
PHYSICAL REVIEW B VOLUME 3, NUMBER 4 15 FEBRUARY 1971

Resonant Coupling of Landau Levels via LO Phonons in Polar
Semiconductors and its Effects on the Landau-Level

Raman Scattering from Semiconductor Plasmasa

K. L. Ngai
Lincoln Laboratory, Massachusetts Institute of Technology, Lexingt on, Massachusetts 02173

(Rec.eived 17 August 1970)

The Green's -function method for studying the resonant coupling of Landau levels via LO pho-
nons is reexamined, and the approximations made therein are justified. The coupling between
the n= 2 Landau level and the n=1 Landau level plus one-LO-phonon continuum is investigated
under the condition that the cyclotron frequency (d~ is nearly equal to the LO-phonon frequency
coo. Since the n=1 Landau level has been resonantly coupled to the n=0 Landau level plus one-
LO-phonon continuumunder the same condition, novel features of the electron energy spectrum
appear. It is shown that the pinning effect that occurs for the n=1 Landau level exists also for
the n = 2 level. The cross section for the inelastic light scattering from electron plasmas in
polar semiconductors under the influence of a dc magnetic field is calculated approximately with
the inclusion of electron-phonon polar interaction. The effect of both Coulomb interactions and
electron-phonon interactions on the momentum matrix elements occurring in the calculation is
neglected, but is kept in the evaluation of the correlation function of a generalized pair operator.
The results of scattering from single-particle excitations between the n=0 and n= 2 Landau
levels exhibits the effect of the resonant coupling between the n = 2 and n =1 levels via LO phonons.
However, for scattering from collective modes such as the coupled LO-phonon-magnetoplasma
mode and the Bernstein modes, the possibility of observing similar resonant coupling effects
is ruled out.

I. INTRODUCTION

An electron in a polar lattice will always carry
with it a lattice polarization field. The composite
particle, electron plus phonon field, is called the
polaron. In the presence of a magnetic field, of
sufficient strength that the cyclotron energy (u, is
near the energy of a Lo phonon +0, polaron self-
energy effects are expected to be strongly en-
hanced. The magnetic field is chosen to be in the
z direction and described by a vector potential in
the Landau gauge AD= (0, Hx, 0). The single-par-
ticle states in the Landau representation can be
described by a set of quantum numbers n = fn, k„, k,}-
and an energy

e' =(n+-'.)h~, +k'k', /2m+ .

Then under the condition &,= &0, the state of an

{n = 1, k„, k,}electron with energy ~ h&o, +k2k~/2m*
is nearly degenerate with a continuum of states
consisting of an (n = 0, k„-q„, k, —q,}electron plus
one phonon of wave vector q with energy

—,K&u, + I (k, —q,) /2m*+ k(oo

The electron-phonon (el-ph) coupling causes a
strong mixing of these states, ' and since the den-
sity of states of the continuum has a singularity
(E —E,) ' i at E,= 2 h(u, + k(oo, the resonant enhance-
ment of the polaron effects is apparent. This res-
onant coupling of Landau levels in polar semicon-

ductors such as Insb has been observed by magne-
to-optical methods such as interband magnetoab-
sorption, ' impurity absorption, 3' cyclotron res-
onance, ' and combined resonance. These ex-
periments have revealed the energy spectrum of
the el-ph system. Recent advances in the develop-
ment of inelastic light scattering as an effective
tool for studying the excitation spectrum of electron
carriers in semiconductor crystals leads one
naturally to ask the question of how the resonant
coupling of Landau levels manifests itself in light-
scattering experiments. The object of this paper
is to answer this question. Various theoretical
calculations of light-scattering cross sections from
excitations in semiconductor magnetoplasmas have
been given. ' ' We shall in particular adopt a
recent approach by Blum' who has extended the
treatment of Hamilton and McWhorter' to magne-
toplasma light scattering. The el-ph interaction
(EPI) shall be incorporated into Blum's treatment
and effects due to resonant coupling are derived.
In the course of the discussion we shall clarify and

justify several approximations often made in calcu-
lating the polaron self-energy effects in resonant
coupling. For example, the vertex corrections are
shown to be unimportant, i.e. , the corrections to
the free vertex are smaller by a factor of
&0/ I(E-E,)/k&01 i, where no is the Frohlich
constant.

We begin by deriving a general expression for the
inelastic scattering cross section of light by a semi-
conductor magentoplasma with inclusion of el-ph
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interaction. In Sec. III we shall study the el-ph
coupling of Landau levels. The general discussions
therein are applied to the special case of the n = 2

Landau level. Interesting novel features of its
level scheme and its manifestation in the Landau-
Raman scattering spectrum constitutes Sec. V.

