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The one-dimensional molecular-crystal model of Holstein is utilized in a preliminary in-
vestigation of the effects of the dispersion of the longitudinal optical frequencies on the hopping
motion of small polarons. In particular, this work raises the question of whether the lattice
relaxes sufficiently rapidly after a small-polaron hop so that a subsequent hop of the excess
carrier may be considered independent of the initial hop. To this end, Holstein' s perturbative
approach is applied in calculating the probability of an initial small-polaron jump being fol-
lowed by another small-polaron hop at a time t later. Furthermore, the small-polaron drift
mobility is calculated assuming that the polaron's jump rate is only influenced by its immedi-
ately preceding hop. It is found that, for the circumstance in which the average time between
jumps is small compared with the relaxation time of the lattice, the activation energy charac-
terizing the small-polaron drift mobility is smaller than that found for completely independent
jumps. In fact, for appropriate choices of the physical parameters, the drift mobility may
display a very mild temperature dependence, decreasing with increasing temperature at suf-
ficiently high temperatures.

I. INTRODUCTION

It has been recognized for a long time that the
placing of a stationary excess carrier in a lattice
would in general polarize the neighboring region
about the carrier in such a way that a potential well
is produced about the carrier which tends to trap
it at its position in the lattice. In particular, if the
potential well associated with the carrier-induced
distortion is sufficiently deep that a bound state is
formed, the carrier will be unable to move unless
accompanied by its induced lattice deformation.
The unit comprising the carrier and its associated
lattice distortion is called a polaron. Furthermore,
in the situation in which the carrier is localized
about a given lattice site with a spatial extent of
the order of a lattice spacing, the polaron is re-
ferred to as a small polaron. '

At sufficiently low temperatures the motion of a
small polaron was shown to be describable in terms
of motion in a small-polaron band, the width of
which is a decreasing function of increasing tem-

perature. In addition, Holstein showed that above
a temperature which is characterized by the energy
uncertainty associated with the finite lifetime of a
carrier in a band state being of the order of the
width of the small-polaron band, it is no longer
appropriate to view the motion of the small polaron
in terms of the band picture. In this high-temper-
ature regime, the small polaron is pictured as es-
sentially localized, moving through the lattice via
a succession of thermally activated hops. The re-
mainder of this paper shall be concerned solely
with small-polaron motion in this hopping regime.

A number of theoretical papers have been con-
cerned with the hopping motion of small polarons.
These calculations have been carried out within
two complementar y approximation schemes. In
particular, in the perturbative approach developed
by Holstein it was assumed that the carrier re-
sponds sufficiently slowly to the vibrational motion
of the lattice so that it is not generally able to
"follow" the lattice motion. Within this approach
(a) the drift mobility was found to be thermally ac-
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tivated, a (b) the Hall mobility in a hexagonal lattice
was found to be thermally activated but with an ac-
tivation energy roughly one-third that associated
with the drift mobility, ' and (c) the Hall mobility
calculated for a square array (appropriate to cubic
crystals) although being "thermally activated" pos-
sesses a sufficiently strong temperature dependence
in the preexponential term (for reasonable choices
of the physical parameters) to obscure the activated
appearance of the Hall mobility. In the complemen-
tary limit, the adiabatic approximation, in which the
carrier is presumed to be able to adjust instanta-
neously to the vibrational motion, the drift mobility,
and Hall mobility in a hexagonal lattice, have been
calculated. ' In this theory it is found that the drift
mobility is also generally thermally activated while
the Hall mobility possesses a much milder temper-
ature dependence. In fact, in the adiabatic theory,
the calculated Hall mobility in the hopping regime
can be a decreasing function of temperature.

A basic assumption of all the prior studies of
small-polaron hopping motion is that each hop may
be treated as independent of the previous hops. In

other words, the theories ask the question: If one
places a small polaron on a site in the lattice, what
rates (magnetic field dependent and magnetic field
independent) characterize the motion of the small-
polaron to a neighboring site? However, in gener-
al, a better question to ask in considering the dif-
fusive small-polaron motion is: If the small po-
laron hops between two neighboring sites at time
zero, what is the probability of making another hop
at a time t later? If, in fact, there is no correla-
tion between successive small-polaron hops, then
both the above questions yield the same results.
It is the purpose of this paper to investigate the
effect of correlations between small-polaron hops
on the drift mobility.

Fundamental to our discussion is the notion that
each hop of a small polaron is associated with a
"coincidence event. " Explicitly, for a carrier to
hop, the local electronic energy level associated
with an occupied site must momentarily coincide
with the corresponding local electronic energy level
of a neighboring unoccupied site, 6 where the local
electronic energy levels are a function of the lat-
tice-vibration coordinates. Furthermore, the pre-
viously calculated ' drift-mobility activation en-
ergy ea is simply the minimum potential energy (in
excess of the polaron binding energy) required to
establish a two-site coincidence event. " Thus, if
a small-polaron hop is to be considered independent
of its previous hop, one might expect that the dis-
tortion associated with the first hop must relax, dis-
sipating the energy e~ to the remainder of the lattice,
in a much shorter time than the mean time between
small-polaron hops.

The relaxation of the lattice in the Holstein mod-

el ' is associated solely with the dispersion of op-
tical-vibration frequencies. In fact, this vibrational
dispersion plays another crucial role in Holstein's
nonadiabatic hopping theory. In particular, it is
assumed ' that sufficient vibrational dispersion
exists so that no correlation exists between the prob-
abilities for a hop associated with possible successive
coincidences at t = 0 and at f = n(2v/~0), n being
an integer and ~0 a typical longitudinal optical mode
frequency. In other words, one asserts that the
ca~~ier loses all memory of a coincidence in less
time that 2v/&uo. The relevant condition for this to
happen (in a lattice of two or more dimensions) is
given by

where &b is the half-width of the band of longitudi-
nal optical frequencies in the small-dispersion limit.
It is noted from (1) that this electronic corre-
lation effect is a quantum-mechanical effect, i. e. ,
that condition (1) is automatically satisfied in the
limit A-0. This work will not consider the above-
mentioned electronic correlation effect, but rather,
for simplicity, it will be concerned with the essen-
tially classical effects associated with the relaxa-
tion of the lattice from the highly distorted situa-
tion that characterizes a coincidence event.

The point of view taken here is that to begin to
understand the role of lattice-relaxation effects on
small-polaron hopping motion it is useful to in-
vestigate the simplest model which incorporates
these effects. Thus we consider the one-dimen-
sional molecular-crystal model introduced by Hol-
stein. ' In this model we assume that the carrier
has hopped from one site (n —1) to a neighboring
site (n) at time zero and ask for the probability
that a second hop occurs at a time t later. It is
readily apparent that for sufficiently short times
(f & a/+~) the probability of a return hop (to site
n —1) is greater than that for a hop to a new site
(to site n+I) sincesites n and n —1 willnothave
completely relaxed from the distorted configura-
tion they possessed at t = 0, while site n+1 will in
general not be substantially distorted. Further-
more, since at t =0 the occupied site n is generally
compressed from its equilibrium position, we ex-
pect the probability of a hop to site n+1 to be
greater than if both sites n and n+1 were near their
equilibrium positions. In addition we expect the
forward and return jump rates to be given by the
previous calculated single value only after the
energy associated with the initial distortions is
completely dissipated to the remainder of the lat-
tice.

It is important to realize that these relaxation
effects will be of little significance if the mean time
between hops is much greater than the times char-
acterizing the relaxation processes. Thus, in the
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limit of the electronic transfer integral J ap-
proaching zero or the optical phonon bandwidth 2'&
being arbitrarily large, the standard results are
obtained. However, when the relaxation times are
comparable to the hopping times, it will be demon-
strated that relaxation effects greatly affect the
magnitude and temperature dependence of the mo-
bility.

The calculations of this paper demonstrate that
for t & w/&u~ the return-jump rate is quite different
from the forward-jump rate, and that for t & v/&u,
both rates merge, ultimately reducing to their re-
laxed values for t » (2/me„)(2ez/xT) . Further-
more, the forward-jump rate is not a monotonically
decreasing function of time but increases with time
for t&co„';this feature is the net result of the re-
laxation of site n and excitation of site n+1.'

