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A method is given for summing all orders of nonpairwise contributions to the van der Waals
interaction energy of a substitutional impurity in a monatomic molecular crystal using a Lorentz
oscillator model as an approximation. The nonpairwise contribution to the energy of removing
an atom from the lattice is obtained as a limiting case. Applied to rare-gas solids, the model
suggests vacancy formation energies reduced from the two-body values, but insufficiently to
give complete agreement with experiment.

I. INTRODUCTION

Calculations using two-body model potentials
for the interactions between rare-gas atoms yield
third vjrial coefficients in disagreement with ex-
periment, and predict vacancy formation energies
in solid argon and krypton about equal to the co-
hesive energy per atom, while observed ther-
mal vacancy concentrations'6 suggest much smaller
values. Also, the two-body potentials generally
employed predict stability for the hexagonal close-
packed (hcp) solid relative to the face-centered
cubic (fcc), ' contrary to observation. The pos-
sibility of explaining these apparent discrepancies
between theory and experiment in terms of non-
pairwise contributions to the cohesive energies of
rare-gas solids has been widely examined.

Jansen et al. consider nonpairwise interactions
involving three-atom electron exchange in the
overlap region; they obtain rather large three-
bod;- contributions (25% of the cohesive energy)
that decisively stabilize the fcc lattice, reduce
the two-body vacancy formation energy by as much
as 47%, '0 and reportedly produce large relaxations
around vacancies. " Swenberg' ' points out, how-
ever, that Jansen's effective one-electron Gaus-
sian wave functions give unrealistically large

nearest-neighbor overlaps, and that Gaussians
with more realistic width parameters produce neg-
ligible three-body effects in Jansen's theory.
Other possible difficulties with Jansen's approach
have also been discussed. '

Nonpairwise contributions to the van der Waals
interaction energy alone have also been considered.
When interatomic overlaps are neglected and a
multipole expansion used, the van der Waals in-
teractions among rare-gas atoms are found to be
pairwise additive to second order in perturbation
theory, "and a three-body "triple-dipole" inter-
action arises in third order. " ' The triple-dipole
interaction favors the fcc structure, but insuf-
ficiently to decisively stabilize it, ' and Burton'
shows that it decreases the vacancy formation
energy in solid argon, although insufficiently to
give agreement with experiment. The triple-dipole
interaction also reduces the discrepancies between
observed and calculated third virial coefficients
in gaseous argon and krypton, ' ' ' and its pos-
sible effects on other rare-gas properties have
also been considered. Present's calculation
suggests that this interaction might be much more
significant than three-body interactions arising
from overlap and exchange at normal lattice sepa-
ration.
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Higher-order nonpairwise van der Waals inter-
actions have been calculated by treating the sys-
tem approximately as an array of Lorentz oscil-
lators, ' each with appropriate polarizability,
under the assumption that the van der Waals inter-
actions are insensitive to the detailed electronic
structure of the interacting atoms. Calculations '
based on this approach suggest that the nonpairwise
parts of the van der Waals interaction summed to
all orders still favor, but cannot decisively stabi-
lize, the cubic lattice. This method appears not
to have been applied to higher-order effects on the
vacancy formation energy.

Now the two-body calculated hcp-fcc energy
difference is only about 0. 01% of the cohesive en-
ergy in rare-gas solids and arises from differences
in coordination number beyond the second nearest
neighbors. Even a small arbitrary change in the
two-body potential at these distances can reverse
the energy difference without changing properties
such as calculated virial coefficients, for example.
The discrepancy between observed and two-body
calculated vacancy formation energies is, however,
quantitatively more striking, and it can in fact be
shown' that the n-body contribution to the vacancy
formation energy is n-1 times as great as to the
sublimation energy per atom. Furthermore, the
nth-order contribution to the van der Waals energy
(which contains n-body interactions, among others)
falls off rather slowly with increasing n for the
heavier rare gases. ' lt is therefore of consider-
able relevance to determine how well nonpairwise
van der Waals interactions, summed to all orders,
can explain the observed vacancy formation ener-
gies. We attempt to answer this question in the
context of a Lorentz oscillator model for the van
der Waals part of the interaction.