II. CROSS SECTION FOR INELASTIC SCATTERING
OF LIGHT

d 0'
——Il—(Q ~Mrr

~

5(Er;-Er —k(d)), (3'I

where &= &I- +~ and the angular brackets denote
a statistical average over the initial states. We
are interested here in scattering processes such
that the initial and final electron states II) and IF)
differ only by excitation of electrons within the con-
duction band of the semiconductor; then we have'

In this section we shall follow the approach of
Hamilton and McWhorter and of Blum to derive a
general expression for the cross section for the
inelastic scattering of light by a semiconductor
magnetoplasma with inclusion of EPI. For ease of
comparison with and reference to Blum, we shall
adopt his notation as much as possible. The Hamil-
tonian of the electron system in a crystalline polar
lattice is

&= 5 &nonce+ + [+se(@5a++a~(@ha]caen

+ -,'5 v(j) Q m, m„*, c', c'„c,c,
IByo

+ & eoro frttffrri,

where v(q) =4rre /q e„, m a=(a le I P), c, and c,
are the creation and annihilation operators for the
single-particle eigenstates I or) The latt.er satisfy
XOI&) =e' Io.') with

[p- (e/c)AO] I'[p —(e/c)AO] (o x VV)
3CO= +V(r + 4m'c'

1
+ p gp~o ~ 80

as the Hamiltonian of an electron in the crystalline
lattice in the presence of a static uniform magnetic
field. The crystal periodic potential and the spin-
orbit coupling term have been included. In (1),
gz (Q) —= (p I'U(Q) I o!) is the Frohlich interaction'8
defined in detail later in (IVa). As has been empha-
sized by Blum, the form of Xo in (2) has the advan-

tage over the treatments which replace Ko by an
effective one-band Hamiltonian because resonant
enhancement effects and one-electron effects, such
as nonparabolicity and spin-orbit coupling are in-
cluded automatically. In the presence of an elec-
tromagnetic radiation field represented by a vector
potential A„(r) we replace the momentum p in (2)
by [p —(e/c)A ] to approximate the electron-to-light
coupling. Treating A„as a perturbation, the dif-
ferential cross section for scattering of a photon
from state (&r, kr, er) to state (~r, kr, er ), while
the electronic system has undergone a transition
from a many-electron initial state If) to state IF)
1s13

where

(n Ij IP') (P' Ij r IP)
y g—- 2 m~g El ' 6g+

mc m ge g- g'+ I

(a I j, tl!') (O Ij I to)'
E —Bg. —k&1

In arriving at this approximate form for M+I we
have neglected the effect of both the Coulomb inter-
action and the el-ph interactions on the momentum
matrix elements and the energy denominators ap-
pearing in (5).

This neglect of the effect of el-ph polar coupling
on y ~ is justified through a calculation by Harper '
of the polaron-indu~:e3 scattering cross section. It
has been pointed out by Wolff" that unperturbed
Landau states of free electrons behave as pure
harmonic oscillators and cannot scatter in the di-
pole approximation. Harper' noticed that an effect
of the polaron coupling on the Landau levels is to
provide a source of anharmonicity that can induce
scattering. Using a different formulation of light
scattering from ours, Harper essentially evaluated
the modifications of the intxaband intermediate-
state contributions to y due to polar coupling to
phonons, and was led to the result that the polaron-
interaction-induced contribution to the scattering
cross section o2„per particle is of O(o.'Oor), where
of, =e /m*c is the effective Thomson cross section.
The estimate is given for the case in which the
magnetic field is strong enough when only the n =0
Landau level is occupied and electron transition is
from n = 0 to n = 2 in the Landau-Raman scattering
process. Nevertheless, in scattering from a con-
duction-band plasma the only important contribution
to y is from intexband intermediate states, which
leads to a cross section per particle for scattering
parallel to the magnetic field (qllB, ) given by
oa„O[o~z(h~, /E~)'-]. ' For InSb, E~= 237 meV,
0-'0=0. 02, and if (d, is nearly &0=24 meV, the LO-
phonon energy, then Harper's polaron-interaction-
induced contribution to scattering is roughly two
orders of magnitude smaller than the interband
contribution. This fact enables us to ignore el-ph-
polar-coupling modifications on y 8. Moreover,
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the effect on the Landau-Raman scattering due to
resonant coupling of Landau levels via LO phonons
in polar semiconductors does not occur in the man-
ner as Harper described it. With our present
formulation of the problem we shall show how el-ph
coupling enters the dominant interband contribution
to scattering and induces magnetic-field-dependent
structure in the scattered-light spectrum.

