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Refractive-index dispersion data below the interband absorption edge in more than 100 widely
different solids and liquids are analyzed using a single-effective-oscillator fit of the form
n —1=E&Ep/(Ep —5 ct) ) wherekcois thephotonenergy, Epis the single oscillator energy, and

Ez is the dispersion energy. The parameter E„, which is a measure of the strength of inter-
band optical transitions, is found to obey the simple empirical relationship E& =PN, Z~N~, where
N~ is the coordination number of the cation nearest neighbor to the anion, Z, is the formal
chemical valency of the anion, N, is the effective number of valence electrons per anion
(usually N~=s), and P is essentially two-valued, taking on the "ionic" value P; =0.26+0. 04 eV
for halides and most oxides, and the "covalent" value P, =0.37 +0.05 eV for the tetrahedrally
bonded A B zinc-blende- and diamond-type structures, as well as for scheelite-structure
oxides and some iodates and carbonates. Wurtzite-structure crystals form a transitional group
between ionic and covalent crystal classes. Experimentally, it is also found that Ez does not
depend significantly on either the bandgap or the volume density of valence electrons. The
experimental results are related to the fundamental &2 spectrum via appropriately defined
moment integrals. It is found, using relationships between momentintegrals, thatforaparticu-
larly simple choice of a model &2 spectrum, viz. , constant optical-frequency conductivity with
high- and low-frequency cutoffs, the bandgap parameter E~ in the high-frequency sum rule
introduced by Hopfield provides the connection between the single-oscillator parameters (Ep,
Ez) and the Phillips static-dielectric-constant parameters (E~, Se&), i.e. , {h~&) =E,E„and
E& = E+Ep, Finally, it is suggested that the observed dependence of Ed on coordination number
and valency implies that an understanding of refractive-index behavior may lie in a localized
molecular theory of optical transitions.

I. INTRODUCTION

The fundamental electronic excitation spectrum
of a substance is generally described in terms of a
frequency-dependent complex electronic dielectric
constant e((d) = a(((d)+te2((d). Either the real part
(&&) or the imaginary part (ez) contains all the de-
sired response information, since causality argu-
ments relate the real and imaginary parts via the
well-known Kramers-Kronig (K-K) relations, i.e. ,

2 ~ (d e2((d )'E(((d) 1 = (P &p g d(d
g (d —(d

0

2(d " e(((d') —1
i2 a

0

where g denotes the principal part. In materials
exhibiting a bandgap, the real part in the region of
transparency below the gap is related to optical ab-
sorption above the gap by

&(((d) —1=n ((d) —1=—(P',2 2 d(d
(d e2((d )
(d

t
(2)

where &, is the threshold frequency, and we have
identified a& with the square of the refractive index
n. The frequency & is assumed to lie above all lat-
tice vibrational modes, i.e. , only electronic ex-
citations are being considered. In the language of
E(l. (2), a theory of the refractive index would en-

tail computation of &~((d) followed by integration over
all frequencies. Although a formal perturbation
theory procedure for computing &3((d) exists within
the framework of the one-electron band theory of
solids, such computations require integration over
the full Brillouin zone as well as over all frequen-
cies, so that important physical quantities tend to
be obscured by the computational details of the
anaylsis. Furthermore, several adjustable param-
eters are generally introduced into energy-band
calculations, and in the more ionic materials exci-
tonic effects are difficult to account for quantita-
tively. It is useful, therefore, to approximate the
general theoretical expressions for e, ((d) in ways
that display explicitly certain physically meaningful
parameters. These parameters depend on the par-
ticular approximation being made. Phillips' and
Van Vechten, ' for example, make use of the Penn
model description of the static electronic
dielectric constant to define an "average energy
gap" E~, whereas we use a single-oscillator
description of the frequency-dependent dielectric
constant to define a "dispersion-energy" parameter
E~ . These parameters are useful because they turn
out to obey remarkably simple empirical rules in large
groups of materials. Although these rules are quite
different in detail, one common feature is the over-
whelming evidence that both crystal structure and
ionicity influence the refractive-index behavior of
solids in ways that can be simply described. This
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Using time-dependent perturbation theory, the
following formal expression for the frequency (+)
dependence of the real part of the electronic dielec-
tric constant can be derived:

e, ((o) =1+, Q d k,. " p.
7T m ] g (0]) -(d (3)

Here e and m are, respectively, the electronic
charge and mass. The sum extends over all bands
i and j such that i& j, and the integral extends over
the volume of the Brillouin zone (BZ). The inter-
band oscillator strength for polarization direction
n is given by f,&(k). We shall consider two ap-
proximations to Eq. (3) which contain parameters
that can be measured experimentally. The first
is the zero frequency or static-electronic dielec-

experimental observation should be contrasted with
existing theories for which any simple connection
between the final result (i. e. , the dielectric con-
stant) and crystal structure or ionicity tends to be
obscured by the analysis.

In the present article, our purpose is to expand
the analysis of refractive-index behavior reported
previously. We show how the single-oscillator
description is a "natural" approximation to the di-
electric response function and compare in detail the
single-oscillator and Penn-model parametrization
with emphasis on the relationships between moments
of the e, (ar) spectrum and the model parameters.
Tables of experimental oscillator parameters are
presented for nonmetallic ionic and covalent semi-
conductors and insulators, magnetic insulators, and
liquids. These tables enable us to extend the em-
pirical rule reported previously, connecting the
dispersion energy E„with coordination number,
valency, and ionicity, to a wider range of mater-
ials.

Finally, we discuss the implications of the ex-
perimental results on our understanding of elec-
tronic structure and chemical bonding in solids and
liquids. Within the framework of the constant con-
ductivity model, it is shown that the dispersion en-
ergy E~ is simply related to &,(v) at high frequencies
above the e2(v) cutoff via the f sum rule and the
Hopfield sum rule. As a result, E„ is related to
the charge distribution within each unit cell and is,
thus, a quantity closely related to chemical bonding.
The observed simple dependence on coordination
number and chemical valency suggests further that
nearest-neighbor atomiclike quantities strongly in-
fluence the electronic optical properties of mater-
ials, and that an understanding of these properties
as well as bonding may lie within a riearly localized
molecular theory.

II. SINGLE-OSCILLATOR DESCRIPTION OF

ELECTRONIC DIELECTRIC CONSTANT

tric constant, and the second is the frequency de
pendence of the dielectric constant in the region
of transparency, i. e. , ~& v;&.