The van der Waals energy of a lattice of identical
Lorentz oscillators is discussed briefly in Sec. II
and the treatment extended in Sec. III to the case
of a substitutional impurity characterized by a
modified polarizability nl. In the limit a1-0, the
van der Waals energy of removing an atom from
the lattice i,s obtained. The effects of nonpairwise
van der Waals interactions on vacancy formation
energies in simple molecular solids are treated in
Sec. IV using this model an an approximation, and
the numerical calculation using parameters appro-
priate to rare-gas solids are presented in Secs. V
and VI.

Rf~= Rf —R) if i 4j .
Diagonalization of (1) can be effected by the

usual methods for a system of coupled oscillators,
with

K))g = [505~q+ (e /m(do) Tq y ](do

the dynamical matrix. For the case of a Bravais
lattice with periodic boundary conditions defined
on a unit volume, the transformation

av 1/2 ~ -fk ~ 5f~
Pk= iV ~8 Pf

N-i/2Q e f FRg~q'

f

T(R) = (4vN) 'Q'e" "&T~

partially diagonalizes Ho:

The van der Waals interaction energy is then the
change in zero point energy arising from the di-
pole-dipole couplings of (1). With l the SNxSN
matrix having elements &,"f = 7&"&", e,(k) the sth
eigenvalue of 4m™T(k), and ~,(k) the sth eigenfre-
quency of wave number k for the system, the van
der Waals energy is readily found to be '

3

W, =-,'a Qg [~,(k)-~,] (3
s=1 k(=8

= —'Ka)og P ([1+a,(k)]' -lj
84k B

(Sb)

(2n)! ao= —2 K(uo
(2 1)(,),2,„(-1)"Tr(q'"), (3c)

where the k sum is over the first Brillouin zone.
The first two nonvanishing contributions to (Sc) are
the pairwise van der Waals interaction

where q, and p, are, respectively, the position

and momentum operators for the oscillator at R, ,
and 7@ is the dipole tensor whose components are
Oifi=j, and

T~j)" ——(5„„R()—SR)j Rq) )/R() ~

with

II. MODEL FOR PERFECT CRYSTAL

Consider N isotropic Lorentz oscillators located
at R1, R2, . . . , R» and each having mass m, charge
e, frequency &uo, and polarizability uo= e /m&uo.

Assuming only nonretarded dipole-dipole inter-
actions between the oscillators, the Hamiltonian
of the system is

and the triple-dipole interaction

fs),k

2 2 2
Rq~R,„R~, -3(R„R~~)(R~~' R~()(R~, R,~) (5)'X 5 5 5Rf )R)qRqf
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with Cg = 9Qoii&do/16 and Cg = SQOR0(&/4. It is seen
by expressing Tr(y'") as a lattice sum that the nth-
order contribution to (Sb) for n) 3 contains both
n-body and k-body contributions with k & n.
Equations (Sc)-(5) hold also for an arbitrary array
of Lorentz oscillators. A detailed discussion of
Eq. (3) and numerical methods for evaluating Wc
are given by Lucas. '

III. VAN DER NAALS ENERGY OF
SUBSTITUTIONAL IMPURITY

h((d) =1+SRO'((o) bsR . (8)

Now for a function f(z) that is regular on and
within a closed contour C in the complex plane, is
nonzero on C, and has zeros zi, z2, . .., z& of
order mi, m2, ..., m~, respectively, within C,"

1 df(z)„
c

Then from (7) and (8),

The effects of a substitutional impurity can be
treated in the context of the Lorentz-oscillator
model by adding

H = gm((dl —()&0)(II (8)

to Ho of (1), corresponding to a change in poiariza-
bility of the Ith oscillator. Rayleigh's theorems
then imply that the resultant change in each of the
3Neigenfrequencies is either zero or of the same
sign as ~l —~o, and that no more than three eigen-
frequencies are shifted out of their band. Besides
changing the ground-state energy by modifying the
~,(k) in (3a), H' changes the energy of the corre-
sponding system of noninteracting oscillators by
gl((dz —(d,). The change in van der Waais energy
of the system is then

tgW, =tg W-gS((d~ -((&0),

where &W is the value of (Sa) calculated with the
perturbed u&,(k); the sum of Wc/N for the perfect
lattice and 4S', is then the van der Waals inter-
action energy of the impurity with the host crystal.