The electron-electron (el - el) and el-ph interac-
tions will be kept in the evaluation of the matrix
element of the generalized pair operator e~ cz and
the correlation function of this operator as we shall
discuss next.

From (4) the cross section can be expressed in
terms of the Fourier transform of the correlation
function C(t) = (Nt(t)N(0)) for the generalized opera-
tor N=g zr t1ctcz,

2 00

= k —z —e'"'(N (t)N(0)).
d~dQ ~r 2

(6)

Often it is more convenient to work with correspon-
ding retarded response function

ct (r) c~(~) = e "'c (0)c~(0) e "' (14)

The Fourier transform of 6: ~, ,(r) and $(r)
1/Jig T

6:,~„(i&a„)= J 6' 8, ,(r) e'"&' dr

&„=27Tgk~T (15)

3Cz--, ~~ v(q) ~ m„,m„c c, c,c,
0.866

+ Z hing, (Q)by+ v. g (Q)bg)chic

in which n is an integer, is related directly to the
retarded response function via analytical continua-
tion. That is, if 6' z„(z) [(R(z)] is obtained by ana-
lytical continuation of 6'~z, (ie„)[6t(i&@„)]from a dis-
crete set of points. into the entire upper half-plane,
then F,z„(&)= 6'„z„(z-(a+i0) and R(+) =61(z - (u+i0).
Thus our problem of light scattering reduces now to
the evaluation of the thermal correlation function
6' ~„(i&„)or 6t(i~„) by perturbation theory expressed
in terms of Feynman graphs. The perturbation
is the sum of the Coulomb and el-ph interactions:

R(t) = —i8(t) ([N (t), N(0)]) (7)

The Fourier transform of C and R are related by
the fluctuation-dissipation theorem

C(~) = —21m[R(~)]/(1 —e "" 's )

Hence the light-scattering spectrum is

do' 1=K g Iy r Im[R((d)]

From the definition of R in (7) we have

R(t) = K 5 r~arn, F,8g, (t) (10)

and

F,~, ,(t) = —i8(t) ([ct~(t) c (t), ct, (0) c,(0)]) . (11)

(12)

where

As is well known, nonzero temperature perturbation
theory is conveniently expressed in terms of
Feynman graphs by methods of temperature-ordered
thermodynamic Green's functions. The relevant
thermal correlation function we shall introduce is

Effects due to both interactions will modify the
electron excitation spectrum. However Coulomb
effects are believed to be small. ' Therefore, in
Sec. III only the EPI contribution to the electron
self-energy in the presence of a magnetic field is
calculated. As is well known, EPI results in both
renormalization and lifetime effects on an electron
and can be fully described by the complex electron
self-energy part Z,g, ) which shall be evaluated via
the temperature diagram technique. The associ-
ated exact electron propagator G,g, ) is 1/[g &

—eo
—Z, (f,)]. In writing Z, and G, as such, we have
already used the fact that with inclusion of EPI only,
both the electron self-energy part and the electron
propagator are diagonal in the single-particle quan-
tum numbers &. Detailed evaluation of G~ is rel-
egated to Sec. III. With G at hand we shall calcu-
late the correlation functions 6:,&66(&@+i0) or
4t(&u+i0) in the presence of both Coulomb interaction
and EPI.

III. ELECTRON SPECTRUM

The Hamiltonian we start with is

3C = + e c~ c ~+ 5~„. KQpybjbj
at Q

6' z, ,(r) = —(T,[ z( c)c„T(r)c, (0)c,(0)]) . (13) Q [v8, (Q) by+ gq, (Q) bI'I]c~~c
esQ

(17a)

Here T, is the time-ordering operator; 7' ranges in
the interval ( —I/ksT, I/ksT), where T is the abso-
lute temperature. The "temporal" development of
the operators is defined by

The Frohlich Hamiltonian describes the el-ph sys-
tem in a magnetic field

g, (Q) =-ik~, (4mo. g8)' '(I/Q)(p~e' '
~n)
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='U (Q)n& on ~ (1Vb)

S is the crystal volume in units of ro, so= (I/2m*&do)'~o

and

Q, ('

/
/

is assumed to be «1. The last term in (1Va) is
treated as a perturbation on eigenstates of the re-
mainder of the Hamiltonian. It has been shown that
the electron propagator of the Hamiltonian in (17a)
is diagonal in the Landau representation. That
ls if

G oR, ) = —J du e~&" (Tc (u) cot(p))

with

&, = i& + i(2l + 1) mka T

and p, the chemical potential, then

G ok&) =~ oG

FIG. 1. Diagram for proper electron self-energy part.

kaT ~ dQ'0&& (Q)To (Q, l &- $, fr)
3(2v) „& g, —g —eo- Zo(g, —$ )