Penn has shown that the static dielectric con-
stant of a semiconductor can be computed using an
isotropic free-electron model containing a single
energy gap E~ . Apart from a factor of order unity, we
can obtain his result from Eq. (3)by letting Ke&& = E, ,
where E is an average energy gap. Equation (3)
then becomes

2g2 f
~l(0)=1+ 8 8 & d'kflJ(k)

7F m g $ g gg
(4)

Making use of the f sum rule and noting that

Z f d k=4mn„,

el(&)=I+&p+ I a s) ~ (8)

Equation (8) has the same form as the classical
Kramers-Heisenberg dispersion formula for an
assembly of weakly interacting atoms. In Eq. (8),
f„ is the electric-dipole oscillator strength associ-
ated with transitions at frequency &„. The sum-
mation over oscillators v„can be sensibly approxi-
mated for ~ & ~„by isolating the first (strong) oscil-
lator f,/(u&l —+ ) and combining the remaining terms

where n„ is the effective density of valence elec-
trons, Eq. (4) reduces to

e, (0) = 1+ (If(u~) /Eg . (8)

Here &u~ = 4vn„ea/m is the plasma frequency of the
valence electrons. Phillips and Van Vechten' have
shown that the average energy gap E~ can be sensi-
bly decomposed into homoyolar and heteropolar parts
E„and C obeying the quadrature relation E = E„+C

and that new and useful scales of ionicity and elec-
tronegativity can be defined within the framework
of the single-gap dielectric model. Furthermore,
these authors have also shown that a remarkably
wide range of experimental observations in many
materials can be correlated using a "small number"
of adjustable parameters associated with E~. '

To calculate the frequency dependence of the di-
electric constant we note that for a single group of
valence and conduction bands Eq. (3) can be rewrit-
ten as

el(+) 1+ Q g 2

4ve~ f,"„(k)
5%0 g (O,„k -(0

where 0 is the volume of the crystal, and c and v

denote conduction and valence bands. If we approxi-
mate the important interband transitions in the BZ
by individual oscillators and recognize that each
valence electron contributes one such oscillator,
Eq. (I) may be approximated by
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FIG. 1. Plot of refrective-index factor (n —1) '
versus ~- for NaF.
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in the form

(f /& ) (1+ & /&, )

Combining these higher-order contributions with the
first-resonant oscillator and retaining. terms to or-
der co then yields the single-oscillator approxima-
tion

e, ((u) -1= F/[E,'—(her)'], (9)

n (sr) —1 =E~E0/[ED- (Nv) ] . (10)

Experimental verification of Eq. (10) can be ob-
tained by plotting 1/(n —1) versus va ( or A. ~). The
resulting straight line then yields values of the pa-
rameters Ea and E~ . Some typical results are shown

in Figs. 1-3for NaF, BazNaNb, O», and CdS. These
curves illustrate the general features observed in
a total of over 100 materials investigated to date.
At long wavelengths, a positive curvature deviation
from linearity is usually observed due to the nega-

where the two parameters E0 and E are related
straightforwardly to all the f„and &u„ in Eq. (8).
Equation (9) provides a two-parameter approxima-
tion at low energies co & co, to, the theoretical result
expressed by Eq. (3). The usefulness of Eq. (9)
depends, of course, on affirmative answers to the
following two questions: (i) Do real solids obey the
single-oscillator approximation with "reasonable"
accuracy; and (ii) do the experimentally observed
values of the parameters E0 and E (or some com-
bination) provide new insights into the optical pro-
perties of matter'P In an earlier paper, 3 we assert-
ed that a positive answer could be given to the first
question for more than 50 widely different ionic and
covalent nonmetallic crystals, and we showed ex-
perimentally that a special combination of param-
eters (E~ =F/E0) obeyed an extraordinarily simple
empirical relation for this same large group of
materials. In terms of the dispersion energy E„,
Eq. (9) can be rewritten in the form

tive contribution of lattice vibrations to the refrac-
tive index. At short wavelengths, a negative cur-
vature deviation is sometimes observed due to the
proximity of the band edge or excitonic absorption.
The largest deviations occur when strong exciton
peaks are present below the interband edge, as in
CdS (see Fig. 3). However, in all materials studied
(both solids and liquids), a sufficiently extended
region of linearity is observed to allow unambiguous
experimental determination of the two parameters
E0 and E, . In the worst case (CdS), linearity ex-
tends over a factor of 4 in co, and the quantity
(n -1) ' is depressed approximately 15% below the
linear extrapolation close to the absorption (exci-
ton) threshold.

In addition to the single-oscillator parametriza-
tion given by Eq. (10), many other curve-fitting
forms involving three or more parameters have
been used in the literature to describe refractive-
index dispersion data. In general, no physical signif-
icance has been attached to the parameters, and
the expressions serve primarily as interpolation
formulas. Our justification for using Eq. (10),
apart from its experimental validity, is the a pos-
teriori argument that the parameters obtained have
fundamental physical significance.
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FIG. 2. Plot of refractive-index factor (g —1) ~

versus A, ~ for Ba&waNb&0&5.

III. RELATIONSHIP OF PARAMETERS TO

FUNDAMENTAL e2(u) SPECTRUM

A simple connection between the single-oscillator
parameters E~ and E~ and the ez(v) spectrum can be
obtained by equating Eq. (10) with Eq. (1) and com-
paring terms in an expansion in powers of & . The
resulting relationships can be compactly expressed
in terms of moments of the e2(e) spectrum. We de-
fine the Hh moment of the optical spectrum by the
relation
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where E=- S~, and E, is the absorption threshold
energy. It should be noted that the definition of
moments given here differs somewhat from the def-
inition used in Ref. 3. The parameters Ep and E~
are then given by

and

Eo ——M g/M q

E„=M g/M q .

(12)

The oscillator energy Ep is independent of the scale
of E& and is consequently an "average" energy gap,
whereas E„depends on the scale of &&, and thus
serves as an interband strength parameter. Since
the -1 and -3 moments are involved in computation
of Ep and E„, the && spectrum is weighted most
heavily near the interband absorption threshold.
It is instructive to compare Eqs. (12) and (13) with
corresponding expressions for the quantities Sco~

and E, entering into the Phillips-dielectric model.
Using the f-sum-rule integral and the K-K relation,
it is easy to show that

and

(a~,)'= M, ,

Eg ——Mg/M g .

(14)
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FIG. 3. Plot of refractive-index factor (n —1)"
versus ~ for CdS.

The Phillips "bandgap" E~ is, thus, simply the
ratio of the +1 to the -1 moments, and consequently
weights the e& spectrum at higher energies more
heavily than the corresponding expression for Ep
given by Eq. (12). Interband transition strengths
are described by the plasma energy M& in this
model, whereas the single-oscillator model uses
the quantity M, /M ~ to describe transition strengths.