To calculate hW, let 9RO((d) be the 3NxSN matrix
with components

SR (~0)"g"=((~o-~ )5 gP„(„+ (e'/m)r, ","

py 2
(aL) 5f )'5p y y

and let sn(&u) = PRO((d) + ASR be the corresponding
matrix for the perturbed system, so that

tgsn(f = ((o,
' —(dg(&)5„5„„5„.

Then the secular equation determining the eigen-
frequencies is

detZt((d) = detsR(&((d) det4(&o) = 0,
with

t& W= g~@(Z[t&ositive zeros of OR((d)]

—+[positive zeros of 5RO((d)] j

. (&zd[lndeth(z)],
c

where C enclosed all the positive eigenfrequencies
of the system and no others. When C is taken to
consist of the imaginary axis from iR to -iR
and the semicircle of radius R in the right half-
plane, in the limit R

&W= —(I/4») f ed[in deth(i(d)]

= (ri/2») J ln[deta(i(d)]d(u . (9)

The function In[deth(i((&)] is readily evaluated.
Noting from (8) that

"[1+ (ia)'(a'),", —a(ia)'(a'),", + ] Isa
.

To evaluate ~S;, note that when no is small
enough for the ~os'" terms to be neglected, (11)
has the value gS(((&l —(()(&), so subtracting

I 0

from (11), we find
(I

aa( —I)—]I )a )+ ', ,'[a(a=)'[a')]]—"
]I@a.2 7T 0 + +(dI2

(12)
The sum of hW, and Wc/N calculated from (3) is
then the desired van der Waals interaction energy
of the impurity with the lattice.

The quantities [f "]zt' in (12) are related to «,(k)
by

3 - isi 1 3
[q))]~,~ g Q T(k))) (]( (&s-&z& Q g & (Q)))

s=i )Cg 1 jCB
(13)

&((d)() —5()5~„+ g g [(1 + n(()&)v') ](q 5q)
40o co

with (g(e) = e /m(uP(& —&u ) and 1 &'f = 5(&5—~„, it is seen
that, except for the SxS submatrix b(a)zz", b(&u)

is reducible to a unit matrix by adding appropriate
multiples of its columns, and therefore

ln dett& (Au) = ln det 1 + ~g,o (1 + o[(i&a)v)''
(do+ co

(»)
where [ ~ ~ ]z denotes the 3 &(3 matrix [.~ ~ $f . Since
by cubic symmetry [l"]z is a multiple of the unit
matrix, expansion of (10) gives, for nW of (9),

3 1 do I -&O2 2
AS'=-k — ln 1+

2 1T o 4L) + 4)o
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The e,(k) for any k are, in turn, readily computed
using the summation formula given by Lucas ' for
T(k).

IV. VACANCY FORMATION ENERGY

A B C2~Ep=-~ -m ——6+—6+2@o4 ~

so that

E» = —W/N+ (8Co/3 o'o )(2Ic+I„), (16)
In the context of the Lorentz oscillator model,

the van der Waals energy to remove an atom from
the lattice is the difference ~8', in van der Waals
energy of the system with n, = ~o and with n& = 0.
Since this involves letting co~ - ~, the changes pro-
duced in both the hW and —,'8 (vz —u&o) contributions
to &8,' are infinite, the divergence in 4W' being as-
sociated with the three localized mode frequencies
split off from the band. In the limit ~~ ~, the
van der Waals removal energy is found from (12)
to be

&Ws= aks)os

with

Is= — ln 1+ —.o-„- ('E )gf
(- uo)"

v ~ o "- (1+& )" (14)

The o.'o(&u)I" terms are each rather small (&0. 1),
and expanding the logarithm to first order in the
V'" sum,

(2n)!(- o'o)" Tr(r")
P A(do n

2 ) ) 322„~ = P A(d g

By comparison of (15) with (Sc), the nth-order
contribution to ~R'& is seen in this approximation
to be n times the nth-order contribution to —5'c.
It can be shown that whenever the cohesive energy
is given by some n body-additive interaction
summed over all distinct sets of n atoms and over
all n, thenthe n-body contributiontothe removal

energy is -n times its contribution to cohesive
energy, so that (15) also obtains in the approxima-
tion of identifying the nth-order contribution to (Sb)
with the n-body contribution.