It is found that for reasonable choices of the
physical parameters, the relaxation effects may be
important since the average jump rate is often
comparable to 2m/v~. Furthermore, in such a
situation, the resulting drift mobility is larger
than that which results when these correlation ef-
fects are ignored. In addition, the temperature
dependence of the drift mobility may be rather
mild, even decreasing as a function of tempera-
ture at sufficiently high temperatures.

As a result of these preliminary considerations,
it is seen that a nonactivated drift mobility may
not in itself be interpreted as evidence of the ab-
sence of small-polaron hopping motion.

In Sec. II, we review the principal features of
Holstein's molecular-crystal model. In Sec. III,
the probability of a coincidence involving sites
n —1 and n occurring between time 0 and dto and a
coincidence involving sites n and n+1 occurring
between times t and t+dt (computed in the Appen-
dix ) is related to the rate R(t ) which characterizes
jumps from site n to site n + 1 as a function of the
time t. The time dependence of R(t) is included
in the function G(t ) which is calculated in Sec. IV.
It is shown that G(t) is a product of an oscillatory
function characterized by the vibrational frequency
(d 0 and a time-dependent amplitude characterized
by the time &u„'; for co,t» I the amplitude of G(t)
varies as (v~t) ' ~. Furthermore, at long times,
R(t) =mme' 'mt" ' "', co& beingthe uncorrelated jump
rate.

We proceed in Sec. V to calculate the rate char-
acterizing a return hop, that is, a hop from site
n to site n —1. In Sec. VI, the time-dependent
forward- and return-jump rates are related to the
time-averaged forward-jump rate and thereby to
the drift mobility via the Einstein relation.

We find it useful to eliminate the rapid varia-
tion of the time-dependent jump rates (character-
ized by the frequency +0) by averaging these rates
over the time interval 2&/&uo; thistaskisperformed

in Sec. VII.
Finally, the time-averaged jump rate is ob-

tained and the associated mobility is plotted in
Sec. VIII. The paper concludes with a discussion
of the calculation and significance of the results.
In particular in Sec. IX, a physical interpretation
of the results of this calculation is presented,
alongwith comments on the modification of the
results that are expected to arise from a study of
an analogous three-dimensional model.

II. REVIEW OF MOLECULAR-CRYSTAL MODEL

H = — grad r +—g. V(r —na x ),1'=
2m n

n

(4)

where m is the electron mass, a is a unit lattice
vector, and V(r —na, x„)is the potential energy of
the nth molecule. It is noted that this potential is
dependent on the internuclear separation of the nth
molecule, this feature being essentially the elec-
tron-lattice interaction.

The eigenfunction of the system whose Hamil-
tonian is Hl +0, is written as a linear superposi-
tion of local electronic wave functions, i.e. ,

+(r, . . .x„.. .) =pa„( ~ x„)P„(r,x„),
where

2——. grad r + V(r —na. ,x„)P„(r,x„)=E(x„)$„(r,x„);2m i

(6)

The molecular-crystal model is a theoretical
model which was introduced by Holstein' to study
the polaron problem. Explicitly, the lattice is
taken to be a linear chain of N identical diatomic
molecules whose orientations are fixed and whose
internuclear separations are allowed to vary. In
this model the optical mode vibrations are the har-
monic oscillations of the internuclear separations
of the diatomic molecules. The vibrational part of
the Hamiltonian is simply

2. i
2

H~—-Q ——.—+ 2M(vox„+2M(@ax„x„,q r ( )
2M g 9x„

where x„is the deviation of the internuclear sepa-
ration of the nth diatomic molecule from its equi-
librium value, M is the reduced mass of adiatomic
molecule, and +0 is the harmonic oscillator fre-
quency; the final terrri in the Hamiltonian couples
neighboring oscillators and gives rise to disper-
sion of the vibrational frequencies. In particular,
the dispersion relation gives the relationship be-
tween a normal mode wave vector and its associated
frequency,

co y
= 4) 0 + co g cosk2 2 2

where —m&A &m.
The electronic portion of the Hamiltonian is given

by
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E(x„)is the energy of an electron on an isolated
diatomic molecule. The coefficients a„arefound,
within the standard tight-binding approximations,
to be given by the solutions of the coupled equations

iif ~= [HI. + W„(.. .x„.. . )] a„—J (a„,,+a„,), (7)
M

where 8'„is the electronic energy associated with
the excess carrier being on site n, and J is an
electronic transfer integral which for simplicity
is taken to be independent of the x„'s. An addition-
al simplification introduced by Holstein and em-
ployed here is to take

W„=E(x„)= const -Ax„
where A is a constant.

For sufficiently small J the above set of equa-
tions may be solved perturbatively in powers of
J. In zeroth order a„is the vibrational wave func-
tion associated with a carrier at site n, the cor-
responding vibrational Hamiltonian being simply
ff, + W„(.. .x„.. . ).

Furthermore, at sufficiently high temperatures
the vibrational motion may be treated classically.
In this limit Holstein s occurrence-probability
approach' becomes valid for treating small-polaron
diffusion. This theory concludes that every time
there is a momentary equality of the electronic
energy level of the occupied site and its neighbor-
ing unoccupied site there is a finite probability of
the carrier hopping to the neighboring site. Such
an equality is termed a coincidence event and,
within our approximations, is characterized by
the equality x„=x„„.The probability that the car-
rier will avail itself of the opportunity to jump
from site n to n+ 1 given a coincidence between
these sites is simply

v„—v„,i I

where J is the electronic transfer integral appro-
priate to a coincidence event. Restricting our at-
tention to the regime of applicability of the above
formula, we find that the probability of the hop
1 2 occurring between time zero and dt„and the

hop 2 3 occurring between times t and t+ dt, is
Pqz, zz(t)dtodt, where

d5] p d5»

(10)&P(v&z& vzz& f) &

J m 1
&ztzz( ) gA [1 ( /2 )z]&~z

p(v, z, vzz, f) dv, z dvz, dt z dt being the probability of

(a) a coincidence between sites 1 and 2 occurring
between time zero and time Ct 0 with a relative vi-
brational velocity lying between v» and v»+ dv»,
and (b) a coincidence between sites 2 and 3 oc-
curring between times tand t+ dt with a relative
vibrational velocity lying between v» and e»+ dv23,.
here, as in the previously cited works, we adopt
the convention of writing e» as v», etc. The
task of calculating P(v, z, vzz, f) is carried out in
the Appendix of this paper. Inserting the final re-
sult of this occurrence -probability calculation,
Eq. (A24), into (10) and carrying out the indicated
velocity integrations, we find

r
12, zz(

)zA A g (1 + sz/4Azgz)1/2(1 +gz/4+zA2)1/2

sex - " — (11)
2Az 1+a /4AzAz

where the previously undefined entities appearing
above are defined in Eqs. (A16-A21) and Eqs.
(A25). Furthermore, we may utilize the definitions
(A25) to show that

where e„and v„„are,respectively, the velocities
associated with the internuclear separations of
sites n and n+ 1 evaluated at the time of coinci-
dence. '

III. NONADIABATIC FORWARD-JUMP RATE A(t)

262 1
kT 1 —c/2c, )

where it has been noted that

cg 2 1 A 2&~, (1 —cosh) = ——,
2c& KT N

&
4M~& KT '

(12)

(13)

Let us now proceed to calculate the probability
per unit time of a hop from site 1 to site 2 being
followed by a hop from site 2 to site 3 ai a later
time t. Our approach is to note that associated
with every coincidence event between initially oc-
cupied and unoccupied sites is a finite probability
of a jump of the carrier from the occupied to un-
occupied site. In the perturbative theory of Hol-
stein the probability of a jump from site p to site
p+ 1 during a coincidence between these two sites,
characterized by the relative vibrational velocity
v~, ~,&—= v~ —v&,&, is given by (cf. Sec. l. )

W, (P-P+1) =2~v'/nX~ v, ,„~, (9

(14)

1/2 2J m

8 4~Te

e~ being the two-site activation energy introduced
by Holstein. At this point it is noted that as the
time between the two coincidence events becomes
arbitrarily large, i. e. , t-~, the coincidence
events become uncorrelated and Pgz zz (~) should
become the square of the uncorrelated jump rate

J2 1/2

This, in fact, is easily verified by noting from
(A21) that as f- ~, we have c-0, yielding the ex-
pected result
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where it has been noted that c2=4KT&2.
It is now useful to define the jump rate for the

second jump to be

R(t)-=P12,22(t)/~2 n2E(t)i

where the time t is the time after the first hop,
and E(t), henceforth designated as the enhance-
ment factor, is defined as

1 2&2 G(t )
( [I G 2(t)]1/2 P T I G(t)

where

0, 50

0.40

Att} 0.30

0. 20

0.10—

0.00
0

I

15
I

25 30

—c ~ 1
G(t) = = —Z -~. (1 —cosk) cosk cos~,

2c2

(1 —cosk), (18)

c02 = ((82+ (01 cosk)2 2 1/2

—QP0+ (g)p cosk ~ (19)

where &o2= &u1/2u&0; the optical bandwidth is 2&v, .
To lowest order in ~, /ro2 we may write

G(t) depending only on the frequency spectrum and
the time t. It is now our task to calculate G(t).

