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Wannier Exciton in an Electric Field. II.
Electroabsorption in Direct-Band-Gap Solids

Daniel F. Blossey
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(Received 11 August 1970)

The electric field and temperature dependence of excitonic electroabsorption is presented
for direct-band-gap semiconductors and insulators. Each excitonic electroabsorption spectrum
is characterized in terms of three energy parameters: (i) R, the binding energy of the exci-
ton; (ii) I', the thermal broadening parameter; and (iii) I'8, the electro-optical energy. The
relative magnitude of these three quantities determines which, if any, of the competing forces
dominate. In comparison with the single-particle electroabsorption theory, the excitonic
electroabsorption theory gives several new results. The electric field and temperature de-
pendence of g, 4&2, and &e& are displayed. Fitting of the excitonic electroabsorption theory
to lead iodide data gives the values of 2. 58 eV for the direct gap in lead iodide and 0. 21 elec-
tron masses for the reduced mass of the electron-hole pair associated with the extrema in the
valence and conduction bands, as compared with previous values of 2. 55 eV and 0.24 electron
masses.

I. INTRODUCTION

Several calculations of electric field effects on
optical absorption by Wannier excitons have been
published in recent years. ' All of these calcula-
tions have sought a solution to the quantum-me-
chanical problem of the hydrogenic atom in an elec-
tric field. The fact that there is no known analytic
solution to this problem has led the theorists to
try approximate models ' and numerical integra-
tion" 6 of the differential equation. A Green's-
function solution' which was presented as an exact
solution later proved to be adequate only in the
limit of very high fields. ' The results of the
models, ' unfortunately, do not bear a close enough
resemblance to the real system and only the nu-
merical integrations" have given reasonable
results for all values of electric field. A compre-
hensive study of electric field effects on optical
absorption by Wannier excitons was presented in
a previous paper, ' hereafter denoted I, in which
field effects on both bound and continuum states
were shown. The effect of the electron-hole inter-
action on the electric-field- induced oscillations in
the optical density of states was also demonstrated
with the result that the electron-hole interaction
enhances these oscillations near an M, -type edge
(positive effective masses) and quenches these os-
cillations near an Mtpye edge (negative effective
masses). It was suggested that this effect would
inhibit the observation of M, -type edges in elec-
troreflectance. The most glaring deficiency of all
these calculations' ' is that not one of them has
been put in a form such that it can be compared
with a modulated spectrum, i. e. , an e1,ectroabsorp-
tion or an electroreflectance spectrum. ' It is to
this deficiency that we address ourselves in this
paper.
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FIG. 1. Simple two-band model for direct-band-gap
solid and resulting absorption spectrum near the funda-
mental edge.

Modulated spectroscopy, particularly electro-
absorption (EA) and electroreflectance (ER), has
generated a great deal of information about the
electronic band structure of solids. This technique,
under the name of electric-field-induced spectro-
scopy (EFS), has also been applied to the electronic
spectra of gaseous molecules and has generated
extremely well-resolved rotational structure. " In
this paper, we will concentrate on the EA spectrum
near the fundamental edge of direct-band-gap solids.
Figure 1 shows a simple two-band model for a di-
rect-band-gap solid and the resulting absorption
spectrum near the direct edge. The exact position
of the edge, as shown in Fig. 1, is somewhat hard
to pinpoint. The EA spectrum gives much better
resolution as well as additional information about
band anisotropy and effective masses. Figure 2

shows the electric-field-induced oscillations in the
optical density of states and the EA spectrum with

its strongest structure about the energy gap E, .
This spectrum is measured using standard phase-
sensitive techniques. ' The temperature and field
dependence of the excitonic EA spectrum will be
demonstrated later in the paper but first it is useful

1382



WANNIER EXCITQN IN AN ELECTRIC FIELD. II ~ ~ ~ 1383

ABSORPTIOIII SPECTRA:
FINITE AND ZERO FIELD

ABSORPTION
COEFFICIENT, O

NODIJLA TED SPECTR'A:

aR

and then become a true continuum above the gap.
The effective Rydberg R is given by

4

A= 2 = —- &&e &&13.6 eV,
2 e

(2)

where JLI. is the reduced mass of the electron-hole
pair, m is the electronic mass, and c is the static
dielectric constant of the solid. The radius (ef-
fective Bohr radius} of the exciton is given by

LIGHT ENERGY LIGHT ENERGY
a= ~ = —- ~e &&5. 29&&10 cm.g

p, e mFIG. 2. Electric-field-induced oscillations in the opti-
cal density of states near the fundamental edge and the
resulting electroabsorption spectrum representing the
difference between the finite- and zero-field absorption
curves.

to review some basic concepts of Wannier exciton
theory and electric field effects.