The vacancy formation energy E~ for a rare-gas
crystal can be treated in terms of the following

sequence of operations:
(a) Add an extra atom to the surface without

changing the cohesive energy per atom. The energy
change is AE& = —W/N, with W/N (& 0) the cohesive
energy per atom.

(b) Remove an atom from the bulk of the crystal,
with energy change AE3.

Then apart from lattice relaxation and vibra-
tional energy changes, E& = AE, + bS'~. Assuming
the interaction energy to be given in terms of a
(12;6) pairwise interatomic model potential plus
the nonpairwise part of the Wc from (3a), we find

using 16C&/9o. oo for the multiplicative h&uo. In the
case where only two-body interactions are con-
sidered in evaluating Ic and Is [cf. Eqs. (4) and

(15)], E~ in (16) reduces to —W/N and the removal
energy bEo (or W„)to -2 times the cohesive energy
per atom W/N (Wc/N).

V. CALCULATION

To evaluate AE, + AEo, the ™T(k)were calculated
using Lucas's summation formula ' on a uniform
mesh of increment 6k = 0. 05 (2v/ao) (with ao the
lattice constant) in ~ of the Brillouin zone to which
the remaining points in the zone are related by
cubic symmetry. The e,(k) were then determined
from the ™T(k)and a three-dimensional Simpson's
rule integration used to evaluate Ic in (Sb) and the
[5"jzf' in (13) for n= 1, 11. Using these latter co-
efficients, Is in (14) and I„ in (15) were evaluated
by numerical integration, and these results were
in turn used to calculate b,E, + AEo of (16). In these
calculations no was chosen as the free atomic po-
larizability and the multiplicative constant Sh&oo/2

(=8Co/Sno) was then chosen to give a C, in agree-
ment with that calculated" from observed and es-
timated oscillator strengths. Such a choice of
parameters also reproduces the C~ calculated
from observed and estimated oscillator strengths
to within 10%. The energy —W/N was taken as
the latent heat of sublimation per atom.

VI. RESULTS AND CONCLUSIONS

Some of the results are summarized in Table I.
It is seen that I~ gives rather good agreement with

I~ and that, while higher-order contributions do
fall off slowly, the effects on I& of keeping terms

Argon

4
Iz
4
4
4
4

2

4
5
6

11

0. 006 8675
0, 0062388
0. 006 473 5
0. 0064255
0. 006440 0
0. 006437 0

0. 010 829
0. 009 587
0. 010 171
0. 010 021
0. 010078
0. 010 064

0. 017 907
0. 015281
0. 016 873
0. 016 345
0. 016 604
0.016 493

TABLE I. Van der Waals contribution to the energy of
removing an atom from the lattice. Values of Iz calculated
by retaining powers of up to the nth are listedfor various
n. Also listed are the two-body value I2, and IN obtained
by the approximate evaluation of IR discussed in the text.

n Krypton Xenon

1 m& A B Cp
DE~ =—~ ~ ~+ 6 + 2@&oIc

2N 't 9 Ri J Rig R]y

where 5'c= & SoIc. Similarly,

0. 006 928 3

0. 006488 1

0.010 979

0. 010 189

0. 018316

0. 016 866
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TABLE II. Calculated vacancy formation energies.
Lp is the latent heat of sublimation and Ev=&E& +4E2 is
the vacancy formation energy calculated without relaxa-
tion or vibrational contributions.