Hopfield' has recently derived a new sum rule re-
lating optical properties to the charge distribution

within a unit cell. He introduces the energy-gap
parameter E, defined by the moment relation

E, = Mg/Mg, (16)

A third parametrization of refractive-index be-
havior that has gained wide acceptance is the
Clausius-Mossotti local-field polarizability model.
This description introduces physicaDy appealing
quantities (i. e. , the Lorentz local-field factor I'
and the electronic polarizability o!), but these
quantities are not separately measureabl, in gen-
eral, nor can they be computed from fundamental
theories. In terms of ~ and I", the zero-frequency
refractive index can be expressed in the form

n~(0) —1 = 4mNQ n (1 —N Q I', n, ), (18)

where a; and I'& are the electronic polarizabilities
and local-field factors for the ith atom in each unit
cell, and N is the volume density of unit cells. For
a cubic array of isolated ions, I'= ~~r, and Eq. (18)
reduces to the well-known Lorentz-Lorenz form

(n' —I)/(n'+ 2) =
~ mNuo,

where ao=g& o,
&
. In most solids neither the assump-

tion of cubic symmetry nor isolated ions is valid.
In the covalent limit, extreme overlap between near-
est-neighbor wave functions gives 1"-0. ' The
Lorentz factor is, thus, clearly related in some way
to ionicity as well as structure. There is, however,
no fundamental theory that allows quantitative de-
termination of I' in solids that are not strongly ion-
ic. For this reason a value for 1" is often assumed,
and the total polaribility ap is then determined ex-
perimentally from Eq. (18). Such a procedure is
useful provided polarizabilities are additive and
provided they have essentially the same value for
each ion when placed in a variety of crystalline and
chemical environments. This turns out to be limited
to certain families of ionic crystals, so that Eq.
(18), apart perhaps from giving useful qualitative
insights, does not yield parameters that can always
be unambiguously measured nor are the parame-
ters necessarily applicable to large groups of crys-
tals. It is of interest to note in passing that a sin-

and shows that this energy is related to an integral
of the product of the Laplacian of the bare crystal
potential and the fluctuation in the electron density.
The symmetry in the expressions for Ep, E, , and E, is
evident in Eqs. (12), (15), and (16), as is the in-
equality

E &E &E

Other "average" energy gaps can be defined by the
general relation E„=M„/M„„although thus far
only the gaps Ep, E~, and E, have been found useful.

IV. OTHER PARAMETRIZATIONS OF REFRACTIVE INDEX
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gle-oscillator description of no in the Lorentz-
Lorenz expression [see Eq. (19)] cannot be distin-
guished experimentally from a single-oscillator de-
scription of n -1.

Another parametrization of refractive-index data
that is sometimes used involves normalization of
various functions of the refractive index [e.g. , n-1
or (n' - I)/(n + 2)] by the density. Although a varie-
ty of empricial rules are observed to apply to groups
of complex materials, it is difficult to ascribe phys-
ical significance to the resulting parameters. The
reader is referred to the book by Batsonov for a
detailed presentation of this "refractometry" ap-
proach.

V. EXPERIMENTAL RESULTS

Using available refractive-index-dispersion data,
we have computed the single-oscillator parameters
Eo and E, for over 100 solids and liquids. The re-
sults, listed in Tables I-IV are grouped into the
following four categories: Table I, nonmagnetic
crystals containing a single anion species; Table
II, nonmagnetic crystals containing anion radicals;
Table III, magnetic crystals; and Table IV, liquids.
For brevity we have included values of Eo and E„
for only one direction of light polarization in uni-
axial and biaxial crystals. In most cases, E„ is
found to be very nearly isotropic.

A. Table I —Nonmagnetic Crystals Containing a
Single Anion Species

The crystals in Table I are grouped into separate
subgroups according to the formal anion valency
(Z,), the coordination number of the nearest-neigh-
bor cation (N, ), and the effective number of valence
electrons per anion (N, ). We take N, = 8in all com--
pounds containing only filled s-p valence bands. This
would include, in the tetrahedrally coordinated A"8' "
covalent compounds, all 8 electrons in the directed
sP hybridized orbitals. An argument for taking

N, =- 6 in ionic crystals is given in Sec. VII, although
we have not done so in the tabulations. As dis-
cussed below and in Ref. 3, some complicating fea-
tures occur in the thalium halides (N, = 10) and in
the noble metal salts (N, =18).

We now turn to the values of E„ listed in Table I
and make the following pertinent observations.

(a) The parameter E~ in ten six-coordinated al-
kali halides (excluding LiF) has very nearly the
same value of 12. 6+ 1.4 eV, although the oscillator
energy Eo varies by a factor of 2 and the unit cell
volume varies by a factor of 4. The value of E„ for
LiF appears to fall slightly outside the listed limits.

(b) In the eight-coordinated CsCl- and CaF2-type
structures, E„=16.2+ 1 eV. This value is very
nearly a factor 6 times that observed in the six-
coordinated structures. A simple proportionality
between E~ and N, is thus implied by this result.

Note in particular the values of E~ for six- and
eight-coordinated Cs Cl.

(c) The parameter E„ in 15 six-coordinated ox-
ides in which Eo varies by a factor of 2. 5 is 24. 7

a 2. 8 eV. This factor-of-two difference between six-
coordinated oxides and halides suggests the possibil-
ity of a simple proportionality between E„and Z', .

(d) The parameter E~ in five four-coordinated
oxides (17.Va 0. 6 eV) is about 6 times its value in
the six-coordinated oxides, thus lending further sup-
port to the view that E„ is approximately proportion-
al to N, .

(e) The four scheelite-structure oxides (N, = 4)
listed in Table I have E„=22.3+1.0 eV. This value
is considerably larger than that noted above for
other four-coordinated oxides (E~ = 17.7+ 0. 6 eV).
As a result, the scheelite crystals do not appear to
fall within the simple framework of a proportion-
ality between E„and N, . It should be noted that
other nonscheelite crystals containing MoO4 tetra-
hedra have values of E„ in line with a proportion-
ality between E~ and N, [e.g. , E, = 18.4 eV in

Gdz(Mo04)3 and Tb2(MoO, ), ]. There are at least two
explanations for the unusual behavior of scheelites.
First, it is possible that the divalent cations (Ca,
Pb, Sr), which are essentially eight-coordinated,
contribute somewhat to optical transitions and raise
E„above its four-coordinated value. Second, the
tetrahedra in the scheelite structure may be more
covalently bonded than in nonscheelites. We will
return to this point below.

(f) The parameter E„has the value 26+ 1 eV in
four II-IV compounds (Z, = 2) having the zinc-blende
structure. In the three III-V compounds (Z, = 8), E„
is approximately a factor —', larger, and in the
1V-IV compounds (Z, = 4), E~ is approximately a
factor of 2 larger. There thus appears to be at
least an approximate proportionality between E„and
Z, even in the covalent tetrahedrally coordinated
binary compounds. We have excluded small-band-
gap and impure materials from this listing because
free carrier and donor (or acceptor) photo-ionization
absorption can contribute significantly to the appar-
ent dispersion of the refractive index, and thus to
E„. Such effects may in fact influence the listed
value of E~ for Ge.

(g) The parameter E„ is about 21 eV in the
eight-coordinated thalium halides. This value is
approximately a factor '8 times that observed in the
isostructural alkali halides. We attribute this dif-
ference to the extra 6s electrons associated with
the Tl' ion. Thus, for the thalium salts we take
N, = 10 and assume that E„ is proportional to N, .

(h) The noble-metal salt AgCl crystallizes in the
NaCl-type structure, yet the observed value of E„
is larger by nearly a factor of 2, i. e. , E„has the
value expected for a six-coordinated oxide. Simi-
larly, E„ in four-coordinated CuC1 is the same as



BEHAVIOR OF THE ELECTRONIC DIEL EC TRIC CONSTANT 1343

TABLE I. Dispersion parameters for nonmagnetic
crystals containing a single anion species.