The Wannier exciton is an electron-hole pair
created by photoexcitation of a crystalline solid. '
This type of exciton is a hydrogenic atom typified
by the effective masses of the electron and hole and

by the dielectric constant of the solid. This model
for the exciton is applicable to crystals which can
generate charge carriers upon exposure to light,
i. e. , photoconductors. Also, from the formalism
of the theory, it is required that the effective size
of the excitation cover several unit cells of the
crystal. The size of the excitation is related to
how much an electron is shared among the various
lattice sites. For covalently bonded crystals, the
electron is shared equally among many sites and,
consequently, the excitation covers many sites;
but, for ionic, molecular, and rare-gas solids, the
electronic motion is much more restricted and the
excitations are thereby more localized. These
localized excitations are generally called Frenkel
excitons. ' Thus, the Wannier theory for ex-
citons is primarily applicable to semiconducting
crystals, ' particularly from group IV of the Pe-
riodic Table; many of the more qualitative results
of this theory are applicable to noncovalently bonded
crystals. 20

The Wannier exciton in the effective-mass ap-
proximation is equivalent to the hydrogen atom dif-
fering only in the values of the effective masses of
the electron and hole and the dielectric constant of
the medium. " The bound states of the electron-
hole pair occur in the forbidden gap of semicon-
ductors and insulators at energies given by

Ef = Eg Rs

where E~ is the energy gap and R is the effective
Rydberg energy. The intensities of the absorption
lines for these bound levels are proportional to
n '. These lines blend into a quasicontinuum for
energies very near but just below the gap energy

(3)

@z = If/ea = (y. /m) && e '&& 2. 59 && 10 V/cm. (5)

6 FINITE

C=0

FIG. 3. Electron-hole interactions with and without
externally applied electric field.

Thus, we see that a small effective mass (highly
mobile carriers) and a large dielectric constant
both combine to give large radii for the excitons
which is one of the criteria for validity of the Wan-
nier theory.

Since the Coulomb potential is altered by the
dielectric constant c, the electron-hole pair in an
electric field sees the combined potential

V(r} = —e /er e8 -~ r, (4)

where r = r, —r„and 8 is the electric field. This
potential is shown in Fig. 3 for zero and finite
electric fields. The major effect of the electric
field is to lower the lip of the potential well which
causes the bound levels to be mixed and broadened
into a continuum. A secondary effect of the elec-
tric field is a slight widening of the Coulomb well
which causes a shift of the ls level to lower ener-
gies which produces the well-known phenomena of
the second-order Stark shift. For the electric
field to be capable of ionizing the exciton, it must
provide at least a potential drop of 1 Ry across
the effective Bohr radius; this ionization field 8»
is defined as
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TABLE I. Energy gaps, exciton binding energies
(exciton associated highest-energy split-off valence band),
and ionization fields for various semiconductors and

insulators.

Crystal E,(eV) R (me V) 81(10 V/cm)

InSb
InAs
Ge
GaSb
InP
GaAs
Alsb
CdTe
Cdse
ZnTe
PbI2
Cds
ZnSe
ZnS

0.2357
0.360
0.800
0.813
1.29
1.41
1.6
1.606
l.8415
2.301
2. 55
2. 5831
2.818
3.9115

0.5

1.8
1,4
1.8
6.5
5.1
7.5

10.0
15.7
13.0
73.0
29.4
19.0
40. 1

0.08
0.70
0.55
1.00
7.8
5.7

12
31
60
47

460
140

75
200

In Table I, there is a listing of energy gaps, binding

energies, and ionization fields for various semi-
conductors and insulators calculated from tabulated
values of effective masses and dielectric con-
stants'~ '8; the crystals are ordered by increasing
value of energy gap.