IV. CALCULATION OF G(t)

To begin, let us assume that the width of the
band of optical frequencies is sufficiently small
compared to a typical optical frequency so that we

may write

W'e find, performing the standard trigonometric in-
tegrals, that

F„(t)= 2[J2(u1, t-) -z2((u„t)],

F.„,(t) = Z, (~,t) .

(24)

(25)

Thus G(t) is a sum of two terms oscillating with

a frequency ~0, the coefficients of which are rela-
tively slowly varying functions of time character-
ized by the time (db . At this point it is useful to
rewrite G(t) as

FIG. 1. Relaxation amplitude appropriate to a forward
hop &(t) defined in Eqs. (24)-(26), plotted as a function
of t in units of co ~ . It is significant that for short times
&(t) increases with time. 7he arrows denote points at
which the first derivative of &(t) with respect to time
vanishes. Where the wiggles in the curve were extremely
small they were smoothed over.

1
G(t) = —1 dk -~ (1 —cosk) cosk cos1u„t

p COy

G(t ) = A cos(1d 2t —y),
where

(26)

dk -2 (1 —cosk)
0

1
dk(1 —cosk) cosk

7t p

x cos[((d2+ &d2cosk)t] i

where, in the first line the sum over k is replaced
by an integral and, in the second line, &~ is ap-
proximated by &p. Rewriting the final cosine
term we have

G(t) = F„(t)cos&u2t+ F,„,(t) sin1u2t, (21)
I'

E„(t) = —— dk(l —cosk) cosk cos[(&o,t)cosk], (22)

1
E,„,(t }=- — dk(1 —cosk) cosk sin[(u12t) cosk] . (22)

0

The above integrals may now be evaluated in terms
of Bessel functions by utilizing the identities"

cos(8cosk) = J2(8)+2+(-I)"J2„(8)cos(2nk),
n=&

A=- ([F,„(t)']+ [F,„,(t )]'P',
cosp =F„(t)/A, sing = F,„,(t)/A;

(2"1}

(28)

A(t) and Q(t) are functions of time. A(t} is
plotted vs &„tin Fig. 1. At 'long" times,
u1, t & 2, A (t ) =

(2/vied,

t )"'.
A discussion of the physical significance of G(t)

zs deferred to Sec. IX.

V. RETURN-JUMP RATE R~(t)

In this section we summarize the procedure that
is involved in obtaining R„(t),the probability per
unit time of a carrier returning to site 1 after
having jumped from site 1 to site 2 at t = 0. The
calculation proceeds in an analogous fashion to
that utilized in finding R(t). In particular we
find that P(F12, 212» t) is given by E11. (A24) with
the constants a, b, and c replaced by

a =—Q G» G2 sine&2t
KT 12 21

~+a

sin(8 cosk) = 2Q (-1)"Z2„,1(8) cos[(2n+ 1)k] .
n=p

1 2KT
(1 —cosk) sin+2t,

N & Mw&
(29)
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1 2KT
(1 —cosk) cosset,

KT gg pyc = Q p Gs, Gs, cosssss, f

(30)

G„(t) = A„cos(~at —sts„), (37)

behavior of the system for t » +~' manifests the
effects of the repeated transfer of vibrational en-
ergy between sites as the energy required to pro-
duce the first hop "diffuses" away from the vicinity
of the initial hop.

Finally we write

1 2KT
(1 —cosk) cosa&s, t .

N k M~„ (31)

Proceeding as in Sec. III, we find that the enhance-
ment factor associated with return hop is given by

where

A„-=([E",„(t)]'+[E."„,(f )]')' ',
cosslss„=F"„(t)/A„, sinsts„=F,"„,(t )/A„,

(3S)

(39)

where

1 2e, G„(t)
[I-G„'(t)]"' P ~7 1+G„(t)

1
G„(&)= Z ~ (I —cosk) cso~„t

k (dk

r. (&) !s —Doss). (33)

p„and A„being functions of time characterized
by the time ~s,'. A„(t)is plotted vs»t in Fig. 2. '
It is noted that for &u, t -. 3, A„(t)™-(2/@&us, t)', co-
inciding with A(t). The relationship of G(t) and

G„(t) to the carrier-induced distortion of the lattice
is one of the topics which is considered in Sec. IX;
until then we shall focus attention on only the math-

ematical properties of these functions.

In evaluating the above expression for G„(f)it is
assumed that the band of vibrational frequencies
is sufficiently narrow so that we may write
&k= &0+ &„cosk. We find that by writing

G„(t)= Es„(t) cossssot + F",„,(t) sin~of,

we have, to lowest order in v, /QJO,

F"„(t)= Jo((u, t),
E,'„s(f ) = Zs (sd, t ) .

(34)

(35)

(36)

At this point it is noted that the amplitude for the
"out-of-phase" term sin~ot is identical in both
the forward- and return-hop calculations, "i. e. ,
E."„s(f)=E,„,(t). It is also noted that at sufficiently
long times (times for which the Bessel functions
may be replaced by their asymptotic values
t» &u, '), J,(e, t) approaches —J,(sd, t) and hence
Es"(t) approaches F„(t).

To qualitatively understand the significance of
these features we view the out-of-phase contribu-
tions to G(t) and G„(t)as both being associated
with the transfer of energy to the sites involved
in the coincidence, ' sites 2 and 3 and sites 2 and 1,
respectively. Since at t = 0 in both situations each
of the sites involved, i.e. , site 1, 2, or 3, has
one distorted neighbor and one undistorted neighbor,
the transfer of energy to these sites is expected
to be equivalent. The in-phase contributions are
dependent on the initial distortion of the sites in-
volved in the second hop, and therefore are quite
different in the two calculations; at I;=0, sites 1
and 2 are distorted, while site 3 is generally not
substantially deformed. The fact that the in-phase
contributions to G(t) and G„(t)approach equality
for t & m/+, demonstrates that a time-ss/sd, is re-
quired for the "initial" distortion to relax. The

VI. AVERAGE HOPPING RATE

Since we have derived the rates at which a small
polaron, having made an initial hop at t=0, makes
a second hop or a return hop R(t) and R,(t), re-
spectively, we will now discuss the method by
which we may relate these rates to zo, the average
hopping rate. It is zv that is related to the dif-
fusion constant

D=a ge, (40)

a being the lattice spacing.
To begin let us note that having jumped from

site 1 to site 2 at 1= 0, the carrier may either re-
turn to site 1 or hop to site 3 with the respective

1.0

0. 9

0. 8

0. 7

0.6

A (tl 05

0.4

0. 3

0. 2—

01—
Q Q s s s s I s s s s I s s s s I

0 5 10 15

~bt

FIG. 2. Return-hop relaxation amplitude &„(t),de-
fined in Eqs. (35), (36), and (38), plotted as a function
of t in units of &&'. The arrows denote the critical points
of the curve, some of which are not shown because they
are associated with extremely small wiggles in the curve.
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rates R„(t)and R(t). It is now useful to write
down the survival probability" S (t); that is, the
probability that the carrier will not have jumped
from site 2 at a time t:

S(t) =exp(- 1 [R(t')+R„(t')]Mt'] . (41)

The probability that the carrier remains on site
2 until time t and then jumps to site 3 in the time
interval between t and t+dt is then

P(t )dt = S(t )R(t )dt . (42)

We note that the fact that R„(t)and R(t) are not,
in general, equal has an obvious effect on the car-
rier transport. In particular, if R„(t)»R(t) the
carrier, after having jumped from site 2 to site
3, would tend to jump back and forth between sites
2 and 3 rather than move to another site. Clearly
this would reduce the net charge transport.