Crystal

TABLE I. (continued)

E()(eV) Eq(eV) P (eV)
Crystal
NaCl type
Pr, =6, Z, =i,
LiF
NaF
KF
NaCl
KC1
RbC1
Cs Cl
KBr
RbBr
KI
RbI

N, =S)

17.1
15
14, 8
1P.3
10.5
10.4
10.6
9.2
9.1
7.7
7.7

14.9
11.3
12.3
13.6
12.3
12.2
14.0
12.4
12.1
12.8
12.1

0.31
0.24
0.26
0.28
0.26
0.25
0.29
0.26
0.25
0.27
0.25

E (eV) E„(eV) P(eV)
Oxides
(Nc 4& Za 2& Ne 8

ZnO

Si02
LiGa02
Gd, (Moo4),
Tb2(Moo4) 3

6.4
13.6
9.5
8.3
8.1

9.15
8.26
5.4
8.6

Oxides (scheelite structure)
(N, =4, Z, =2, N, =S)

CaWO4
CaMo04
PbMo04
SrMo04

17.1
18.3
18.1
18.5
18.4

23.3
23.0
22. 6
21.3

0.27
0.29
0.28
0.29
0.29

0.36
0.36
0.35
0.33

CsCl type
(N~=8, Z~=1, N~=S)

Cs Cl
CsBr
CsI

CsC1 type
(N =8, Z =1, N =10)

T1Cl
TlBr

CaF2 type
(N~=S, Z~=i, N~=S)

CaF,
BaF2

Noble-metal salts
(Z.=i, N, =iS)

AgC1 (N =6)
CuC1 (N =4)

10.6
9.4
7.5

5.8
5.3

15.7
13.8

7.4
8.3

17.1
17.0
15.2

20. 6
21,7

15.9
15.9

22
18.6

0.27
0.27
0.24

0.26
0.27

0.25
0.25

0.20
0.26

Zinc blende
(N~ = 4, Z~ = 2, N~ = 8)

ZnS
ZnSe
ZnTe
CdTe

Zinc Blende
Qr, =4, Z.=3, N, =S)

GaP
GaAs
ZnGeI'~

Diamond type
(N~=4, Z~=4, N~=S)

C

P SiC
Si
Ge

6.36
5.54
4.34
4.13

4.46
3.55
4. 04

10.9
7.6
4.0
2.7

26.1
27.0
27.0
25.7

36.0
33.5
35.2

49.7
42
44
41

0.41
0.42
0.42
0.40

0.38
0.35
0.37

0.39
0.33
0.35
0.32

Wurtzites
(N~=4, ZfI=2, N~=S)

ZnO
Cds
CdSe
ZnS

Oxides
(N, =6, Z, =2, N, =S)

MgO
Cao
A1203
Y3A150)2
Te02
SrTi03
BaTi03
KTa03
KTao 6)Nbp 3503
LiTa03
LiNb03
Ba2NaNbgO(g
Ti02
MgA1, 204
ZnWO4

6.4
4.9
4.0
6.15

11.3
9.9

13.4
11.1
t. 24
5.68
5. 63
6.50
6.17
7.49
6.65
6. 19
5.24

12.1
7.46

17,1
20.4
20.6
25. 2

22
22. 6
27. 5
25.4
23.2
23.7
24. 0
23.7
23.4
26, 1
25.9
24. 4
25.7
23.3
26.0

0.27
0.32
0.32
0.39

0.23
0.24
0.29
0.26
0.24
0.25
0. 25
0.25
0.25
0.27
0.27
0.26
0.27
0.27
0.27

observed in four-coordinated oxides (ZnO and SiOq).
We attribute the occurrence of anomalously large
values of E~ in these noble-metal salts to contribu-
tions of the filled d band to interband transitions,
and thus take N, =18.

(i) The parameter &~ in four II-VI wurtzite-
structure crystals varies between 17.1 (ZnO) and
25. 2 eV (ZnS). We will comment on this observa-
tion below.

As suggested in Ref. 3, the above observations
lead us to conclude that the quantity

P = E„/N~Z, N, eV (2o)

P& = 0. 26 + 0. 04 eV, (21)

and taking on the "covalent" value P, in the zinc-

has very nearly the same numerical value in large
groups of crystals containing a single anion species.
In particular, we find from Table I that P is essen-
tially two-valued, taking on the "ionic" value P, for
halides and most oxides (scheelites being an excep-
tion as noted above), i. e. ,
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blende, scheelite, and diamond-type structures,
~. e. ,

TABLE II. Dispersion parameters for nonmagnetic
crystals containing anion radicals.

P, =O. 37+ 0. 05 eV. (22) Crystal Nc Ep {eV) E„(eV) P(eV)

The wurtzite-structure crystals appear to range
between the ionic and covalent extremes with ZnO

falling at the ionic limit and ZnS at the covalent
limit. Thus, it would appear based solely on ex-
perimental values of E„ that large groups of crys-
tals containing a single anion species can be grouped
into distinct ionic and covalent classes with wurtzite
crystals forming a transitional group between these
extremes. This rather remarkable result has also
been noted within the ionicity scale of Phillips and
Van Vechten. Furthermore, Kurtin et al. ' deduced
the existence of distinct ionic and covalent crystal
classes based on observations of barrier energies
at metal-semiconductor interfaces, exciton
strengths, and the relative importance of "direct"
and "nondirect" transitions. These authors also
find that wurtzite-structure crystals form a transi-
tional group between covalent and ionic crystal
classes.

Turning to the oxides, it is of interest that all the
six-coordinated oxides have the ionic value of P = P;,
whereas the four-coordinated oxides seem to be
either ionic or covalent (scheelites). Although it is
possible that the four-coordinated oxides, in analogy
with the wurtzites, fall near the ionic-covalent tran-
sition with scheelites on the covalent side, this ex-
planation cannot be distinguished from that suggested
above attributing the larger E~ value in scheelites
to the influence of the divalent cation-oxygen bond.

B. Table II —Nonmagnetic Crystals Containing

Amon Radicals

In Table II we list values of Ep, E„, and P for a
representative sample of nonmagnetic crystals con-
taining XO anion radicals. If we continue to define
P by Eq. (20) and take for N, the coordination num-
ber of the nearest-neighbor X ion (e. g. , Cl, C, P,
I), the values of P shown in Table II are obtained.
Although no general rules can be deduced because
of the limited number of crystals listed and the re-
stricted wavelength range of the data, the results
shown in Table II are clearly reminiscent of those
tabulated in Table I. Thus, the nitrates, phos-
phates, sulphates, and chlorates appear to have the
ionic P value (P, = 0. 26' 0. 04 eV), whereas the io-
dates and carbonates have the covalent value (P,
=0. 31+0.05). It is of interest that the single per-
iodate listed (KIO4) appears to fall into the ionic
class. These experimental results suggest that the
simple empirical rule expressed by Eqs. (20)-(22)
may apply to many, if not most, crystalline solids
containing anion radicals, and that even in these
materials coordination number and ionicity are
simply related to refractive-index dispersion.