0

28&g
8'&ooo+ g'

and $„=i2wmkaT.
To start with, let us first calculate the contribu-

tion to the electron proper self-energy part by the
lowest-order skeleton diagram illustrated in Fig. 2.
The evaluation of this diagram follows the basic
method of replacing each electron or phonon line
by the exact propagator

Let G, (f,) —=G (g, ), and

(18)

follows from Dyson's equation. The electron self-
energy Z (f,) is given as the diagram shown in

Fig. 1. The shaded circle in Fig. 1 represents the
full vertex part of EPI. Explicitly,

1 2 k&do

—e«-Zo(0& —5 ) @'&do+5' '

where & is the renormalized phonon frequencies.
The summation over $ can be performed via stan-
dard techniques with the result

1 1 1 f(x) +No f(x) +—No
Z, (t&)= . «uo (Q)

'
o

— -o
27fZ x —e, —Zo(x —ip) x —eo Zo(x+ ip-) (;,-x —@&oo 0 -&x+)f&oo

(21)

where

N =I/(e«&»r
1 f (x) + N, —f(x) +N,

E —x —S(a) qai0 E —x+ Our@ ai0
(22)

f(x )
—[I + e &" ~ & ~ ~B j

The self-energy is discontinuous across the real
axis in such a way that

Zo(x sip) =ReZo(x) vi ImZo(x)

and lmZ&(x) ) 0. Substitute this into (21) and ana-
lytically continue the Z (l, ) defined at isolated
points in the complex plane to the real g axis, i. e. ,
f -E+i0, and one obtains

We have introduced the spectral weight function
Ao(x) which is related to the thermal Green's func-
tion Go(x) as

Ao(x) = —I/« ImGo(x+ ip)

After obtaining (22) for Z (8 sip) we can first
turn to the problem of the coupling between the n = 1
Landau level and the n = 0 level plus one LO phonon
and make contact with the recent works by Korovin
and Pavlov and by Nakayama. ' Under the condi-
tion that , is nearly equal to 0, we shall look for
resonant coupling effects on the energy spectrum of
an electron ) c&} (= In, k„k,)) in the n = 1 state.
Then only the n&=0 term in the sum over nz is re-
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Here

/
/

aakvakza 5 n~aky, k„g~np, ky-Qy,

kz-Qz

FIG. 2. Lowest-order skeleton diagram for the proper
electron self-energy part.

tained because the rest are nonresonant contribu-
tions which we discard. In the energy range for
resonance consideration an electron lP) in the
n&=0 level cannot emit a LO phonon. Zz is real,
and

A,(x)=()(x —a,-):,(x))= ( — ) ()(x —a,)
0 ~~S

~X
(24}

where

e() = —a'k(d, + I (k, —Q,) /2m

and e()= e((+Za(ea) are the unperturbed and perturbed
ground-state energies, respectively. Hence,

o.a(@(da)a ia e x'(x+ $)Z (E+ao) = — (la dx
)a a

for E &E,

1-f(ea) +No f(ea) +No
E —~~ —I~~+i0 E —~~+ h~~+i0

(25)
Except for the renormalization factor (1 —(sZa/
&x) l,a) this is just a finite-temperature general-
ization of previous results. ~4 Since Zz is of order
(aa, the factor [(1—(BZa/Bx) I, )] acan be ignored,
for it can alter the result only to higher orders of
no. The appearance of the perturbed polaron
ground-state energy &~ instead of &~0 is in agree-
ment with Larsen et aL ~ Z~ has been evaluated
from (25) by Nakayama for an electron in an other-
wise empty conduction band. His result is

5 = ( IE E—, I/n~, )'~a, ua = (5 k,/2m*)(h(d, ) ',

Za( —a(a()(k(d ) 8(d / I
E —E

Zaa = ~() +(d()(d(/I E Ec I

(25)

(29}

where Ea = h(da+ aK(d, When o—(a/l (.E - E,)/@d() I
- 1,

and E,= Eo+S0 with &0 the perturbed polaron
ground state of an electron in state n =0, k, =0. The
resonance (a() I (E —E,)/h(d() I

'~ is noteworthy and is
responsible for the so-called pinning of the per-
turbed n = 1 level to E, in high magnetic fields
((dz ) (d()).