The fraction of hops from site 3 which is as-
sociated with the enhanced return-jump rate is

where

f =JS(t)&R-(t) dt, (43)

~R(t)=R„(t)-R(t). (44)

00

P(t)R(t) dt
+ o

P(t) dt . (45)

In the traditional situation where the jump rates
R(t) and R„(t) are equal and constant in time, i. e. ,
R„(t)=R(t) = wo, we find the usual result

K= Kp.

We may now rewrite zo as

u = t dre "[R[t(r)]e1+f go

Since after a hop there is a probability f that the
carrier will, as a result of the enhanced return
rate, be returned to its initial site, the probability
of a hop resulting in the net transfer of the carrier
is thus reduced by the factor

(1 —f+f' —f'+ ) =1/(1+f).
If the probability of an immediate return is very
great, i. e. , f- 1, we see that having achieved the
initial coincidence the carrier will jump back and
forth between the initial and final sites ultimately
effecting a forward hop in one-half of these in-
stances'o; in this circumstance (1+f)

' approaches
Thus we may finally write

-r(e-g(t(r) 3) (46)

Let us now consider the time dependence of the
jump rates R(t) and R„(t). To begin, let us re-
call that the time dependence of both these rates
is contained in the respective functions G(t) and
G„(t). As is evident from Eqs. (26) and (37) and
the associated comments, over a time interval- ~p' both of these functions may be regarded as
essentially simple oscillatory functions of time,
characterized by the angular frequency +p. In
particular, since the amplitudes and phases of
these oscillatory functions are comparatively
slowly varying, characterized by the time
&,'» &p', it is appropriate to treat them as con-
stants over a time interval - (a)p, Thus, in con-
sidering the average value of R(t) over the time
interval [ t - / 7((oto+ v/(do] —this average being
denoted by (R(t )) —we treat the amplitude and
phase angle A(t) and (t)(t ) as constants,

where

r= r(t)-=2 J R(t') dt', (47)

g(t)= j [R„(t')-R(t')]dt'. (48)

It is this formula for se that will be the object of
our subsequent attention.

At this point we may in principle calculate u by
simply inserting the expressions for R(t) and R„(t)
into formulas (41) and (45). However, due to the
complexity of the functions involved, this is a very
formidable task. A major complicating feature of
R(t) and R„(t)is that their time dependences re-
flect not only the relaxation of the lattice but the
relatively rapid oscillatory motion of the lattice.
Hence, in order to simplify the calculation of the
integrals involved in calculating m, we proceed
to obtain relatively simple functions which describe
only the effect of the lattice relaxation on the
jump rate. In particular, in Sec. VII we average
the rates R(t) and R„(t)over the vibrational period
2w/(oo (the time dependence of these averaged rates
is illustrated in Figs. 3 and 4). Finally, these
averaged rates form the basis of the approximate
evaluation of w which is carried out in Sec. VIII.
Thus, the following two sections of this paper are
strictly detailed computations. However, the
salient features of the results of these sections
are reviewed and discussed in Sec. IX.

VII. TIME-DEPENDENT JUMP RATES

t +It']t 41p 2e, A(t') cos[(dot' y(t') ]
'2w, .„'[) ' AO[)s' s—s((t')]]"-' r AO') )[ y' s—o(sOts')])

&o "'dt, 1 2e, A (t ) cos[(oot' —(t) (t )1
'2o,„„(I-A'(t) cos[(dot' —(t)(t)])"' p r&T 1+A(t) cos[(oot' -(t (t)] /~
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1 1 2q2 A cosx
'2w, (1-4'cos'x)"' zT 1+kcosx )' (49)

where, in introducing the integration variable
x= (dpf P(t) cognizance has been taken of the fact
that since the integration extends over an entire
period of the oscillatory function, the choice of a
constant phase angle has no effect on the integral
and hence may be ignored. In addition, we may
now utilize the evenness of the cosine function to
write

1 1
(R(t)& = wa — dx. l Aa a ua(1-A cos x

2&2 A cosx
x exp - tcT 1+A cosx

(50)

1 1
d6) (1+A' —2A cos8)"

At this point we may simplify the above integral by
transforming to a new variable 8 where

8—= cos '[(A+ cosx)/(1+A cosx)].

After some algebra we obtain

2

(Rp)) =u, exp(-

I

At this point we compare the relative ~ variation
of the exponential term,

2&2 A 2~2—ln exp

We see that the 8 variation of the exponential term
is much more rapid provided that

2&2 1 -A
zT (1+A' —2A cos8) (53)

Since we shall take 2&a/zT» 1 and (as is evident
from Fig. 1) A & 0. 6, we see that this condition is
fulfilled. Thus we may approximate the integral
in Eq. (52) by taking the nonexponentia, l portion of
the integrand to be a constant equal to its value
when the integrand is a maximum. This procedure
yields

2e A I [(2e /xT)A/(1-A )]
1 —A

with the relative 0 variation of the remaining term
in the integrand,

d 1 A sin8
d8 (1+A' —2A cos8)va

~

1+A'-2A cos8

5

I
I
I

-I
I
I
I

4 I
I
I

I
I
I
I
I

(Ot]) 3

1
0 15

lalbI

2&2 A
x exp 1,cos~zT 1-A

30

(52)
(54)

where Ip(z) is the zeroth-order modified Bessel
function. '7 Furthermore, noting that Ip(z) may be
written as e'g(z) where g(z) is a decreasing function
of z which has the properties that for z «1, g(z)
= 1 —z + -,

' z a, and for z» 1, g(z ) = (2') '~, we have

2ea A g [(2&a /z T)A/(1 -A')]
xT 1+A 1-A

(55)

We now recall that the validity of the approxima-
tion scheme used above hinged on A not being suf-
ficiently close to unity so that the right-hand side
of (53) is much greater than unity. While this con-
dition is satisfied in the calculation of (R(t)), the

analogous condition which arises if one attempts to
apply this scheme to the calculation of (R„(f))is not
satisfied since A„(t)tends to unity as t- 0. Hence
we now present an alternative evaluation of (R(t))
and (R„(t))which is valid for sufficiently short
times.

Explicitly, we note that at sufficiently short times
such that

Fig. 3. Enhancement factors associated with a forward
hop (&(t))/u» (solid line) and with a return hop (B„(t))/F2
(dashed line) derived from Eqs. (55) and (59), respectively
plotted as a function of time, in units of ~~, for E2=2. 5
&T. Where only one curve is shown the two curves are
effectively superimposed on one another.

2e, A(t)
zT 1-A'(I)

the chief contribution to the integral of Eq. (52)
comes from the immediate vicinity of 6) = 0. Thus
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it is appropriate to replace cos8 by 1 ——,'8 in the
integral and write

(R(t)) = w, exp
2~,

1 ) exp[-(~, /~T)A/(I -A')e']
1 Aa +A g2 1/2

0

Performing the integration we find

(R(t))= w, exp
2&, A

(56)

isa( 1+A ~
&(2-

x . 4vea/vT ~A(1-A))

As expected, this result is identical with that ob-
tained from Eq. (55) in the limit where g(z) may
be replaced by (2vz) ", i.e. , at sufficiently short
times.