There are very few published calculations of
electric field effects on the hydrogenic atom. For
calculation of Stark shifts and splittings, ' ' per-
turbation methods are appropriate if 8/Sz«1. But
for electric fields on the order of or larger than

8», the electric field dominates the Coulomb po-
tential and a nonperturbative solution is needed.
The first nonyerturbative approach was proposed
by Duke and Alferieff in which they reduced the
electric field plus Coulomb potentials to the ana-
lytically solvable model of only the Coulomb po-
tential inside a given radius and only the electric
field potential outside the given radius. This mod-
el is adequate in the high-field limit but fails to
predict correct Stark shifts in the low-field limit.
To improve on the results of Duke's model, nu-

merical integrations of the hydrogenic Schrodinger
equation have been performed by Ralph, ' Dow and

Redfield, 4 and the author. " Ralph' calculated
the shifts and broadenings of the 1s hydrogenic
level and Dow and Redfield4 demonstrated the elec-
tric field dependence of the excitonic absorption
tail in the band gap and compared this with Urbach's
rule. Enderleinv used a Green's-function approach
to solve the problem but one of his assumptions
made his results valid only in the limit of
g gpss Byg

The field dependence of e~ for excitonic absorp-
tion has been calculated in paper I. ' In Secs. II
and III, we will be examining the field and temper-
ature dependence of the excitonic EA spectrum. '
This involves calculating a properly normalized

zero-field spectrum as well as a finite-field spec-
trum and taking the difference. The dielectric func-
tions e2($) and ea(0) will be displayed as functions
of temperature and electric field in Sec. IIA. The
field-induced changes &&2 and 4&& will be displayed
as functions of temperature and electric field in

Secs. IIB and IIC, respectively. Fits to lead io-
dide EA data will be shown in Sec. IID and the
thermally ionized exciton limit is considered in the
Appendix. A discussion of the results is contained
in Sec. III.

II, ELECTROABSORPTION

Since the early work (1958) of Franz" and Kel-
dysh on photon-assisted tunneling between bands,
the theory of EA has progressed a long way. These
early theories"' presented an asymptotic formula
for electric-field-induced optical absorption in the
forbidden gap and predicted a red shift of the band

edge with field. The first published experimental
work appeared two years later and showed a field-
induced shift to lower energies of an exponential
absorption edge in CdS. " Similar results appeared
two years later (1962) for GaAs. '4 The following

year, Tharmalingam" presented a closed form
solution which agreed with the Franz-Keldysh theory
below the edge and showed electric-field-induced
oscillations in the optical density of states above
the edge. Similar results were obtained by Cal-
laway' using field-dependent electron and hole
wave functions. " The equivalence of these two
theories was not demonstrated until several years
later (1968) by Aspnes, Handler, and Blossey'8
in which a more general expression for EA was
derived. The electric-field-induced oscillations
were first observed in EA by Frova and Handler
and in ER by Seraphin. Since then a deluge of
experimental data has appeared in the literature. '
Experimentalists have attempted to fit EA data to
the nonexcitonic EA theory' ' ' with some success.
Qualitative but not quantitative agreement could be
achieved. In 1966, Hamakawa, Germano, and
Handler4 suggested that exciton effects were the
dominate cause of discrepancies between EA theory
and experiment. They later showed that only one
of the six possible predictions of the nonexcitonic
EA theory was confirmed by experiment. Ad-
ditional work on CdS and PbIz, ' in which exciton
absorption is known to dominate the spectra, con-
firmed that the nonexcitonic EA theory was inade-
quate. Sec. IIA will contain the first display of
theoretical excitonic EA spectra as functions of
electric field and temperature and a fit to the lead
iodide EA data of Perov et al.

A. Zero- and Finite-Field Absorption

It was shown in I that the imaginary part of the
dielectric constant ~, may be expressed as
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Q (0) =4vS~n '6 —', he& E, (Sa)

y'(0) =
2&I(& co"8 )/g j

I~ &E, . (8b)

Below the edge, &f& (0) contains the hydrogenic se-
ries with each line having strength 4m' . Near
the edge, both expressions approach the limit
Q (0) = 2w, below the edge as a quasicontinuum and
above the edge as a continuum. Far above the
edge, Qa(0) approaches the desired limit of
[(If+ —E,)/R]" . For h 40, Qa(0) is expressed in
terms of parabolic coordinate eigenfunctions f„
and g„. as

(6)

for absorption near the direct edge where e is the
static dielectric constant, p, is an interband di-
pole-matrix element, a is the exciton radius, and
Qa(0) is the density-of-states function. The inter-
band dipole-matrix element p. ,„ is defined in terms
of an interband momentum-matrix element P
where

p, ,„=(e/m(d) P,„=(e/m(d) (q, I
(If/c) v

I
y„).