KH2PO4

NH4H2PO4

AlPOg

12.8 16
12.2 16
13.9 18

0.25
0.25
0.28

KNO3

NaNO, (l)'
NaNO3(ll)'
Ba(NO, ),
K)SO4
Rb)SO4
LiKSO4

NaC104
RbC104
NH4C 104

Rb2SeO4

KIO4

HIO3
LiIO3
SrCO~
CaCO,

13.5
8.5

15
9.6

13.8
13.8
15.8

12.4
14.5
13.6

12.2
9.1

7.6
8.34

15.2
10.9

10.3
12.1
11.5
13.4

16;5
17.5
14.0

15.4
16.4
15.4

16.7
14

21
20
19.8
18.5

0.22
0.25
0. 24
0.28

0;26
0.27
0.22

0.24
0.26
0.24

0.26
0.22

0.44
0.42
0, 41
0.39

We include for NaNO& data for light polarized parallel
(II) and perpendicular (j.) to the uniaxial c axis. Note
that Ez is very nearly isotropic despite a large anisotropy
ln Ep,

Eu&o &A'o
2 8E~ E~ E E

0
(23)

where P, , Eo applies to the f- d transitions and Eo,
Ep applies to the s, p - d transitions. It is straight-
forward to combine terms in Eq. (23) and arrive at
the following expressions for the equivalent single-
oscillator parameters Ep and E„:

C. Table III —Magnetic Crystals

In Table III we show values of Ep and E„ for the
magnetic europium chalcogenides. The value of E„
in EuO (9 eV) is much lower than in isostructural
MgO (22 eV). Furthermore, there is a, monotonic
increase in E„ in going from the oxide to the tellu-
ride. These results fall outside the framework of
Tables I and II; however, they can be easily under-
stood by taking into account the 4f7-4f (5d) transi-
tions as well as transitions between the s-p valence
band and the d-like conduction band. Transitions
originating from the 4f electrons are responsible
for the observed bandgap and contribute substantial-
ly to dispersion of the refractive index. The higher-
energy transitions originating in the s-p valence
band are the major contributors to the long wave-
length refractive index. The above statements can
be made quantitative by using a two-oscillator de-
scription of the refractive-index dispersion, i. e. ,
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TABLE III. Dispersion parameters for magnetic
crystals.

Crystal

EuO
EuS
EuSe
Eu Te

Ep (eV)

2.46
4 0
4. 3
4.3

E„(eV)

9
14
18
21

and

-, 1+ (E,/E, )(E,/E, )

1 (E./E. )(E,/E, )

~a "s I&+(&.I&.)(&D&d]')
1 + (E„/E~) (Eo/Eo)

(24)

(25)

To give a numerical example, we take the EuO val-
ues for Zo and E„ listed in Table III, assume that
to =1.9 eV from the photoemission experiments of
Eastman et al. ,

' and assume further that E„=25 eV
based on the E„values observed in the nonmagnetic
six-coordinated oxides. We then find, using Eqs.
(24) and (25), that E„=l.5 eV, and ED=10 eV. Sim-
ilar calculations for EuS yield E„=2 eV and ED =8
eV, and for EuSe, 2, =2 eV and ED=V eV. The cal-
culated values of Eo are similar to those observed
in nonmagnetic six-coordinated crystals (see Table
I). Thus, the refractive-index behavior of these
magnetic materials containing f electrons can be
understood as arising from strong interband (p- d)
transitions at high energy (E~ =25 eV) and much
weaker f- d transitions (E~ =2 eV) occurring near
the absorption threshold at lower photon energies.

D. Table IV —Liquids

We show in Table IV experimental values of Eo
and E„ for several liquids. All of the listed E„val-
ues except for CH2I2 fall in the range E„=10+ 2 eV.
The relatively low refractive indices observed in
these liquids, when compared with many solids, are
thus a consequence of weak optical transition
strengths as measured by the dispersion energy E„.
A connection between E„and the coordination num-
ber is, of course, complicated in liquids by uncer-
tainties as to the short-range order. If we make
the reasonable assumption that molecules remain
intact in the liquid so that nearest-neighbor coordi-
nation is a valid concept, we then find for CC14

(taking N, =8, Z, = 1, N, =4) that P=0. 38 eV, and
we find for CS, (taking N, = 8, Z, = 2, N, = 2) that
P = 0. 34 eV. Both liquids thus display the P value
found in covalent solids. A complication occurs for
water where the proton lies between two oxygen
atoms at a distance 1 A from the nearest neighbor
and 1.7 A from the next-nearest neighbor. For
this situation, the appropriate coordination number
is not clearly defined but certainly falls between
1 and 2. By taking Ne-—8, Za ——2 we find P= 0. 31 eV

for N, = 2 and P = 0. 62 eV for N, = 1, thus bracketing
the crystalline covalent value of P, = 0. 37 + 0. 05 eV.
For the organic liquids included in Table IV, it is
not clear that N, and Z, can be sensibly defined so
as to provide a useful ordering of the data. In sum-
mary, the refractive-index behavior of some in-
organic liquids appears to fit well into the frame-
work observed for inorganic solids, although more
refractive-index data are clearly required to draw
firm conclusions.

VI. EMPIRICAL RULES

TABLE IV. Dispersion parameters for liquids.

Liquid

H2O

CCl4
CS2

C6H6 (benzene)
C6H5OH (phenol)
C2H5OH (ethyl alcohol)
CH3OH (methyl alcohol)
C,I-I„(pentane)
C&H&N (chirolin)
CH2I2

E()(eV)

13.0
11.2
6, 9
8.9
8.6

10.5
12.5
10.6
7.4
7.7

E„(eV)

9.9
11.2
10.7
10.5
11.1
10.7
9.3
8.3

11.1
14.5

The refractive-index dispersion behavior of more
than 100 solids and liquids, summarized in Tables
I-IV, falls into a remarkably simple pattern.
Apart from some liquids for which nearest-neighbor
coordination number may be a poorly defined con-
cept, the dispersion energy E~ obeys the empirical
relations given by Eqs. (20)-(22). Wurtzite-struc-
ture crystals are found to form a transitional group
between distinct ionic and covalent crystal classes
(four-coordinated oxides may also form a transi-
tional group). Equation (20) expresses the striking
result that the influence of structure, chemistry,
and ionicity on E„is simply related to the associated
discreet quantities N„Z„and p. We emphasize
that the dependence on anion valency is not limited
to ionic materials, but holds also for the tetrahe-
drally cpprdinated A 8 cpvalent cpmppunds.
We emphasize also that Eq. (20) contains the fol-
lowing very important implicit observations: (i)
E„ is independent of the absorption threshold E,
(bandgap) to within the indicated error limits of
+15%,' and (ii) E~ is independent of the lattice con-
stant (or density) to within these same error limits.
The first observation imposes constraints on the
form of the &2(&o) spectra as discussed in Sec. VII.
The second observation places the dispersion energy
E„ in a separate category from all other known

parametrizations of ref ractive-index behavior.
For example, the volume density of valence elec-
trons is central to the Phillips description (via the
plasma energy), the Claussius-Mossotti model, and

all ref ractometry approaches. Because the volume
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that automatically forces E„ to be independent of
E„viz. , constant-optical-frequency conductivity
with high- and low-frequency cutoffs:

b

QUIVALENT OSCILLATOR E~,=47ISo, E, «&&E&

&~=0, E&E, and E& bE, .
(30)