Thus far we have evaluated only the lowest-order
skeleton-diagram (Fig. 2) contribution to the elec-
tron self-energy. It turns out, in fact, that the
dominant contribution to Z, (i;,) is given by (25).
In the Appendix, estimates are given for the con-
tributions of typical higher-order diagrams. There-
in it is shown that the full EPI-vertex part 1"a (Q)
can be replaced by the elementary EPI vertex V() (Q)
and terms neglected are smaller by a factor of- (aa/ l (E —E,)/h(da l' Ia. The EPI-vertex part
I'a (Q, f, +$, f,) has a diagrammatic prescription
illustrated in Fig. 3. It consists of the sum of all
skeleton diagrams which have two external fermion
lines, one incoming and one outgoing (labeled P and

(a, respectively) and an external phonon line. In
the class of "ladder" skeleton diagrams, a propaga-
tion pair is introduced together with every internal
phonon line. Under suitable conditions the denom-
inators of the propagation pair can become simul-
taneously small and may introduce resonance
stronger than o(()/l(E —E,)/h(da I'~ in higher-order
diagrams. The purpose of the Appendix is to show
that for a()/ l(E —E,)/h(da I s 1, all the higher-order
vertex corrections are at least a factor (a()/ l (E —E,)/
Sol' smaller than the elementary EPI vertex.

In their analysis of the perturbation series for
the electron self-energy, Korovin and Pavlov have
calculated Z, as in (25) but have used the unper-
turbed Green's function. Then they estimated two
terms Za, and Zaa (diagrammatically represented
in Fig. 4) that appear in the next order of their
perturbation scheme. The estimates are given as,
in our notation,

0

1 1
X . +x —a($ —u) x —i($ +u)

if E &E,. (27) FIG. 3. The EPI-vertex part defined diagrammatically.
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(o) (b)

—ReZ (E ) =0, and + (E) is a distorted Lorentzian
function which vanishes identically for E & E,. E,
which becomes pinned to E~ when fa~ increases,
represents the so-called lower branch, while R (E)
corresponds to the upper branch and has been shown
to have a peak above E, for any value of v, .~ The
proof of the existence of the upper branch for any
(d, is due to Nakayama.

FIG. 4. Typical higher-order diagrams in Korovin
and Pavlov's perturbation scheme. IV. SCATTERED-LIGHT SPECTRUM

clearly Z» is not negligible in comparison with Z, .
Indeed, higher-order multiphonon processes of the
type Z» are of the same order as Z, and all should
be included in their perturbation series. This com-
plexity of the problem does not arise if we start out
from (18), (19), and (20), and the approximation to
it when the complete EPI-vertex part is replaced
by the elementary EPI vertex. In fact these multi-
phonon terms can be formally generated from Z (E)
in (25) or (26) and (2V) if we expand o'0/l (E —E,)/

as

~o
1(E —E',1/Ifroo('i' 2 1(E —E, (/i(rug( )

Zo is polaron self-energy for an electron in the
n =0 state and is of order &homo. The second term
of this expansion can be identified with Zpy of
Korovin and Pavlov. This expansion is invalid near
the resonance when o'0/I (E —Eo)/@vol is of O(1)
and the perturbation series has no meaning. , From
(29), the contribution Z„of Fig. 4(b) is of an
order ao/1(E —E,)/Svo I

'/ higher than Z, . This
is in accordance with the general result of the Ap-
pendix which states that to within zeroth order in
o'0/ I (E —E,)/A+o I

'/, the full EPI-vertex part can
be replaced by the elementary EPI vertex.

To investigate the energy spectrum we require
the spectral weight function A, (E) = —(I/v) ImG (E)
which is readily obtainable from (26) and (2V).
It has been shown by Nakayama~4 that A (E) is of
the form

In this section we shall evaluate the thermal cor-
relation functions f ((„(i(d„)and (R(i~„). The method
of Luttinger and Ward ' generalized by Holstein,
of introducing skeleton diagrams for (R(i~„) shall
be used. The procedure amounts to summation
over all distinct skeleton diagrams wherein each
fermion or boson line is set equal to the exact prop-
agator. The prescriptions for the construction
and evaluation of correlation-function diagrams
have been given by Holstein. ' The rules given there
are, for the most part, immediately applicable.
The few changes are due to the one-electron basis
set and the Landau states o.'—= In, k„k,) instead of
plane waves. Thus the fermion line is G, (K, )
= [g, —eo, —Z (f, )j

' Wit.h each EPI vertex we now

associate a factor '08 (Q). For the incoming (out-
going) external-field vertex associate a factor
v,*(((y„z). Finally, to include el-el interaction we
addend the rule so that for the incoming (outgoing)
Coulomb-interaction vertex we associate a factor
m*,6(m, ((), and for the Coulomb-interaction line a
factor ~(q).