The g, and g„are the Bloch states for the conduction
and valence bands, respectively. From Eq. (6),
it is evident that the square of the ratio of the tran-
sition dipole moment to the exciton dipole moment
determines the strength of the exciton absorption.
The density-of-states function Q (0), which con-
tains all electric-field-induced structure, is di-
mensionless and is normalized to approach the
limit [(h&u- E,)/R]"' far above the edge. For elec-
tric field 8 = 0, the density-of-states function in-
cludes the hydrogenic series below the edge and
blends into a continuum above the edge. Thus,
from I, in the zero-field limit, Q (0) is given by

40

0.0~'.
30-

s2
0.2~

I I I

(o) I"/R%0. I

2/3
h0/R*(K/Ct)

40

30—

42

20—

(b) I /R%0. 2

"e/R (6/6t)

IO—

the zero- and finite-field curves will become clear
below.

To be able to compare theory with experiment,
a phenomenological broadening factor I'- kT must
be introduced. The author tried both Gaussian-
and Lorentzian-type broadenings and found that the
Lorentzian-type correlated best with experimental
data. c' The Lorentzian broadening of Eqs. (8a) and
(8b) can be accomplished analytically, whereas the
broadening of Eq. (9) must be accomplished numer-
ically. Upon broadening Eqs. (8a) and (Sb), the
two equations may be combined into one for the
broadened zero-f ield curve. The temperature and
field dependence of Q'(0) or e, is shown in Fig. 4.
Each figure is for a given value of 1'/R and contains
three curves, one for zero field and two for nonzero
values of h/hz, the numbers on the curves cor-
respond to different values of this parameter. The
relationship between the electro-optical energy h8,
the exciton binding energy A, the electric field 8,
and the ionization field 8, is simply

@8/R = (8/h, )"'.
The consistency of normalization between the

zero- and finite-field curves is fully demonstrated
by Fig. 4, in that the oscillations above the edge
are centered on the zero-field curve as they should
be. This is somewhat remarkable considering that
the finite-field curves were calculated numerically
from Eqs. (9) and (10), whereas the zero-field
curves were calculated analytically from Eqs. (8a)

g 1/3
Q'(0) =

@
2 f„,(0) g„;(0), (9)

p I I p I I I I

0 I 2 3 4 -5-4-3-2-I 0 I 2 3 4 5
(hcu -EII )/R (hcu- E(I) /R

where f„and g„. are solutions of the differential
equations

1 d d t 1 I& fx— + -- i + P-'& =0)x dx dx g

(10)
where x

' = ~ + 2(~/&~) '"~

P =(h/h, )-"'[(Z- Z,)/R],

IO I I I I I 1 I I I

(G) I /R%0.5

0 p .'] h8/R%(6/Et)

'2

8 ) ( i

(d) I /R I.p~
p

and the a& are the allowed eigenvalues as continuous
functions of P. The solutions of Eq. (10) and the
various parameter definitions are fully documented
in I and need not be belabored here. All that need
be said is that Eq. (10) is numerically integrable
and that computer programs have been written to
do this, The consistency of normalization between

0 I I I 0 I I I I

-10-8-6-4 -2 0 2 4 6 8 IP "I6 -8 0 8 16 24
(hcs-K )/R0

(hcu-f )/R0

FIG. 4. Temperature and electric field dependence of
E2 as function of (E —EII)/R for (a) I/R=0. 1, 8/@1=0.0,
0.2, and 0.5; (b) I'/R=0. 2, 8/I=0. 0, 0.5, and 1.0;
(c) &/R=0. 5, 5/$1=0. 0, 1.0, and 2.0; and (d) I'/R=1. 0,
g/fr=0. 0, 2.0, and 5.0.
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FIG. 5. Field dependence of exciton (hydrogenic)
ground-s tate energy.
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and (Sb) with no adjustable scaling factors. The
consistency of normalization is also demonstrated
by conservation of total oscillator strengths (f sum
rule). This consistency is especially important
because, to calculate the modulated spectrum, one
must take the difference between the finite- and
zero-field spectra.