I

I Eo/Eg 2
E/Eg

FIG. 4. Model dielectric functions &2 and 0. together
~ith equivalent single oscillator for b =4.

n (0) —1 = E„/Eo pN, Z,N, /E——o . (26)

The oscillator energy Eo is, to a fair approxima-
tion, related empirically to the lowest direct band-
gap E, by

Eo=&. 5 E (27)

density is not required, Eq. (20) provides a useful
basis for predicting and understanding the magni-
tudes of refractive indices in new materials. For
example, the long-wavelength value n(0) is given by

e, (E) = E g (E/E, ), (31)

where g(E/E, ) is an arbitrary function of the nor-
malized photon energy. The constant-conductivity
model, for example, requires that g= ah'( E/E) '.
Equation (31) imposes the implicit constraint that
the area under the e2(E) spectrum for a given class
of materials is a constant independent of E, .
Aslaksen has also pointed out that an E2 spectrum
approximated by a series of ~ functions, i. e. ,

e~=Q n, 6(E —a,E,), a, ~1 (32)

ln Kq. (30), h is an initially arbitrary bandwidth

parameter, and o is the optical conductivity. The
model spectrum described by Eq. (30) is shown in

Fig. 4 for b=4. Also shown is the single oscillator
that produces equivalent dispersion of the refractive
index for E & E, .

It has been pointed out recently by Aslaksen' that
the constant-conductivity model is the simplest
member of a general class of a& spectra obeying the
requirement that E„be independent of E, . The
form proposed by Aslaksen is

so that for ionic compounds

n (0) —1 =N, Z,N, /6E, ,

and for covalent compounds

n (0) —1=N,Z,N,/4E) .

(28)

(29)

(33)

satisfies the constraint, in which case

2 8 3

«n«a««u«a«
For the constant-conductivity model, it has been
shown3 that

Equations (28) and (29) provide a more widely ap-
plicable connection between bandgaps and refractive
indices than that given by Moss's rule' and reveal
explicitly the importance of coordination number,
valency, and ionicity. It is of interest to note that
Eqs. (20) and (27), together with Eq. (10), provide
a general means for estimating both the magnitude
and dispersion of the refractive index in terms of
the lowest direct bandgap.

VII. DIELECTRIC MODELS

As noted above, E„ is almost independent of the
threshold energy E, . This res ~lt imposes con-
straints on the E2 spectrum via the. aoment integrals
contained in Eq. (13). We now consider various
model a, spectra that satisfy this constraint and
compare these spectra with those observed experi-
mentally. Comparison will then be made between
the model spectrum derived from dispersion data
and the Penn model a& spectrum derived theoreti-
cally'3 using a simplified single-gap model of the
isotropic three -dimensional electron gas.

In Ref. 3 we proposed a simple model spectrum

E~= 8v3 ho(b —1)/(1+ b+ h')'i (34)

It is clear that refractive-index dispersion data
alone cannot distinguish between these or other di-
electric models obeying Eq. (31).

To make a sensible choice we must examine the
a& spectra of real materials. When this is done we
find that many of the available spectra appear to have
the following common features: (a) There is a con-
tinuous background which increases towards the
bandgap and is governed approximately by the ex-
pression ez=4vo/u&; (b) relatively sharp structure
is superimposed on this constant-conductivity back-
ground; and (c) the spectra cut off rapidly at high
frequencies. The structure is related to interband
critical points and possibly excitons in ionic materi-
als. Several typical E~ spectra are shown in Figs.
5-8. Figures 5 and 6 give data for the ionic crys-
tals NaC1' and MgO,

' while Figs. V and 8 give data
for the covalent crystals Si' and GaP. ' In each
figure the approximate constant conductivity back-
ground is indicated by a dashed line, and the average
oscillator position Eo is shown by an arrow. The
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6

Na Cl

0 I

10 l5
fi(ev)

I

20

FIG. 6. Experimental &2 spectrum for MgO taken
from Ref. 16 together with approximate constant-con-
ductivity background and average energy gaps Eo and
E

0
6

I I

IO I2

t)~ (ev)

I

l4
I

l6

FIG. 5. Experimental &2 spectrum for NaCl taken
from Ref. 15 together with approximate constant-con-
ductivity background and average energy gaps Eo and E~.

Phillips bandgap parameter E~ is also indicated.
Based on these and other similar, though limited,
data we suggest that a reasonable model &~ spectrum
for many materials consists of a superposition of a
constant-conductivity background [Eq. (30)] and
critical point and/or excitonic structure [Eq. (3&)].
This raises the question as to whether the background
or the structure determines the value of E„. Clearly
the structure-related quantities (n, , a() are not ex-
pected to be the same for all members of a crystal
group having the same values of N„Z„and N, . For
example, among the oxides having N, = 6 the tita-
nates, niobates, and tantalates have d-like conduc-
tion bands, whereas s-like bands are found in Mgo,
CaO, and A1203 . Furthermore, sharp excitons
are observed in MgO while excitons are not observed
in the niobates and tantalates. Also, the oxygen
anion coordination number is 2 in all the listed tita-
nates, niobates, and tantalates, while in MgO and
CaO the oxygen coordination number is 6. This
same argument applies also to CsC1- and CaF&-type
halides (1V', = 8) in whichthe halide anion coordination
numbers are 8 and 4, respectively. Figures 5-8
clearly show that the background is the major con-
tributor to c& near the bandgap, and from the mo-
ment integrals in Eq. (13), it is this portion of the te
spectrum that makes the largest contribution to E~ .
We therefore suggest, to within +15%%u() limits, that
the behavior of the refractive index below the inter-

40—

50—

20—

Ip—

0
2 5

ti~ (ev)

FIG. 7. Experimental &2 spectrum for Si taken from
Ref. 17 together with approximate constant-conductivity
background and average energy gaps Eo and E~.

band edge is determined primarily by the approxi-
mate constant-conductivity background and that the
critical-point (and/or excitonic) structure plays a
minor role. This tentative conclusion may be an
oversimplification for such covalent materials as
Si and Ge (cf. Fig. V).