Figure 5 represents some of the simplest skeleton
diagrams that contribute to the correlation function
(R((((+f0). These are the so-called ladder diagrams
which have significance for transport phenomena
in metals. Nevertheless, we are interested only in
resonant enhancement effects. Then it can be
shown in a manner analogous to the Appendix that
all the higher terms of the ladder-diagram series
contribute at least an order O(uo/I(E — E)/hv !0'/ )
higher than the first member, and hence will be
neglected. The el-el interaction shall now be in-

E„( E,) is determined from the equation E —e

)l + + ~ ~ ~

FIG. 5. Ladder-diagram contributions to the correla-
tion function R(cu+iO).

FIG. 6. RPA series of skeleton-diagram contributions
to R(~+ jO). The wavy (dotted) line represents the el-el
interaction '0 (q) [phonon-induced el-el interaction I (q) (

~

x D(q, j(g„)].
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FIG. 7. Diagrammatic representation of the integral
Eq. (33) for the effective el-el interaction U~(ie„) (beaded

line).

or

U~(iv„) = Q&(iv„) + P~(i&a„) Lo(q, i&@„)U&(i&„) (31)

U~(i~„) = P~(i~„)/~r(q, ku„) . (32)

We have here

eluded in the random-phase approximation (RPA}
only, which is presumably adequate in the long-
wavelength limit q-0. ' The RPA series of skele-
ton diagrams is shown in Fig. 6. This series of
diagrams for N. can be summed if we introduce an

effective el-el interaction U&(iv„) schematically
described as in Fig. 7. Then the skeleton diagrams
that contribute to (R are simply that of Fig. 8.
We denote the term corresponding to the diagram
shown in Fig. 9 as Q 8(iv„), whose functional form
will be obtained explicitly in (39) below. If we ap-

ply our rules, then the effective el-el interaction
U~(i&a„) defined diagrammatically in Fig. 7 satisfies
the algebraic relation

FIG. 8. Skeleton diagram for R(i~„) obtained via partial
summation of the RPA series in Fig. 6.

with D(q, i&a„) the phonon propagator as in (19), is
the bare effective el-el interaction, and

er(q, iv„) = 1 —g;(iv„)LO(q, i&@„) (36)

We readily obtain

U;(iv„}=, ez(i,v„) + 1
,
—,Lo(q, f&u„}, (36)

where

e~ ((u) = e„[I+((u', —(u', )/((u', —(u') ]

is the longitudinal dielectric constant of the polar
lattice.

To evaluate the contribution to (R(i&@„) from the
two skeleton diagrams in Fig. 8, we apply the rules
as mentioned earlier in this section, from which

L,(q, i(u„)-=2 Im„,(q)I'Q, „(i(u„) .

The RPA polarization,

&t g(f~. ) =~(q)+
I U(q) I'D(q, f~.)

(33)

(s4)

6t(f~. ) =+~ ly s I'QB, (f~„)—U, (f~„)

&~ r".g ~„,Q, „(f~„) 5 r.,m*, Q, .(i(u„)
08 ~g

(37)
and

Qg~ (f&d„}= —kg T~+
, [c, —~,'-g, (g, )] [K, + ia~„-~. -y. (g, + fN~„)]

(36)

The technique of evaluation of Q8, (i&a„) is standard. 28

The g, sum is converted to a contour integral in

the complex g plane cut along the lines of discon-
tinuity of the self-energy parts, i.e. , the lines
Imf = 0 and Im(t;+ iie„) = 0. The contour integral
is further reduced to integrals over a real variable,
the continuation of i(d„- &+ io is performed, and

finally, one obtains

, A (e')A, (~)
Q,.(&u+fo) = de de'

S(0 —(f —E) + so

&& [f (e) -f (~')].

We recall that A and A~ are the spectral weight

functions. Equations (9), (33), (36), (37), and (39)
comprise the result of the light-scattering cross
section. If we define

FIG. 9. Diagrammatic definition of
Q s(i~.)
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Lp=K im pi Qp ((d+fo).

The result is

d'g +~ 1

d(udn (u, [1—e "~"&r]

& I L
4me L~L
q' e~(|u) —(4we'/q') r.„

(40)

Equation (40) has the same form as the expression
for light scattering as given by Blum. ' If we had
been able to ignore the el-ph self-energy effects,
then A„(d) =5(e' —aP„), Ap=5(a —ep), and Qp ((o+io)
reduces simply to

[f(e,) -f(happ)]/(k&u+ happ
—e + io).

Then from (39) and (40) we can recapture the light-
scattering cross-section formula as given in Eqs.
(11-15)of Ref. 1V. The resonant coupling of the
Landau levels via LO-phonon emission can reso-
nantly and quite drastically modify the nature of
the single-particle states. As we have seen in
Sec. III, all such relevant information is contained
in the spectral weight functions A, (e). Equation
(39) shows how the resonant coupling could affect
the scattered-light spectrum.