The field dependence of the exciton (hydrogenic)
ground-state energy is shown in Fig. 5. The peak
follows the quadratic Stark shift up to a field of
about 0. 25 81. A minimum energy is obtained in
the 0. 4$,-0. 581 range and the peak moves to higher
energies above 0. 581. For 8/SJ &1, the peak
exists only as the first electric-field-induced os-
cillation in the optical density of states. The broad-
ening due to the electric field is demonstrated in
Fig. 7 of I.

B. Field-Induced Changes in &2

Several theoretical excitonic EA spectra, repre-
sented by ~&2, are shown in Fig. 6. These curves
were evaluated by taking the difference between the
finite- and zero-field spectra of Fig. 4. As the
field increases, the excitonic EA spectrum expands
as (h/$~)'" above the edge with the first negative
oscillation being pinned at S~ = E~ —R if the exciton
is not thermally ionized (I' & A). The temperature
and field dependence of amplitudes and energy sep-
arations in ~~2 are shown in Figs. 7 and 8. From
the field and temperature dependence of these EA
parameters, several predictions can be made: (a)
ha should be greater than h, except for the case of
both small field (h/8, & 0. S) and small broadenings
(I"/R & 0. 2); (b) JI, and JI, can increase or decrease with
field whereas h, shouldalways increase withfield;
(c) for large fields, JIa should approach a constant val-
ue if the exciton is not thermallyionized; (d) when

FIG. 6. Temperature and electric field dependence
of &62 as functionof (E-Eg)/R for (a) I'/R=0. 1, 8/@I
=0.2 and 0.5; (b) I'/R =0.2, 8/81 ——0.5 and 1.0; (c)
I'/R=0. 5, g/@~=1.0 and 2.0; and (d) I'/R=1. 0, b/hl
= 2.0 and 5.0.
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FIG. 7. Temperature and electric field dependence
of amplitudes in 4g for ~/R=0. 1, 0.2, 0.5, 1.0, 2.0,
and 5.0.

the exciton is neither field or thermally ionized,
the first negative oscillation is pinnedathco = E, —R;
(e) the width ~I increases slower than (8/Sz)a"
and is temperature dependent, whereas the width
nE2 increases as (8/SJ)2" and is largely tempera-
ture independent. It should be emphasized that
these results are for nondegenerate bands. For
overlapping bands, the effects are generally ad-
ditive. 48 The above predictions have been borne
out qualitatively by experiment. " A quantitative
comparison between lead iodide EA data and the
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FIG. 8. Temperature and electric field dependence
of energy differences in «2 for ~/R = 0.1, 0.2, 0.5, 1.0,
2.0, and 5.0.
excitonic EA theory is made in Sec. IID.

C. Field-Induced Changes in g l

Using the Kramers-Kronig relationships, ~~,
may be calculated from 4e2; 4e, is important since
both b c, and Sea contribute to the ER spectrum. Sev-
eral «, curves are shown in Fig. 9. These curves
are calculated, assuming R «E„ from the ~~2
curves in Fig. 6. The 4e, spectrum expands ap-
proximately as (6/h, ) ', as does the he, spectrum,
with the first zero below the edge being pinned at

S(d= 8, —R if the exciton is not thermally ionized.
The field and temperature dependence of amplitudes
and energy separations in 4c, are shown in Figs.
10 and 11. From the field and temperature de-
pendence of these 4~, parameters, several predic-
tions can be made: (a) h, and h, should be about the
samesizewith ha&h, for highfields; (b) h, is small
relative to hsand h„(c) h, can increase or decrease
depending on field, whereas h2 always should in-
crease with field; (d) hs saturates for 8 &8, and
small broadenings; (e) for small fields (8/hz & 1)
or small broadenings (I"/ff & 0. 5) the first zero is
pinned at hco=Ec —8 irrespective of field; (f) the
widths &E, and ~2 increase slightly slower than
(8/8, )'~' with AE, approaching this limit at high
fields; (g) the width ~I is less temperature de-
pendent than &E2 at low fields but is more temper-
ature dependent at high fields. In many cases the
ER spectra are largely composed of ~~„ thus, in
these cases, these results can be directly correlated
with ER data.