2.5

Lp

(cal/mole)

Ev

(cal/mole)

(Ev Lp) /Lp) 2.0

Ar

Kr

Xe

1850

2666

3830

1742

2509

3506

—0. 06

—0. 06

—0. 08

I.5

H
O
O I.O

'G. K. Horton and J. W. Leech, Proc. Phys. Soc.
(London) 82, 816 (1963). 0.5

beyond J'are too small to be significant. It is also
seen from Fig. 1 that the total nonpairwise con-
tribution to IR increases rapidly from argon to
xenon, but even in xenon it accounts for no more
than a 10% reduction from the I„that includes only
two-body van der Waals interactions. The effects
of nonpairwise interactions are further reduced in

E~(Table II) these values being only 6 to 8'Po lower
than Lo.

These results may be compared with the data
in Table III. In thermal equilibrium at temper-
ature T, the fraction of vacant sites is exp(- g~/k T),
where k is the Boltzmann constant and gv is the
Gibbs free energy of vacancy formation given by
Ev-T6S+p6V with 5Sthe entropy of vacancy for-

O. I 0.2
4TI Na/3

0.4

FIG. 1. Removal energies in units of 31&up/2, Shown
as functions of 4mNnp/3 are 8'& calculated for nonpair-
wise interactions only and W& calculated for all orders
of interaction.

mation and the work term p5V=O. Although the
gv's based on observed vacancy concentrations
show significant disagreement with each other,
they are all significantly lower and are associated
with much higher thermal vacancy concentrations
than two-body calculated values. The observed
reductions from two-body calculated values are

TABLE III. Vacancy formation free energies and vacancy concentrations in rare-gas solids. The values given by
Glyde and Venables and by Cotterill and Doyama are based on two-body potentials; all others are experimental.

Argon

Krypton

Source

Smith and
Chapman

van Witzenburg

Beaumont et al. '
Foreman and Lidiard

Glyde and
Venable s'

Losee and
Simmons

Beaumont et al.

Cotterill and Doyama~

gv
(cal/mole)

~ 1100

1280—3.4 RT

2100-3.21 RT

1780 + 200 —2 RT

1770-3.4 RT

Ev = 2630

T
(K)

81.7
83.8

83.3

83. 8

80. 0
83.8

115

115

gv(T
(cal/mole)

713.8

747. 4

1591
1567

1323 + 200

993

Mole
fraction

vacancies

—0. 0012
—0. 0013

0. 0037

0. 0138

0. 011

0. 000 04
0. 000 08

0. 0031

0. 013

B. L. Smith and J. A. Chapman, Phil. Mag. 15, 739 (1967).
"W. van Witzenburg, Phys. Letters 25A, 293 (1967).
'R. H. Beaumont, H. Chihara, and J. A. Morrison, Proc. Phys. Soc. (London) 78, 1462 (1961).
"A. J. E. Foreman and A. B. Lidiard, Phil. Mag. 8, 97 (1963).

See Ref. 6.
D. L. Losee and R. O. Simmons, Phys. Rev. 172, 934 (1968).

~See Ref. 4.
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much larger than would result in the present cal-
culation through nonpairwise effects on E~. We
therefore conclude that within the context of the
model used in estimating the effects of nonpairwise
van der Waals interactions on the vacancy forma-
tion energy, these effects reduce the vacancy for-
mation energy, but insufficiently to give satisfactory
agreement between theory and experiment.

The remaining discrepancies might involve
other effects than those treated here, such as po-
larization of the atoms around a vacancy or non-
pairwise interactions associated with overlap and
exchange. It should also be kept in mind that al-
though the overlaps between nearest-neighbor rare-
gas atoms in the solid are small, the atomic ex-

cited states that are mixed with the ground state
by the dipole-dipole couplings actually involve
rather iarge overlaps (-0.5 for nearest-neighbor
4P wave functions in Ar) and the collective excited
states of the solid can be treated quantitatively in
terms of a Frenkel exciton model only with dif-
ficulty. ' Such considerations are not properly
included in this and other calculations that treat
the van der Waals interactions in rare-gas solids
as those involving well-separated atoms.
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