It is of interest to note that a constant-conduc-
tivity background with superimposed structure is
predicted by theoretical arguments. The expres-
sion for the electronic conductivity is given by

o(cu) = (e I/8v m) J d )t f,„(k)5[8,(k) -8„(k) —K&d],

(35)
where f,„is the oscillator strength for transitions
between valence and conduction bands, 8, and 8„
are the conduction- and valence-band energies, and
the integral extends over the Brillouin zone. In
terms of an average oscillator strength f~ and joint
density-of-states function p(&u), Eq. (35) becomes
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o/N, Z,N, = 80+ 12 (0 cm) ' . (33)

Our choice of a sharp upper-frequency cutoff de-
scribed by the parameter b is, of course, unreal-
istic, although a rapid decrease in o is expected at
high frequencies because of exhaustion of the inter-
band transitions and the form of the crystalline
pseudopotential. Rather than distinguish between
ionic and covalent crystals solely on the basis of
bandwidth alone, we now postulate an alternative
model spectrum in which the bandwidth is fixed and
the conductivity, i. e. , f,„C in Eq. (3V), is different
in ionic and covalent crystal classes. Based on
available experimental data in large numbers of
crystals we take 5 =2. 5. Combining Eqs. (20)-(22)
with (34) we obtain

30

25— GOP

20—

15—

10—

4~ (ev)

I

10 15

FIG. 8. Experimental && spectrum for GaP taken from
Ref. 18 together with approximate constant-conductivity

background and average energy gaps Eo and E~.

o((u) = (ne'ff/2m) f,„p((u) . (35)

By expanding E,(k) —E„(k) in Taylor series in the
neighborhood of critical points, it can be shown that
Eq. (36) reduces to

m) &OO + ~42&ti 4& Otnts+~si44424 ~

(3V)
where |"is a constant related to transitions through-
out the zone. The product f C is, thus, a measure
of the background conductivity.

The simplified model spectrum described by Eq.
(30) contains an unknown bandwidth parameter b

In Ref. 3, we postulated that the normalized conduc-
tivity (o/NQ, N, ) was the same in all ionic and co-
valent materials. As a consequence we derived a
value b, = 3.4 for covalent materials and b, = 2. 1 for
ionic materials. Using Eqs. (20) and (34), we then
found a "universal" value of 0 given by

o,/N, Z,N, = 70+ 10 (0 cm) ', ionic

o,/ N,Z,N, = 100+ 15 (0 cm), covalent.

Equation (30) then yields the relations

@2= (0. 5+0. 07)N,Z,N, /E, ionic

e2 = (0. 75 + 0. 12)N,Z,N, /E, covalent,

(39)

(40)

(41)

(42)

where E= 8& in units of electron volts, and E,«
5E

Equations (39)-(42) describe a simplified approxi-
mate dielectric model that correctly predicts both

the magnitude and dispersion of refractive indices
in more than 100 widely different substances. The
only distinction between ionic and covalent materials
using this constant-bandwidth model is the 50%%uo-

larger conductivity (or transition strength) observed
in the covalent class. Crystal structure enters only

through the nearest-neighbor coordination number

N„chemistry through the anion valency Z„and
valence-band structure through the equivalent num-

ber of electrons per anion N, . To within the +15%
error limits, the model spectrum does not depend
on the lattice constant or volume density. It should

be pointed out that the choice of N, =—8 for filled s-p
valence bands assumes that the s-p splitting is suf-
ficiently small so that the bands derived from the
atomic s-like anion orbitals can contribute to inter-
band transitions over the range of energies of im-
portance in determining Eo and E~ . In the more
ionic materials, energy-band computations" '

suggest that the s-like bands may lie so far below

the p-like bands that this assumption is invalid, in
which case it might be more appropriate to choose

N, =6. In covalently bonded materials having sp
hybridized orbitals, all eight valence electrons con-
tribute to the bonding. This observation could ac-
count for the approximately 50%%uo lower transition
strength observed in the ionic materials and would

make Eqs. (40) and (42) apply to all materials —ionic
as well as covalent.

We now turn to a comparison between the sim-
plified dielectric model presented above and the

c& spectrum derived theoretically by Bardasis and

Hone' based on the Penn model. The Penn-model
c& spectrum is given to a good approximation by'3

]6
e2( ) 3 g (h )4 [(g )2 E2]1/ s 2g

(43)
e2 -—0, h(o &E~

where o,'0= 0. 529 A is the Bohr radius, and k~ and

E&are the Fermi wave number and energy, respec-
tively, of a free-electron gas having an electron
density equal to that of the valence electrons. The
spectrum is shown in Fig. 9 for Ge and compared
with both the observed spectrum and the constant
cr model. It is clear that the Penn spectrum bears
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little resemblance to either the observed spectrum
or the constant-o model.

5p(r) g 'V, (r) d'r,
mNu

all sp~e

(44)

where N„ is the number of electrons per unit cell,
5p(r) is the variation of the electron density in the

VIII. DISCUSSION

We have shown that a single oscillator having ad-
justable strength and position accurately describes
the dispersion of the refractive index in more than
100 ionic and covalent materials (solids and liquids).
The utility of such a simple result for large num-
bers of very different materials lies in the empiri-
cal rule obeyed by the dispersion energy parameter
E„. Through this quantity we find that ionicity,
coordination number, and chemical valency play
central roles in determining the behavior of refrac-
tive indices, and, as a consequence, electro-optic,
nonlinear-optical, and photoelastic effects. ' '0 The
dispersion energy properly normalizes the interac-
tion potential describing these optical effects and,
thus, directly influences their magnitudes.

Before discussing whether or not the empirical
rules on E„ fall within the framework of existing
theories, we now ask if there is some connection
between the various parameters introduced by dif-
ferent authors to describe optical properties (viz. ,
Eo, E~, S&d&, E„and E,). We have shown that E~
obeys interesting empiricisms, while Phillips and
Van Vechten' find widely applicable empiricisms
associated with E, . The other quantities of inter-
est obey the f sum rule (if&a~) and the Hopfield sum
rule~ (E,). The latter sum rule, Eq. (16), is given
by

E,= Ms/M, = 3E,(b + 5+ 1),

E~=M(/M ( ——E,b,

E() M, /M —
-s E,Sb /(I——) + 5+1),

(45)

(46)

(47)

while the interband-strength parameters are given
by

(k&d~)'= 8 (ho)E, (b -1), (48)

E~ = 192(ho) (b —1)s/(bs+ b+ 1). (49)

Hopfield has pointed out that these strength param-
eters are interrelated via the E, gap [Eq. (45)] by

(5(u(, ) =End . (50)

It is also clear from Eqs. (45)-(47) that the three
energy gaps are interrelated by

crystal about the average, and V,(r) is the bare
atomic-crystal potential. Physically, E, is the nat-
ural frequency of the electronic charge clouds,
treated as a rigid-charge density, vibrating against
the atomic cores, whereas v~ is the natural frequen-
cy of vibration of the free-valence-electron gas.
We note that the sum-rule parameters h~~ and E,
describe the magnitude and dispersion of e&(&0) at
high frequencies above the cutoff of the &2 spec-
trum. Thus, according to Sec. III, the Ms and M,
moments determine the high-frequency behavior of