D. Comparison with Experiment: Lead Iodide

For comparison between theory and experiment,
the lead iodide EA data of Perov et al. was used.
This data was chosen in preference to CdS or44

Ge data" because of the lack of overlapping struc-
ture, which in the case of CdS complicates the EA
spectrum. Also, PbI2 exhibits a stronger exciton
peak than Ge which should provide a good test for
an excitonic EA theory. The fit of both the excitonic
and nonexcitonic EA theories to experiment is
shown in Figs. 12 and 13. The theoretical curves
in these figures were generated using the param-
eters I =kT, T= VV'K, a=6. 25, p. =0. 21m, , and
the electric fields 8 = 8 && 10c V/cm and 2. 85 x10'
V/cm, respectively. The energy-gap values used
were 2. 58 and 2. 48 eV for the excitonic and non-
excitonic theories, respectively.

At best, the nonexcitonic theory gives a poor fit.
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FIG. 9. Temperature and electric field dependence
of dc& as function of (E Ec)IR for (a) f'IE=0.—1, Elh q

=0.2 and 0.5; (b) ~/R=0. 2, 8/Bz=0. 5 and 1.0; (c)
I'/R=0. 5, 8/Br=1. 0 and 2.0; and (d) &/R=1. 0, ~/$1
=2.0 and 5.0.
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FIG. 10. Temperature and electric field dependence
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and 5.0.
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tuality, the electron and hole are not point particles
and can overlap if they are in the same unit cell.
This effect causes the potential well to have a bot-
tom, and thereby causes deviations from the hydro-
genic series. The greatest weight of the fit was
placed on the first three half-oscillations which
would cause a difference of phase in the oscillations
above the edge if the exciton series is not purely
hydrogenic. From Fig. 13, the exciton peak in
PbI~ seems to be about 0.02 eV higher than that
which would be predicted by the hydrogenic model.

III. DISCUSSION

IO"I I0 ' I

IO-' IO4 IO' IO' IO-' IOo IO' Io~
6/Sg

FIG. 11. Temperature and electric fieM dependence
of energy differences in &&~ for ~/8=0. 1, 0.2, 0.5, 1.0,
2.0, and 5.0.

There are many points of discrepancy between the
non-excitonic theory and experiment: (a) the calcu-
lated energy gap is lower in energy than the first
exciton absorption peak (a ridiculous result); (b)
the oscillations are too narrow for the smaller field
and too wide for the larger field: (c) the oscilla-
tion amplitudes are not damped sufficiently above
the edge; (d) the first negative half-oscillation is
too narrow and deep to fit with the nonexcitonic EA
theory. As is clearly demonstrated by Figs. 12
and 13, the excitonic EA theory gives a much bet-
ter fit to PbIz EA data than the nonexcitonic EA
theory. The nonexcitonic EA theory is treated in
the Appendix as the thermally ionized limit of the
excitonic EA theory.

Considering the simplicity of the exciton model,
the fit of the excitonic EA theory to experiment is
quite good. Using these parameters, the ioniza-
tion field as defined by Eq. (5) is calculated to be
4. 67x10' V/cm in which case h/Sz=0. 17 and 0. 61
for the two figures. For comparison between theo-
ry and experiment, 42 cur ves for diff erent
values of electric field ranging from 8/8, = 0. 079 to
1000.0 have been calculated and placed in direct
access storage on the computer. The theoretical
curves in Figs. 11 and 12 correspond to values of
8/Sz = 0. 16 and 0. 63, respectively, since these val-
ues of 8/8, were the closest of the 42 stored curves
to the actual values of 8/h, . The general features
of the EA data are reproduced by the theory. For
example, in the case of the lower field (8 x 104

V/cm), 8, is almost two times h~; whereas, in the
case of the higher field (2. 85x 10' V/cm), h, is less
than h3. In both cases, the magnitudes of h„h&,
and h, are in the right proportions to fit the theory
to the experimental data. The oscillations above
the edge are not quite in phase which may be due to
the oversimplification of the electron-hole interac-
tion as being simply a Coulomb potential, In ac-

t I I I
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——NONEXCITONIC EA THEORY
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FIG. 12. Fit of excitonic and nonexcitonic electroab-
sorption theories to lead iodide data of Perov et al.
(Ref. 46) for electric field of 8X10 V/cm at 77'K.