V. LANDAU-RAMAN SCATTERING

In this section we shall examine the effect of the
resonant coupling of Landau levels due to LO-pho-
non emission on the scattered-light spectrum. We
shall confine our discussion mainly to the so-called
Landau-Raman processes which correspond to ex-
citation of electrons between Landau levels with
the same spin quantum number and occur at co near
N(d, . Hence we shall ignore spin in the following
considerations. To fix ideas we shall focus our
attention on dg at ~ near 2', . The magnetic field
strength and the electron concentration are such that
only the lowest Landau level (n = 0) is occupied and
(d, is nearly ~,. The last condition implies that
consecutive Landau levels could be resonantly
coupled. One reason for the choice of the condi-
tions ~= 2~, is to avoid the observation of resonant
coupling falling in the region of strong first-order
scattering of optical phonons which could mask other
effects.

Solution to the problem as defined will require
knowledge of the nature of the n = 2 Landau level

coupled to the n = 1 level via one-LO-phonon emis-
sion. We ignore the coupling of the n = 2 to the
n = 0 level via two-LO-phonon emission because
the effect of this is of an order O(o.p) higher. The
study of this coupling is novel because the n = 1
level has already been drastically modified by pho-
non-emission processes as has been discussed
amply in Sec. III. From (22) and (30) the self-en-
ergy part for an electron lo. )(=-12, k, , k, )) is

E —E -5 '0
p 'uQ+ f

here IP) =—
I 1, k, —Q, , k, —Q, ) and Zp denotes the

renormalization

~ ReZ8

Z2 in (41) can only be evaluated numerically. In
the absence of specific experimental data to com-
pare with we shall be satisfied with qualitative an-
alytic behavior of Z2 as a function of magnetic field
near the resonance region co, = ~0.

When &u, & ~p and off resonance, Ep has a (k, —Q,)
dependence which goes approximately as k P(k, —Q,)P/
2m*. The first term on the right-hand side of (41)
dominates, and on evaluation yields a resonance of
the form

o. (k(u )'"/~E —E~ ~'

for either E&& E, [=-E, (k, =0) +hap], In the same
manner as shown for A,(E, k,) in Sec. III, if we
evaluate the spectral weight function A, (E, k,), we
can verify the existence of an upper (lower) branch
which asymptotically approaches E, (e )fprom above
(below) for decreasing magnetic tield. Notice that
for E&E„Z2(E,k,) is real. Hence the aforemen-
tioned lower branch is a 5 function and the upper
branch a distorted Lorentzian whose peak defines
the branch itself. The second term in (41), though
small in the asymptotic region co, & coo, can give
rise to yet another upper branch which approaches
E~ [:ep(k, = 0) + 2k&op] when ~, decreases. This can
be seen if we recall Ap(x) defines the upper branch
of state IP) which approaches asymptotically E,
and whose dependence on k, —Q, is weaker as co,
decreases. This band-flattening eff ect enhances
the divergence of the density of final states leading
to a resonance when E is near E, . The existence
of such an upper branch is then clear.

If co, & ~o, the dependence of E8 on k, —Q, becomes
weaker as co, increases. Thus the band flattens
and enhances the divergence of the final-states



RESONANT COUPLING OF LANDAU LEVE LS' 1311

density and the resonance near E,. In spite of the
fact that Z~ decreases, such a resonance will give
rise to a lower branch pinned to E, as ~, increases.
Note that as ~, increases, E,-E, . Further we
examine the asymptotic behavior (v, & &so) of the
second term in (41). ft, (x, k, —Q,) approaches the
form of a Lorentzian whose maximum tends to have
the k (k, —Q,) /2m* dependence. 24 Whence the
second term contributes a convolution of resonances
no(k+0)' /lE —xl' with it, (x), Let E,'" be equal
to c,(k, = 0) +8~o. It follows that a broadened lower
(upper) branch which approaches E, (eo } from
above, exists. Since E, &E, for ~, &~o, the first
term of (41) contributes an imaginary part to the
self-energy and further broadens the lower branch.

Results obtained are qualitatively illustrated in
Fig. 10. Described in terms of the spectral weight
function, the lowest branch (I) contributes a 5 func-
tion

f=" n ~ —e io
p(~, ) —p(~)

[~B,A, 6(~ —Ea(k })+ ~t2(~, k,) ] (43}

(46)

I., = f (dk, /2v) y*(O, k, ; 2, k, +q,)m. , q, (~+iO),

I., = f (dk, /2m) lm„, l'q, ,((o +i 0),

p(e) = f (dk, /2v) f(e).