On the other hand, at low frequencies, below
the bandgap, the magnitude and dispersion of &, ((d)

are determined by the M ~ and I 3 moments. Be-
cause different moments are involved, there is no

general connection between the high- and low-fre-
quency behavior of e&((d). A simple connection is
obtained, however, if we choose the specific model
&, spectrum given by Eq. (80). For this constant-
conductivity model the following expressions give
the three energy gaps of interest;

50 E -EE (51)

40—

30—

20—
E

IO—

Ge

4~ CONSTANT 0

3 4
(ev)

PENN
MODEL

We emphasize that Eqs. (50) and (51) are indepen-
dent of all the parameters of the constant-conduc-
tivity model (a, b, E,). Within the framework of this
model, then, the Hopfield gap E„as given by the
sum rule Eq. (44), provides the connection between
the Phillips parameters and the oscillator param-
eters Eo and E~. In Fig. 10 we show our model E&

spectrum for b = 2. 5 and indicate the positions of the
three energy gaps Eo, E~, and E„as well as the
plasma energy h(d~. The e, (&u) spectra at high and
low frequencies are shown by the dashed lines, and
the moments which determine these spectra are al-
so indicated in parentheses. From the moment ex-
pressions for the quantities in Eqs. (50) or (51), it
can be shown that

FIG. 9. Experimental &2 spectrum for Ge compared
with results of Penn and constant-conductivity models.
The energy gaps Eo and E~ are also indicated.

E„=M(/M s ——M, /M—s . (52)

Equation (52) holds for the constant-conductivity
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CA

X

K

CO

N

'4l

(V,P,)7)r

~(M ()
o g o

2

EIEt

(M),M~)y C((m) l~

4

FIG, 10. Schematic illustration of the high- and low-
frequency behavior of e& (dashed lines) compared with
the constant-conductivity model c2 spectrum (solid line).
The moments determining e& at high and low frequencies
are indicated in parentheses.

E, =37(n, &10 )/N, Z, eV, (53)

where n, is the volume density of anions, and we
have taken P = 0. 37 eV. It is not as yet clear, how-
ever, how Eq. (53) is contained within the Hopfield
sum rule expressed by Eq. (44), although the form
of Eq. (53) suggests that atomiclike nearest-neigh-
bor quantities are of major importance.

Shaw" has recently introduced a "dispersion en-
ergy" analogous to E„ into the Phillips-Van Vechten
description by defining the quantity

(E~) = (If(dp) /E~= M,—M ( . — (54)

For the constant-conductivity model, Eqs. (46) and
(48) then yield the relation

(E') = 192 (So) (b —1) /3b.

Comparison with Eq. (49) shows that

(E~/E~) =3b/(b + b+1)—1.

(55)

For a typical value of b=2. 5, E„'=1.14E~. Shaw
finds that both E„and E„' correlate in a simple way
with the Phillips ionicity f, = C 2/E ~, i. e. , the dis-

model but is not generally valid for Aslaksen's'
form of the e, spectrum given by Eq. (31).

Either Eq. (50) or (51) can be used to determine
experimental values of E, using known values of E,
or Av~ and Ep or Ey Because of the empirical rule
on E~ given by Eq. (20) and the proportionality be-
tween (h&o~) and the volume density of electrons,
Eq. (50) provides a simple expression for E„ i. e. ,

persion energies are approximately proportional to
(1 -f, ). According to Eqs. (49) and (55) this result
implies, as pointed out by Shaw, that

o cc(l, f,.), (56)

that is, the conductivity decreases continuously with

increasing ionicity. Thus far there do not appear to
be clear-cut experimental or theoretical arguments
that unambiguously support either the ionicity-re-
lated conductivity given by Eq. (56) or the two-val-
ued form given by Eqs. (39) and (40).

In terms of the average oscillator strength f(v)
and joint density of states p(v) Eqs. (20) and (36)
yield the relation

o ~fpo: PN, Z,N, , (57)
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independent of the volume density of electrons to
within +15%. To our knowledge, none of the existing
theories of optical properties explains the experi-
mental observations described by Eq. (57). In no
case do coordination number and valency enter in
such a simple way, and in no case does the volume
density of electrons fail to be an important quantity.
In existing theories, as well as in the Phillips-Van
Vechten model, the volume density enters naturally
via the f sum rule (M, moment). Only the M, and
M 3 moments determine E, so that the higher-energy
interband transitions that inQuence M& have little in-
fluence on E~ . However, within the confines of the
constant-conductivity model Eq. (52) relates E, to
the sum-rule moments M3 and M& . As a result,
the dispersion energy may depend upon the detailed
charge distribution within each unit cell via Eq. (44)
and, consequently, would then be closely related to
chemical bonding. The dependence on N, and Z,
suggests further that nearest-neighbor atomiclike
quantities are of major importance, and that an un-
derstanding of the electronic optical properties of
materials and their relationship to chemical bonding
may lie within a nearly localized orbital theory.
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Small electric-field-induced frequency shifts have been observed for resonant modes assoc-
iated with three defect systems. For NaI: Cl, the shifts have been used to measure the quar-
tic anharmonic terms of the interionic potential of the impurity ion. For KBr: Li', the quartic
anharmonic terms are found to be very small, and an harmonic potential which includes a cen-
tral barrier with the barrier height less than the zero-point energy of the oscillator is required
to explain the experimental results. For NaCl: Cu', only an "on-center" resonant-mode con-
figuration is consistent with the experimental results.

I. INTRODUCTION

The response of lattice resonant modes in alkali-
halide crystals to an external dc electric field is
a sensitive probe of the local impurity environment.
For a harmonic-oscillator resonant mode associ-
ated with an "on-center" defect, an applied electric
field shifts all energy levels by the same amount,
and no change in the far-infrared absorption fre-
quency is to be expected. For paraelectric im-
purities, whose far-infrared properties are strongly
modified by the tunneling motion of the "off-center"
impurity ion, giant electric field effects have been
observed. ' We have measured small electric-
field-induced frequency shifts associated with three
"on-center" defect systems: NaI: NaC1, KBr:LiBr,
and NaCl: CuCl. Because these experiments com-
plement previous far-infrared measurements in-
corporating other perturbations, ~' some definite
features of the anharmonic potentials which bind
these impurities can now be resolved.

Of the three lattice-defect systems, the largest

electric-field-induced frequency shifts have been
observed in NaI:Cl . The resonant-mode frequency
shifts have been used to determine the cubic sym-
metry of the defect site and to measure the quar-
tic anharmonic terms of the interionic potential of
the impurity ion. A preliminary description of
these findings has been given earlier.

The much smaller electric-field-induced shifts'
observed for KBr:Li' are signif icant in that they
eliminate the possibility that quartic anharmonic
terms play an important role in the local potential
of this defect. Both the small electric field shift
and the large isotope shift previously observed are
explained with an harmonic potential containing a
central barrier. The barrier is small compared
to the zero-point energy of the resonant mode,
hence the impurity still appears to occupy the nor-
mal equilibrium lattice site.

The null electric field effects observed for
NaC1: Cu' are consistent with an "on-center" res-
onant-mode configuration. For this case, the exact
shape of the potential has not been determined.