Applying formula (57) to the calculation of

(R„(t))and utilizing the result that for ~, t «2v, A„(t)
= 1 ——,

' (&,t)2, we have that for short times ru, t «2v

1 e2 1-A e, 1-A
2vWA o 2zT 1+A 2&T 1+A

(57)
where Ko(z) is a modified zeroth-order Bessel func-
tion. It may be noted that in the limit in which the
argument of the Bessel function is large compared
with unity we may write

(R(t)) =w, exp
2c, A

w = J dr e R(t(~))

Thus we shall now proceed to calculate R(t(x)).
To begin we write, without loss of generality,

R(f(~)) -=(R(t)) = Fe'"';-

(60)

(61)

then we note [using Eq. (47)] that

dR dR dR dR 1 d2R=- —y(t) .
dt dt dt 2 dt

(62)

At this point we approximate R(t) by replacing R(t)
with(R(t)) and writing

F =R(0) and E'(i)=C ' ~,t for ur, t & 2,2&2 (63)

1&2

and Y(t) = ' — (d+ ~,t) "'
KT 77

for ~,t & 2, (64)

where d and C are simply numerical factors (C

pendence of R(t) and R„(t),this is, in general, a
formidable task. Furthermore, since the point of
view taken in pursuing this study is to elucidate the
essential physical effects of the herein described
lattice-relaxation processes rather than to perform
a detailed calculation which would be strictly ap-
plicable to a specific material, it is appropriate to
direct our attention to an approximate evaluation
of K.

To begin, for simplicity, let us ignore the effects
associated with the feature that for short times
t «&, we have(R„(t))»(R(t)), and take R„(t)=R(t).
In this situation we have

(R„(&)) = wp exp ~~ ( I —s ~,'t')

& ~asx I+~6~~t ~ ~2 (~ t)2
2'll 32K T

14—

13—

12—

x exp

In Figs. 3 and 4, (E(t)) =(R(t))/wa is plotted vs
&,t for ez/~T = 2. 5 and ez/~T= 5, respectively
The interesting characteristics of these curves are
that they rise to a peak at t v/&u, and that they ap-
proach unity very slowly; that is, (R(t) ) - w~ when
(2&3/zT)A =

(2ez /vT)(2/v&u~t)' 2 ~ l. The dashed
curve of Fig. 3 is a plot of (E„(t))=(R„(t))/w2. It
is noted that as t 0, (E„(t))~ —Int, whileforur~t & v

it merges with the (E(t)) curve. These curves il-
lustrate the general features of the enhancement
factors (E(t)) and (E„(t)).

VIII. APPROXIMATE EVALUATION OF N

At this point we shall proceed to calculate the
average jump rate I). As is clear from the formula
for w [Eq. (46)] and the discussion of the time de-

(EI&) s-

I

25 305 10 15 20

lal bt

FIG. 4. Forward-hop enhancement factor (R(t) )'/zo2

associated with Eq. (55) plotted vs time, measured in
units of the longitudinal optical band half-width, for
62 = 5KT.
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- 0.02). It should be noted that as t - ~ the above
expression for R(t) becomes exact. Inserting these
expressions for Y(t) into Eq. (62) we find that

10

dA j. 2&
for &t+ 2r (66)

dR 1 2q, 2
( —~ ) (d+ (a&yt) M4

= -Aw2Y' = -Awz In (R/w~) for v, t & 2,

where

A = is& (AT/~2)'(~, /w, ) .

(66)

N lh
E I

Ch

-2
10

We now solve the above differential equations to
find R(r) Th. e first of these equations is readily
solved yielding

10

R(r) =R(0)(1+B4), r &x = x(t= 2(d„-')

where

B=C(e,/~T)[~, /R(0)],

R(O) = (Z'/~, e) ~3 e '~""'.

(6V)

(68)

(68)

e|T

FIG. 5. The top drift mobility vs 0/T curve, where
8 = 5' (dp/if:, is the result of the present calculation. Be-
low it lies the steeper mobility curve found by Holstein,
i.e. , ignoring lattice-relaxation effects. Both curves
are plotted for &=8'~0 =

5 e2. In the top curve the optical
band half-width cu& is taken to be fg (d p.

The second of the differential equations is also
readily solved by direct integration. However,
such a procedure yields r(R) rather than the inverse
function R(r), i. e. , R(r) is obtained implicitly rather
than explicitly. An alternative procedure which be-
comes exact in the limit of long times (4 - ~ and
R/w~-1) is to replace Eq. (66) by

w = R (0) ][1—e "o) + B[1—e "0 (1 + ~o)]j

jg"')
(V4)

d(R/w, ) A (R/ 1),
Ch

(Vo) where

4R(0) 4ceglsT
~ (V2)

Inserting expressions (6V) and (Vl) into Eq. (60)
we find

w = R(0) j d4'e (I+B4')+ wz J dhe

(Vs)
(w2+ 2A [R(4 0) —w, ]'(r —4,)j"'

Performing the indicated integrations, we find

where, as is appropriate at long times, we have
expanded the logarithm about unity. This approach
overestimates the rate of decline of R/w2 with r
and hence leads to an underestimate of R(r). How-
ever, it yields the correct dependence of R on r
as r approaches infinity. Hence, adopting this ap-
proximation we find

w2[R(~0) —w2)

]w'+2A[R(r ) —w )'(r r)j' '-
(V1)

Finally, an explicit expression for ~0 is given by

I (x) -=e" J dz e '

and I (0) = —,
' v", I(x- ~) = 1/2x- 0. The first term

of Eq. (V4) results from the short-time (~,t & 2)
enhancement effects, while the second term con-
tains the contribution to tv from longer times. In
the limit of arbitrarily large vibrational dispersion
(~,- ~), arbitrarily small d(w2- 0), or arbitrarily
low temperatures, the first term vanishes and the
second yields Holstein's result w= wz. (Explicitly,
in this limit 4"o 0, A- ~, -and r, B-O. ) However,
choosing a modest amount of vibrational dispersion
(~„=,—', &oo) we find that for the representative choice
of the physical parameters originally chosen by
Holstein (namely, J = k~o=-, 4:2) the first term domin-
ates except at very low temperatures. In Fig. 5
the resulting mobility (related to D via the Einstein
relation) is plotted along with that obtained with
u = w&, the increased magnitude and milder tem-
perature dependence of the present result is
stressed. Furthermore, it should be noted that
although the inclusion of the fact that for short
times R„(t)& R(t) would increase the influence of
the short-time behavior of R(t) on w, it does not
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qualitatively alter our results.

IX. DISCUSSION

This work constitutes an exploratory study into
the classical effects of finite vibrational dispersion
on small-polaron hopping motion. Specifically,
Holstein's one-dimensional molecular -crystal model,
concerned with an excess carrier in a linear chain
of coupled diatomic molecules, has been investi-
gated. While prior considerations '7 of the role of
the intermolecular coupling in Holstein's model
(associated with the dispersion of the optical mode
frequencies) have been solely concerned with cor-
relation between a carrier's response to successive
coincidences between the occupied site and a neigh-
boring site, the present work has focused attention
on the correlations in space and time of coincidence
events themselves. In particular, it is found that
at a. time after an initial coincidence that is less
than that associated with the relaxation of the con-
comitant distortion, the rates characterizing the
occurrence of another coincidence involving one or
both of the initially coincident sites are generally
quite different from the uncorrelated occurrence
rate for a coincidence. Furthermore, the cor-
responding carrier-jump rates also differ con-
siderably from the single-jump rate found from
Holstein's uncorrelated diffusion theory, all rates
reducing to the uncorrelated rate at times much
greater than the relaxation time; 7 „„„=-(2e p/vT)P
x (2/mob). In addition it is found that, in the narrow-
band limit, the time-dependent jump rates are
characterized by the two vibration-related times:
2w/&p and 2p/~b. The first of these times, the
vibrational period, arises simply because the vi-
brationalstate of the system will, in the absence of
dispersion, repeat its configuration with the char-
acteristic vibrational frequency. Hence in studying
the relaxation phenomena it is useful (but not neces-
sary) to average the jump rates over a vibrational
period and study the averaged rates (R(t)) and

(R„(t)),these averaged rates possessing time de-
pendences which are associated only with theparam-
eters &„vT,and ep. While (R„(t))falls monotoni-
cally from a maximum value at the time charac-
terizing the first chance of a return hop, t = 2v/&up,

the forward rate (R(t)) does not behave so simply.
For short times «&&b, (R(t)) is characterized

by an activation energywhich is one-third the activa-
tion energy associated with a hop in a relaxed lat-
tice. This feature may be understood by noting
that for such times the initial distortion has relaxed
very little and thus the activation energy character-
izing the producing of the additional coincidence
required for the forward hop is simply the difference
between the activation energies associated with
creating a three-site coincidence and a tw'o-site
coincidence:

(2e,/~7')(2/w ~bt)'" « I. (76)

Hence it is appropriate to define the relaxation
time 7„„„by

-=(2/w~b)(2ep/yT) (77)

In order to understand the origin of condition
(76) it should be first noted that one expects the
effects of a residual distortion to be significant
only when the difference between the activation
energies required for a two-site coincidence with
and without the residual distortion is greater than
the energy associated with a thermally produced
distortion. Furthermore, recalling that the two-
site activation energy is the minimum potential
energy, in excess of the small-polaron binding
energy, which is required to produce the two-site-
coincidence configuration, one may generally write
(ignoring dispersion in this formula for simplicity)
that, at a time t after an initial coincidence, the
two-site activation energy E& characterizing a sub-
sequent coincidence is

@A 4 M+0 (+a +b) (76)

where x, and x& are the time-dependent residual
disylacements of the two relevant diatomic mole-
cules. ' In particular, taking site a to be the
occupied site, one obtains Holstein's result'when
the residual distortions are neglected; that is,
when x, =A/Mvp and x, =O, E~=A /4M~p -=ep.
Thus, if one writes x, —=A/M +p+ du, and xb= ~b,

q p
—cp —A /$~(Op -A /4M(ggp —

p
c p.

An interesting aspect of the time dependence of
(R(t) ) is its increase with increasing time, with
its maximum value occurring at t = 2/eb. This
phenomenon arises as a result of the fact that as
the initially distorted sites relax, the neighboring
sites receive energy from the initially distorted
sites and become somewhat distorted themselves.
The net result is that the additional vibrational
energy required to form a coincidence decreases
with time until the energy propagates away from
the region of the initial coincidence, at t- 2/&ub.

Actually a complete discussion of this property of
(R(t) )involves the detailed consideration of the
relative phases of the oscillations at the initially
distorted site and the relevant unoccupied neighbor.
The classical calculation of the vibrational motion
of the lattice for t & v/&ub is carried out in a forth-
coming paper by the present authors; it includes a
detailed consideration of the relative-phase issue,
and hence the question will not be discussed here.

For t & 2m(ub the rates (R(t)) and (R„(t)) merge
and decline with time, achieving the time-indeyendent
value re~ for t» 7„~,„.The denoting of a time as
the relaxation time results from the situation that
(R(t)) and (R„(t))reach the single value bop when
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where 4x, and 4x& are the residual distortions of
sites a and b at time t, then the difference in acti-
vation energies between the relaxed and unrelaxed
situations (at sufficiently long times such that
I«, l, l«, i «A/M(@02) is

az„=2&2,(m&/A) (n,x. —«, )
I

. (79)

In order to evaluate the time dependence of
(», —n, x„)let us view the localized distortion as-
sociated with the initial coincidence at f, = 0 as being
composed of a linear superposition of the optical
mode states. Assuming the vibrational-dispersion
relation (19), it then follows that at sufficiently
long times , t & 27t, the amp/ifude of the relative
distortion of the adjacent sites a and b («, —«, )
decreases with time as

of the sites involved in a forward and return hop
are given by

x,(f) x, (-f) = «( )[1-A(t)],

x,(t) —x, (t) = «(~) [1 -A„(t)],
(86)

(86)

respectively. It is therefore evident that the
quantities A(t) and A„(t)which appear in the ex-
pressions for the jump rates found in Sec. VII are
physical quantities related to the residual distortion
of the lattice following a coincidence event.

At this point it is useful to stress that in situations
where the jump rate is greater than &u, /v the activa-
tion energy characterizing the drift mobility is es-
sentially -3&~ rather than e2. Thus, while the
small-polaron condition '

I
».—«&I = (A/m~', )(2/v~, t)U", (so)

J «A /1V ~', = 4e, (s7)

corresponding to the decline of the center of the
wave packet which describes the initial distortion
this result hold regardless of whether site b is
taken to be the previously occupied neighboring site
or the previously unoccupied neighboring site.
Thus, upon combining Eq. (80) with (79), we find
that

n.E„=2e, (2/v ~,f)"' (81)

x.(f) -x,(t) = «( )[1-G(t)],
where G(t) is defined by Eq. (18) and

«(~) =- —Z 2 (1 —cosk).
1 A

M ~~2

(82)

(83)

Furthermore, if site b is taken to be the site that
is involved in the initial coincidence, we find that

x.(t) -x,(t) = «(-)[1-G„(f)], (84)

G„(t)having been defined in Eq. (33). Thus the
functions G(t) and G„(t)are simply related to the
"time-dependent" relative displacements x, (t) —g(t).
Let us now recall [from Eqs. (26) and (37)] that
A(t) and A„(t)are the time-dependent amplitudes of
the oscillatory functions G(t) and G„(t), respectively.
Thus we observe that (in the narrow-band limit
~,/~0- 0) the minima of the relative displacements

Finally, imposing the relaxation condition AEA

«kT, we obtain inequality (76) for both forward
and return hops.

A physical interpretation of the quantities G(t),
G„(t),A(t), and A„(t), heretofore treated only as
mathematical entities, arises readily from the above-
mentioned wave packet analysis. In particular, if
one assumes that a coincidence event, requiring
the minimum coincidence energy & occurs between
the occupied site (site a) and a neighboring site
at t=0, it can be shown that the relative displace-
ment between site a and the "forward" site (site
b) is

7„„„=(6/m(u, )(2e,/~T)"', (90)

and the condition for the validity of the nonadiabatic
theory '

J '& (e,x T/v)'"(8 (u,/v ) (88)

generally set a lower limit on e~, the activation
energy way be sufficiently small compared with
vT so that the drift mobility may not manifest a
simple exponential dependence on reciprocal tem-
perature. Such a situation is illustrated in Fig.
5.

It is now appropriate to investigate the relation-
ship of the model studied here to the situation
existing in a real crystal. A major question which
immediately arises is that of the relationship of
our one-dimensional model to a similar three-
dimensional model. In discussing this question let
us recall that the enhancement effect at short times
t & &,'is due to the circumstance that the occupied
site is substantially distorted from its equilibrium
configuration as a result of the preceding hop. As
this effect is not related to the crystal structure
it may be anticipated that this feature will not be
affected by going to a three-dimensional model.
However, since the rise with time of (R(t)) to a
peak at f 2/&u, is associated with the transfer of
energy from the initially distorted sites to sites
adjacent to them, it is expected that this effect will
be somewhat reduced in a three-dimensional lat-
tice because of the increased number of neighbors.
Finally, we may modify our estimate of v„y to
take into account the fact that the relaxation of the
distortion is associated with the decrease of the
central peak of a three-dimensional wave packet
rather than a one-dimensional wave packet. These
considerations yield, at long times ~,t» 1,

I
«.- «» I

=(A/M~', )(»&3/v~, t)'" . (89)

The concomitant estimate of the relaxation time
being
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this time is usually somewhat shorter than that
char acteri zing our one -dimensional model. Thus,
we conclude that while the relaxation in a three-
dimensional model may occur more rapidly than
that of this initial one-dimensional investigation,
the result that the drift mobility associated with
a hopping time of the order of &,' may not mani-
fest a clear activation-type temperature dependence
is essentially unaffected by going to a three-di-
mensional model.

It should also be noted that for crystals which
possess a sufficiently anisotropic optical phonon
dispersion curve &(k) and a, similarly anisotropic
mobility, the results of a one-dimensional calcu-
lation may find direct applicability.

In the present work our considerations have been
based on the tacit assumption that one need only
consider the effect of a small-polaron hop on the
rate characterizing the immediately succeeding
hop. In other words, hops of the small polaron
other than the jump of the small polaron imme-
diately previous to the hop being considered are
taken to have no influence on the small polaron's
motion. This ansatz is based on the genex ally
increasing temporal and spatial separation be-
tween R hop and its nth predecessor as n increases.
Although this assumption has not been studied in
detail, it is felt to be a reasonable one for an ini-
tial study of correlation effects between small-
polaron hops.