If the excitonic and nonexcitonic (single-particle)
EA theories are to be compared, there are several
points that need clarification. Since the EA spec-
trum is the difference between a finite-field spec-
trum and a zero-field spectrum, the EA spectrum
contains structure from both spectra. In the case
of the nonexcitonic EA theory, the zero-field spec-
trum contributes little structure except at the fun-
damental edge where a singularity inc~ occurs. In

contrast, the zero-field exciton spectrum can con-
tain many absorption peaks corresponding to the
bound exciton states. This structure is absent only
if the thermal broadening is much greater than the
exciton binding energy, in which case the nonexci-
tonic EA theory is applicable (see the Appendix).
The electric field induces spectral shifts and broad-
enings of any structure in the zero-field spectrum
and causes electric-field-induced oscillations in the
optical density of states above the edge. The elec-
tron-hole interaction enhances these oscillations
near the edge and causes a phase shift in energy
there. The nonexcitonic EA spectrum expands as

whereas only the part of the excitonic EA
spectrum above the edge follows this power law.
Below the edge, the excitonic EA spectrum is dom-
inated by the structure in the zero-field spectrum.
The excitonic EA theory introduces an additional

1.6%IO
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FIG. 13. Fit of excitonic and nonexcitonic electro-
absorption theories to lead iodide data of Perov et al.
(Ref. 46) for electric field at 2.85x10~ V/cm at 77'K.
Both theoretical curves in this and the previous figure
used the parameters I.'=kT, E~=2. 58 eV, and an elec-
tron-hole-pair reduced mass p = 0.2lme.

4
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complication in characterization of the EA spec-
trum, i. e. , the single-particle EA theory can be
characterized by the energy parameters I', the
thermal broadening energy SO, the electro-optical
energy, and E~, the energy gap, whereas the exci-
tonic EA theory also includes R, the binding energy
of the exciton.

In this theory, the electron-hole interaction is
treated as a Coulomb potential between point parti-
cles. It has already been pointed out in the text that
this potential tends slightly to overestimate the ex-
citon binding energy owing to the fact that the parti-
cles are actually charge densitites covering entire
unit cells of the crystal and not point particles. But
to make the problem tractable certain simplifying
approximations must be introduced, such as the
Coulomb potential for the electron-hole interaction
and effective masses for the band structure. Even
with these approximations the agreement between
theory and experiment is quite good. The reduced
mass of the electron-hole pair JLI, along with static
dielectric constant e of the solid combine to define
the exciton binding energy R and the exciton radius
a. The exciton radius in lead iodide is about 16 A,
thus making it a marginal case for study by Wannier
exciton theory which requires that the exciton span
several unit cells of the crystal. Even so, a good
fit was obtained. From the best fit to EA data for
two different values of electric field, the parameters
E~=2. 58 eV, 1(L=0. 21m, were obtained for & =6. 25
and I' = k T, where T = 77 'K for lead iodide which
are in reasonable agreement with previous values
of 2. 55 eV and 0. 24m, .

In summary, the electric field and temperature
dependence of excitonic EA is presented in graphical
form for direct band-gap semiconductors and in-
sulators. Each excitonic EA spectrum is character-

d2
Ai(z) = zAi(z) (12)

whose integral representation is given by'

Ai(s)= —f dss'""" '"'" sos(-', ass+-', s).
(13)

0.2
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FIG. 14. Electroabsorption spectra for thermally
ionized excitons, I'»R: (a) b&& vs (E- E~)/8'~ for ~/S'&
= 0.1 and 0.3; (b) 4&~ vs (E- E~)/Se for ~/S& = 0.1 and
0.3.

ized in terms of ratios of three parameters R, I',
and 58, the magnitude of each relative to one another
determining which, if any, of the competitive forces
dominate. In only one case does the excitonic EA
theory agree with the nonexcitonic theory —the
oscillations in the optical density of states above the
edge expand as 8 . This theory explains many of
the features of measured EA spectra which are in-
consistent with the nonexcitonic EA theory such as
temperature-dependent and field-independent oscil-
lations and hitherto anomolous dependencies of the
amplitudes of the oscillations on field. 43

APPENDIX: ELECTROABSORPTION BY
THERMALLY IONIZED ELECTRONS

In the limit of large thermal broadening of the ex-
citon lines I'» R, the excitonic EA spectrum ap-
proaches the nonexcitonic EA spectrum. The
broadened nonexcitonic EA spectrum may be ex-
pressed in terms of complex Airy functions ' which

are Bessel functions of fractional order. The
complex Airy function is the analytic continuation
of the convergent real-axis solution of the equation
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For completeness, a second solution to Eq. (12) is
Bi(z) whose integral representation is given by'

Bi(z) = — dse ' '" "~'" sin( —,'W3sz+-,'v)
77

p

+ — Qse ss-(1/ 3)s (14)
0

The complex functions Ai(z) and Bi(z) are interre-
lated by the formula'

Ai(z) +iBi(z) = 2e"~ Ai(ze 'z~ ).

