
were computed using the rigid-ion estimates of

yTp ~

Values of y were also computed for the high-tem-
perature limit (c, =k) of Eq. (5), namely,

r. =(1i»)g
where 3N was replaced by 6000 in the actual com-
putation. For the twelve materials whose Gruneisen
parameters are shown in Fig. 1, y„was found to
be greater than y but by an amount which in no case
exceeded 0. 01. In the case of LiF, however, y~
was found to be less than y by 0. 06. This exception
arises physically because the high-frequency lon-
gitudinal optic modes of LiF, which have relatively
low mode gammas (see Fig. 2), are not fully ex-
cited at room temyerature. Thus the quasiharmon-
ic approximation predicts that y~ of LiF will likely
decrease slightly with increasing temperatures
above 295 K.

The individual [100j mode gammas are shown as
a function of reduced wave vector in Fig. 3 for KBr.
(This graph and the ensuing discussion are based
on the exponential-law estimate of &To. ) Naturally,
the reliability of the values of y shown in Fig. 1.
ultimately rests upon the accuracy of the mode gam-
mas. Unfortunately, we have for comparison only
a single mode gamma that has been measured ex-
perimentally at a wave vector other than k = 0; see
below. Theoretical results of Cowley and Cowley'
are available for comparison and are included in
Fig. 3. The agreement between the results of the
two very different approaches is good. The results
of a more recent calculation by Barsch and Achar'
of the individual mode gamma, s at the [100j zone
edge are also included in Fig. 3.

The behavior of the [100] mode gammas for the
other alkali halides studied is very similar to that
of KBr The simil. arities include (i) slowly varying
TA mode gammas which are positive at k = 0 for the
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FIG. 3. The f100] mode gammas of KBr vs reduced
wave vector. Solid lines —this work; dashed lines—
results of Cowley and Cowley (Bef. 6). The arrows
represent results of calculations by Barsch and Achar
(Bef. 10) at the zone edge.

The comparison of the shell-model values of y
with y which is made in Fig. 1 reveals systematicC

differences which in no case exceed 0. 25 and which
are only about 0. 1 if the exponential-law values of

y in Table I are adopted. This agreement is con-TO

sidered good.
The ultimate justif ication of adopting rigid-ion-

model estimates of yTO is their agreement with the
existing experimental values made apparent by Ta-
ble I. This agreement was first recognized by
Mitra. ' Two different versions of the repulsive
energy were employed here, since the four experi-
mental yTO's do not strongly favor the predictions
of one version over the other. This ambiguity is
probably due in part to large uncertainties in the
experimental values and will hopefully be clarified
as more data becomes available.

Na halides and negative at all k for the K and Rb
halides (the TA modes also become negative near
the zone edge for NaF and NaC1); (ii) TO mode
gammas that are essentially flat and have values
between 2 and 3 for the 12 alkali halides; (iii) lon-
gitudinal mode gammas that show large variations
with k and usually exhibit a crossing of the acoustic
and optic branches.

The material which possesses some variations
from these rules of thumb is LiF whose [100] mode
gammas are shown in Fig. 2. The TO mode gamma
exhibits larger variation with k than is typical
and the longitudinal branches do not intersect.

IV. DISCUSSION

Although the agreement of y with experiment is
satisfactory, the remaining small differences are
believed to be real and deserve further discussion.
The significant feature is that our calculated values
of y are systematically greater than y~ by a small
amount for 13 homologous materials. The high-
temperature results of Cowley and Cowley for KBr6

and NaI are similar in this respect with y & y~ by
about 0. 3 for these 'wo materials. Also, Holt and
Ross' computed tne anharmonic corrections to the
quasiharmonic values of y for the rare-gas solids.
The corrections obtained, which are analogous to
y —y, were found to be —0. 01 to —0.4. A similarG

conclusion for rare-gas crystals has been reached
by Feldman et al. , who also found that the anhar-
monic contributions reduce the value of the Grun-
eisen parameter derived from the quasiharmonic
approximation.

We conclude from our work that the quasiharmon-
ic model provides satisfactory but systematically
high estimates of the Gruneisen parameter of the
alkali halide s.

We turn now to a discussion of the individual mode

gammas. We note that in our calculations the gam-
mas of the k = 0 modes were predetermined by the
input data (and they thus coincide with the corre-
sponding experimental gammas which we have
used). For k e 0 modes, we have found only one
experimental number with which we can compare
our results. Saunderson~' has measured the pres-
sure dependence of the [100] TA mode of RbI at the
zone boundary by inelastic neutron scattering. The
value of y deduced by Saunderson from the neutron
data was —3. 32. The values that we obtained were
higher at —2. 73 and —2. 55 (using the two values
of y» given in Table I). A calculation by Barsch
and Achar' of the y of this mode gave the value
—2. 32. They have used a six-parameter shell mod-
el similar to the one we have used. However, their
calculations included the ad hoc assumption that the
core-shell force constant is independent of pres-
sure. This variance from our calculation, which
provided for the pressure variation of all six mi-
croscopic parameters, is probably responsible for
this small discrepancy as well as the differences
apparent in the other zone-boundary comparisons
in Figs. 2 and 3.
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The magnetic relaxation of Ce + in cerous magnesium nitrate (CMN) has been measured

in zero applied field at temperatures in the range 0. 02—0. 2 K. For pure CMN, the relax-
ation is phonon bottlenecked, with some evidence for resonant trapping. Addition of Pr
impurity to CMN reduces the severity of the bottleneck, apparently by excitation of the Pr3'

hyperfine levels via, a two-phonon process. With sufficient Pr content, the relaxation be-
comes dominated by the thermal boundary resistance between the bath and the crystal lat-
tice,

I. INTRODUCTION

The processes of energy transfer between the

spin system of cerous magnesium nitrate (CMN)

and the environment of the crystal, or "bath, " have

been studied extensively by a number of experi-
mental techniques. Many of the data below - 1 K
are indicative of the occurrence of a bottleneck in

the energy transfer. That is, the net transfer of
energy is much slower or lese efficient than the di-
rect spin-phonon relaxation process whereby a
spin flip creates a phonon in a crysta, l lattice which

always remains in thermal equilibrium with its
environment. In order to study the bottlenecked
processes, we have observed the magnetic relaxa-
tion of CMN in zero applied field over a tempera-
ture range of 0..02-0. 2 K.

The transfer of energy under the condition of a
bottleneck can be understood in the following man-
ner. The difference in population of the levels of
the lowest Kramers doublet is

5N =N tanh(hv/2kT, ),

where N is the tota, l number of Ce3' ions, hv is the

separation in energy of the two levels, and T, is
the temperature' of the spin system. The rate that

energy is transferred from the spin system is then

Q = —kNT, [(kv/2kT, ) sech(kv/2kT, )]',
where it is assumed that the sample is at a uniform

spin temperature. Defining a resistance to thermal
transfer by 6t=- (T, —T)/Q, where T is the tempera-
ture of the environment of the crystal, one obtains

dT,/(T, —T)= —(dt/kN(R) [(kv/2kT) sech(kv/2kT)] '

Here we have assumed that the observed relaxa-
tion time constant 7 is much greater than the time
constant for direct spin-phonon relaxation v~, and

that the spine are close to thermal equilibrium with
the environment, (T, —T)/T«1. Without the latter
assumption, the equa, tions are nonlinear. Both
assumptions are valid under the experimental con-
ditions used in the present work. Hence,