As stated earlier we have ignored the resultv
that in the absence of sufficient vibrational dis-
persion, as defined by Eq. (1), the probability of
a hop (without the vibrational-relaxation effects
considered here) is not uta but a larger quantity.
Furthermore, the temperature dependence of the
jump rate found by deWit associated with this en-
hanced rate is milder than that of spa. We expect,
therefore, that the inclusion of the effect of corre-
lation between the carrier's response to successive
coincidence events will lead to an even milder tem-
perature dependence of the drift mobility than that
calculated here. It should be added that in the
limit of a sufficiently large electron-lattice inter-
action strength the small-polaron jump rate is
simply svz as found by Holstein.

Finally, it should be commented that the Hall
mob111ty 18 Rlso expected to be Rffected lly 1Rttlce-
relaxation effects. In particular, in the regime
where the mean time between hops is & se, ', we
might expect the Hall mobility activation energy
of the nonadiabatic theory of the triangular lattice
to be given by the difference between the activation
energies required to form a quadruple coincidence
E4 and a triple coincidence c3, rather than by the

dlffex'ence 63 —&p ~ 3&p Rppx'opx'late fol R x'elRxed

lattice. Thus, since e4- e, =6&3 is less than the
drift-mobility activation energy in the same regime
Ev = -', ea we see that the Hall mobility will, as in
the prior studies, ' possess a smaller activation
energy than the drift mobility. Furthermore it is
important to recall ' that the ratio of the Hall to
drift mobilities is proportional to exp[(E~„„
—Ea,»)/zT], this quantity generally being suffi-
ciently large in the preceding triangular-lattice
studies" (= e"a""r

) so that in most instances the

calculated Hall mobility is greater than the drift
mobility. a However, in the situation being dis-
cussed here this factor is considerably smaller~3
(= e'2 ~ );thus it is possible for the small-polaron
Hall and drift mobilities to be comparable. In fact,
applying these arguments to the adiabatic theory
of the triangular-lattice Hall effect one sees [cf.
Eq. (9.8) of Ref. 5] that the Hall mobility may be
considerably smaller than the drift mobility; in
addition both the Hall and drift-mobility activation
energies are expected to be considerably smaller
than their counterparts in the nonadiabatic theory.

Thus it is concluded that it is within the domain
of the small-polaron for both Hall and drift mobil-
ities to possess sufficiently sxnall activation ener-
gies so that the preexponential temperature depen-
dence of the mobility expressions plays an impor-
tant role in determining the temperature dependence
of the mobilities. Such a situation is characterized
by mobllltles wlllcll (R) do llot display R simple
activation-type temperature dependence (they may
even decrease with increasing temperature) and
which (b) are associated with hopping times less
than or of the order of the reciprocal of the longi-
tudina1. optical bandwidth.

APPENDIX: OCCURRENCE PROBABILITY

Let us now consider the occurrence probability
Rpproprjate to R colncldence event lnvolvlng sites
n = 1 and n= 2 occurring at an initial time defined
as zero and another coincidence event involving
sites n = 2 and n = 3 occurring at a later time t.
Applying the occurrence-probability approach de-
veloped by Holstein and Friedman and Holstein3
to the problem of bvo subsequent coincidence events
in a linear chain, we find the following expression
for the probability of (a) a coincidence between
sites 1 and 2 occurring bebveen time zero and
time dto with a relative vibrational velocity lying
between v,a and v, a+ dv, a and (b) a coincidence be-
tween sites 2 and 3 occurring between times I; and
t+dt with a relative vibrational velocity lying be-
tween v&3 and v&3+ dna~.

P(via) vps) t)dtodtdvla dvaa = ' ' dv ~ ~ ~ ~ ~ ~ de' ~ ~ e
1 -&(tt, T

g tl
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&& (&[x,(0) —x, (0)]
~
v„~dt, 5[v, (0) —va (0) —v„]dv„].

x (&[x,(t) —x, (t)]~ v„~dt &[v,(t) —v»(t) —v„]dv„), (Al)

where E in the energy of the system when the carrier occupies site 2, 24

E= Z„(p M v„+»M &ox „+2 M &gx~„,g) —Ax», {A2)

g J» ~ » d'g»» o j e e e dg e e»Q Q

Proceeding to introduce the Fourier-integral formula for the 6 functions, i.e. ,

5(z) =— do.' e '*j.
2n

we may rewrite P{vu, v»s, t) as

I v, a l tv, »! -8/ttZ'P(vga v»» t)= »
— ' ' 'dv ' ' ' ' ''dx ~ ' ~ d& dP d1' lÃ8~) Z2„) n n

m OO ~ OO

x exp(- tln[x (0) —x (0)]+ Av, (0) —v, (0) —v&a]+ 1'[xa(t) —x3(t)]+ 5[va(t) —v&(t) —va&B).

At this point we may introduce the normal mode coordinates via the transformation

x„{t)= (2/N}'~'@sin(In+ —,
' x) q, (t}.

We find that

4

p(v„mz t)= "
~ -~I dq; dq; fd fdpfdw]ld&lax 83& g(2&)
~

x II exp[- [tnG," q(»)0+ pG'»'q»(0)+ yG»»'q»{t)+ &G'»sq»(t)]},

(A4)

{A5)

~, =-~o+ ~, cask.2= 2 2
(A 11)

G'„"-=(2/X)"'[sin(up+ —.
'

~) —sin(up+ —,
' x+ a)].

{A7)

q»»' -=(2/N)'t'(A/2M~»') sin(kP+ —,
' a),

E, = {1jtt)Z, A. '/2M;, - (Alo)

Furthermore, in terms of the normal mode coor-
dinates the energy of the system becomes

E=Q, ', Mq„+ ', M&„(q»— q'P) — E, , --
where the following three quantities have been
defined:

At this point it is expedient to transform to a new
set of variables which explicitly displays the
harmonic time dependence of the normal modes.
We write

q»= q» + @»cos(~»t+ ~»)

q»= +»@»»n(~»t+ ~»)~

(A12)

(A12)

where Q~ and 5~, the amplitude and phase factor
for the kth mode, are taken as the new variables,
the Jacobian for this transformation being

Performing the elementary integrations
which are required in evaluating Z we find

P( t) = ' —. 'd dP 'd d&II dQ
IV l l&23l ~ M~

l»~ 2»s {2 )4
~
J» KT

] 21k

x— d5» exp(- j{uG» [q» '+ Q»cosh»]+ PG» [ &»g»sin5»]
m 0

+ 1'G» [q» + Q»cos(&»t+ ~»)]+ 6G» [- R»Q»sin{&»t+ 5)]/»}. (A14)

At this point it is recalled that G»»'»' -N-'~a and that q~~'-N-'~2, so that (taking N arbitrarily large) we may
evaluate the above integrals by expanding the exponents to second order in X, obtaining

» {q»"+ @»cos~») —» '(G»'Q»«s~»)'] [1—»G»'(- ~»Q»»n~») —'P'(G"~ q sin~ -)']

&& (1 —'t1'G» [q» + Q»«»(~»t+ &»)7 —
» 'Y [G» Q»cos(&»t+ ~»)] j
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&& (1 —t«»'[- &»M»»n(&»t+ ~»)] —3 ~'[G»'&»Q»sin(&»t+ ~»)]').

The integrals over the phase factor 5» are now readily performed, yielding (again discarding higher-order
terms)

P(v v t) = " "
I d~ dp dy dt II dq '"»e~"»o»""'e""»e""23Iv12llv t ~ t

" M~A 2 2
12~ 23~ k

k 0 K

&( (i t[ &G 1Rq &2
& + yG23

q(2 &] 4 qR[ (&G1R)R + (pG12 & )2 + (yG23)R + (I&G23 & )2]

——,Q»G„G» [c&ycos&»t —o!5&»sin&»t+ py4&»sin(L&»t+ p»»cos(d»t]j

lv llv I

do. dp dy td5 e""»'""23(2)'. . . J

t[ &G12q(2 & + yG23q(2 &] [(&G12)2 + (pG12& )2 + (yGRR)R + (pGRR& )2]
k 2MQJk

2 G» G» (c&ycos&»t —&t&&»sin~»t+ py&»sfn&»t+ p5&»cos(d»t)M~2 k k

I v12 I l v23 I d&, dp dy d5 exp i e —y c1+ pv12+i~v23
(2»)

—cR(o' + yR) —c3(p + 5 )- a(py- O5) —bp& —co'y],

, (1 —cost3),
Nk M~2k

(A17)

(A18)

and the time-dependent quantities

a=-2 G"G"sin& tKT
k

cosk(l —cosk)sin~»t,
2KT

Nk M~k

where we have defined

P G Rq(2& PGRR (2& Q (1

(A16) (A2O)

(A21)

x -=(n —y)/V 2, y =- (1R+ y)/V 2,

u =- (P —&)/W2, v =- (P+ 5)/&2.