For EA calculations, we have that in the limit of
l»R

P'(0)-(&/8, )
' 2v Re[e " 'Ai'(z)Ai'(ze '~ ')

+ze '" 'Ai(z)Ai(ze '"~')]
(16)

for finite fields and broadenings where Ai'(z) =

(d/dz)Ai(z) and the zero-field limit is given by

where hen is the photon energy, E~ is the energy
gap, R is the exciton binding energy, and I' is the
thermal broadening energy. The complex param-
eter z may be expressed intermsofphysicalparam-
eters as

z = (h/8, )-"' [(E, -@~)+f1]/ft= [(E, -a~)+ f1]/ge,

where AO is the electro-optical energy. The mod-
ulated spectrum &&2 representing the difference be-
tween Egs. (16) and (17) is shown in Fig. 14 with its
Kramers-Kronig transform ~c, for two values of
1/h6. The energy coordinate expands as 8 "and
the first negative oscillation in 6~2 occurs above
the gap in contrast to the limit l &R, where the
first negative oscillation is pinned at Aco=E, —R.
This theory was used to generate the nonexcitonic
curves in Figs. 12 and 13.
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A method is given for summing all orders of nonpairwise contributions to the van der Waals
interaction energy of a substitutional impurity in a monatomic molecular crystal using a Lorentz
oscillator model as an approximation. The nonpairwise contribution to the energy of removing
an atom from the lattice is obtained as a limiting case. Applied to rare-gas solids, the model
suggests vacancy formation energies reduced from the two-body values, but insufficiently to
give complete agreement with experiment.

I. INTRODUCTION

Calculations using two-body model potentials
for the interactions between rare-gas atoms yield
third vjrial coefficients in disagreement with ex-
periment, and predict vacancy formation energies
in solid argon and krypton about equal to the co-
hesive energy per atom, while observed ther-
mal vacancy concentrations'6 suggest much smaller
values. Also, the two-body potentials generally
employed predict stability for the hexagonal close-
packed (hcp) solid relative to the face-centered
cubic (fcc), ' contrary to observation. The pos-
sibility of explaining these apparent discrepancies
between theory and experiment in terms of non-
pairwise contributions to the cohesive energies of
rare-gas solids has been widely examined.

Jansen et al. consider nonpairwise interactions
involving three-atom electron exchange in the
overlap region; they obtain rather large three-
bod;- contributions (25% of the cohesive energy)
that decisively stabilize the fcc lattice, reduce
the two-body vacancy formation energy by as much
as 47%, '0 and reportedly produce large relaxations
around vacancies. " Swenberg' ' points out, how-
ever, that Jansen's effective one-electron Gaus-
sian wave functions give unrealistically large

nearest-neighbor overlaps, and that Gaussians
with more realistic width parameters produce neg-
ligible three-body effects in Jansen's theory.
Other possible difficulties with Jansen's approach
have also been discussed. '

Nonpairwise contributions to the van der Waals
interaction energy alone have also been considered.
When interatomic overlaps are neglected and a
multipole expansion used, the van der Waals in-
teractions among rare-gas atoms are found to be
pairwise additive to second order in perturbation
theory, "and a three-body "triple-dipole" inter-
action arises in third order. " ' The triple-dipole
interaction favors the fcc structure, but insuf-
ficiently to decisively stabilize it, ' and Burton'
shows that it decreases the vacancy formation
energy in solid argon, although insufficiently to
give agreement with experiment. The triple-dipole
interaction also reduces the discrepancies between
observed and calculated third virial coefficients
in gaseous argon and krypton, ' ' ' and its pos-
sible effects on other rare-gas properties have
also been considered. Present's calculation
suggests that this interaction might be much more
significant than three-body interactions arising
from overlap and exchange at normal lattice sepa-
ration.