%le find that

(A22)

f1=-Z —G» GR»3 costs»t
KT 12 23

j. 2KT cosh(l —cosh)cos~»t,

KT 12 23=~~ 2k 'Gk coskI', M~,
2K',cosh(l —cosh)cos~»t.

Nk M~k

The above expressions are readily derived by
utilizing well-known trigonometric identities.

It is now our task to perform the integrals over
c&, P, y, and I&. To do this it is convenient to intro-
duce the quantities

p(v&2' VRR, t) =
& dxexp — cR —2 c .R + t v2 c&x dv exp — c3+ — vIv&2 I I VR, I I, 2 2 ( 1R+ V23)

12' 23~
W2

0+ oxv

x dg exp c + —p, dQexp c Q Q + Q$Q
C 2 R(V&2 —VRR)Q

2 vY

Performing the indicated integrations, we finally find~(, I v, R I I vR, I

(2w)' ~,~,~,a, )
(v12 —

VRR) a (vlR+ v23) 1
2 (v12+ v23)ac1 Pt

2 ~+ 4~2~2 + 8~2 ~ + 4~2~2 + 4~2~2 + 2~2
2 2 3 2 3 3

where we have defined the following coefficients:
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At —= (ca —a b)', Aa —= (cq+ 2' b)'

2 1/2
1A = cg — c—,2+

4( g))4(c, + —,'b) ' cs

(A25)
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Except in the classical limit I 0 the energetic coin-
cidence is viewed as taking a finite time. In particular,
since the change in electronic energy due to lattice motion
in the time interval &t, is ~E-Av~t, (in the model adopted
here —see Sec. II), where A is essentially an electron-
lattice coupling constant and v is a relative velocity as-
sociated withionic motion, we find, noting that the spread
in energies is related to the spread in time via the un-
certainty relation 4t, -h/4E, that 4t, - (I/Av) . This
estimate of the duration of a coincidence 4t, is found in
the more detailed arguments of Refs. 1-4.

H. J. deWit, Philips Res, Rept. 23, 449 (1968).
To understand this effect in detail one must consider

the phase relationships between the lattice vibrations of
the occupied site n and the site n+1. Such a study has
been carried out and will be reported in a future publica-
tion by the present author.

This formula is based on the assumption that adequate
vibrational dispersion exists so that the carrier views
each coincidence event as an independent event, i. e. ,
there is no phase correlation between the electronic jump
amplitudes of successive coincidence events. This situ-
ation will be assumed to prevail for the remainder of this
work. The specific criterion for the validity of this
assumption is discussed in Refs. 2 and 7 and in a forth-
coming publication of the present author.

~ It is a straightforward matter to include higher-order
terms in the expansion of cu& in powers of ~b/~p, How-

ever, these terms are found to be of little significance
and therefore are discarded at this point to simplify the
subsequent calculations.

~~M. Abromowitz and I. A. Stegun, Handbook of Math-
ematical Injunctions (Dover, New York, 1965), specifically
formulas 9.1.44 and 9. 1.45.

The inclusion of higher-order terms in cob/p in gen-
eral destroys this equality. This result may be under-
stood in terms of the discussion of the next paragraph in
light of the fact that the inclusion of higher powers of
cob/cop is associated with the transfer of energy between
non-nearest-neighbor sites,

The different roles of the in-phase and out-of-phase
components of the vibrational oscillations is studied in
the work mentioned in Ref. 8.

~4The arrows in Figs. 1 and 2 are directed at the points
where the slopes A(t) and A, (t) are zero. In that these
slight wiggles in the curves have a negligible effect on our
argument, they will not be discussed. They are merely

pointed out for completeness.
The calculation of S(t) is a straightforward general-

ization of the analogous calculation for a single process.
Such a calculation is found in F. Reif, ENndamentals of
Statistical and Thermal Physics(McGraw-Hill, New York,
1965), pp. 463-464.

~6It should be stressed that although the carrier oscil-
lates between the two sites as a result of this enhanced
return effect, the quantum-mechanical amplitudes (the
a„'s) are such that the carrier generally remains localized
at one site or another at a particular instant. This situ-
ation is distinct from the regime of the intermediate
polaron in which the electronic wave function simulta-
neously has a significant amplitude at a number of sites.

The integral in Eq. (52) may, in fact, be solved ex-
actly by expanding the exponential expression in the inte-
grand in terms of the Bessel functions I„(z). The coef-
ficients of the expansion may then be readily evaluated

and are found to be of order A". The approximation
utilized here provides generally good agreement with the
series expression, the agreement becoming exact in the
limit of j.oug times cubt»1.

Formula (78) may be obtained by the arguments of
Appendix B of Ref. 3 when one makes the replacements
xg —A/MMp x~ —x, and x3 x3 —xb in Eq. (B1) of that
paper.

An anlogous situation is found in studying the decay
of the center of a, spreading Gaussian wave packet, namely
[see Sec. 3.5 of D. Bohm, Quantum Theory (Prentice-
Hall, New York, 1951)], the center of a stationary wave
packet falls at long times as (&cu t), where 4' is the
spread of frequencies which are involved in producing
the wave packet.

The above derivations and the physical significance
of A(t) and A„(t)a.re discussed further in the work of
Ref. 8.

The small-polaron condition is not expressed in terms
of the small-polaron binding energy since a study of a
model in which the electron is affected by distortions on
sites other than the occupied site (unpublished work) in-
dicates that the relevent small-polaron condition is not
in general J«Eb but is a more complicated expression.
While the condition «& 4r2 is not strictly correct either,
it has the virtues of being much closer to the exact ex-
pression and of relating the small-poloran condition to
quantities which can be inferred from measurements of
the temperature dependence of the drift, and Hall mobil-
ities.

In the nonadiabatic theory of the Hall effect in a square
lattice (Ref. 4), it is shown that (at sufficiently low tem-
peratures, KT «4 —

&& =$ &t) the temperature dependence
of the Hall mobility is essentially the same as that calcu-
lated for a triangular lattice (Ref. 3). However, at higher
temperatures the Hall mobility is multiplied by an addi-
tional factor of 1/&T and the activation energy is slightly
increased by the amount of e4- ez. This leads to a some-



what smaller ratio factor (= e'~I~"~) than the triangular-
lattice value.

23In the correlated regime, it is expected that the transi-
tion between the high-temperature and low-temperature
regime of the square-lattice Hall mobility (Cf. Ref. 22)
will occur at xT= &5- &4= ~ &2. In the high-temperature
correlated regime. we have EH»=(e~- e&) —(e3- et) = qe2,
while E~«&- &3 —&2 = 3 &2& thereby yielding an even smal-
ler ratio factor (e'2~ " ) than that for a triangular lattice
quoted in the text.

It has been stressed previously (cf. footnotes 33 of
Ref. 2 and 5 of Ref. 3) that, within the domain of validity
of the herein utilized semiclassical approach, it is ir-

relevant to the calculation of the rate characterizing a
single small-polaron hop whether one assumes the initial
or final site to be occupied in writing the energy of the
system. Furthermore, in that we are concerned with
the behavior of the lattice in the time interval between
the two hops, the proper choice of Hamiltonian should
manifest the situation in which the intermediate site is
occupied. Thus the appropriate Hamiltonian for the con-
sideration of two successive hops is seen to be that in
which the intermediately occupied site is taken to be
occupied, i.e. , the electronic-energy term of (A2) is
taken to be —&x2.