(46)

(47)

(46)

&.= f «k. /2v) ly(o, k, ; 2, k +q.}I'q;(~+io}
(44)

I.&= f (dk, /2m) y(0, k, ; 2, k, +q,)m*~Q, (&@+io),

sReZ E k
-1

6(E- E, (k,))
8 (0 )2

to A,(E„k,). Here E2(k,) & E," satisfies the equation
E —co —Z, (E, k,) = 0. The other lower branch (II)
and the upper branch (III) contribute a term ga(E, k,)
which has two peaks whose maxima as a function

of ~, are what we have called branches II and III.
Explicitly,

A. Scattering Parallel to Magnetic Field

d (z A(dy 1
d&dA 'lib)~ 1 —8 &

™ (49)

The matrix element m ~ vanishes and the U, L,L,
term in the cross section gives no contribution,
thus

A2(E, k,) =Z3,„6(E—E2(k,)]+8~(E,k,). (42)

We shall proceed to calculate the cross section
for scattering near co = 2~, that involves single-
particle excitation from P= lo, k, , k, ) to o.

=12, k, +q„k,+q, ). Integrate Q~ (v+io) in (39)
over k, and denote the result by Q~, (u&+ i0); then

lm1.2= f (dk. /2~) ly(0, k„2, k, +q,) l

x[p(es) —p(&s+ @+)]

xv[g, ~, ,~ 6(e~i(u —E, , „)
+ qt, a(eg + &d I kg + qg) 1 ~ (so)

&, (~,=o)

E
III

C

Ec

c- cuo

FIG. 10. The energy spectrum of an electron in state
t &) =—

I 2, k~, k, ) (schematic). See text for explanation.

We recall that both the el-el and el-ph interactions
can affect the matrix elements y ~. Harper~~ has
indeed shown that the modification of y z due to the
resonant el-ph coupling can contribute an additional
scattering mechanism which he estimated to be of
the order of moo~. However, in III-V semicon-
ductors of the InSb-type interband transitions con-
tribute a significant cross section which has been
estimated to be oz„,-(hv, /E, ) ar. This is two
orders of magnitude larger than the resonant-cou-
pling-induced cross section of Harper for InSb at
fields near 30 kG. This fact serves to justify our
approximation on y z and illustrates the difference
between Harper's problem and ours. The effect
on the cross section due to the resonant coupling
via LO phonons is contained in (50). For 10.6- p,

laser light, q, (&10 cm ') is negligible. Integra-
tion of dk, introduces the singularity in the state
density at k, = 0. The scattered-light spectrum
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I.z = Zz+ itz, etc. Z(t) comes from the real (imag-
inary) part of Q, . For example,

I, = —f (du, /2z) y zm,*,z[p(~z) —p(ez+ ft(u)]

x Az(zz+ Itru).

On computing the cross section we obtain

4 g AMp 1
-z iz r 1m[I z

- Uz (&)I i4]

1m{I., —V;(~)I.,r., ) = t, (Z,t,-+Z, t, )/Z,

-O.f -0.05 0 0,05 O.f

(az-E") /zzz

—Z,Z, tz/Zz . (53)

FIG. 11. The spectrum of scattered light as a function
of ~ (schematic) for two values of cd&/Mp Arrow indicates
the position of the unperturbed j 2, k~, k~) state for small
kg.

from (50) for several magnetic field strengths are
schematically represented in Fig. 11. Three peaks
are expected to consist of the scattered-light spec-
trum for any magnetic field strength near reso-
nance, though their relative strengths can vary.
These peaks labeled 1, 2, and 3 correspond to
scattering with electron transitions to branches I,
II, and III, respectively. If &u,/&hz&1 and for de-
creasing field peaks, 2 and 3 diminish in strength
and 2(3) is approaching E,'(E,") and remains above
it. On the other hand, if ~,/&oz & 1 and for increas-
ing field peak, 3 grows in strength and tends to the
unperturbed 12, k, =0)-state energy, while 2(1) is
approaching E, (E,) from below and both are dim-
inishing in strength.

B. Scattering Perpendicular to the Magnetic Field

Consider perpendicular scattering with q, = 0.
The cross section for Landau-Raman scattering is
screened by the Coulomb interactions as will be
shown by the example that involves transitions from
IP) = I0, ky, kg ) to In) —= 12, k, + q„k,). We shall take
over the notations as defined in (43)-(48) but with

q, = 0. Decompose into real and imaginary parts,
so that

Equation (53) gives the scattered-light spectrum in
terms of the spectral weight function Az(E, tz,). The
first term on the right is the one-electron contribu-
tion which is screened by the last two terms. For
a realistic III-V-semiconductor plasma, the screen-
ing is only partial. In fact it has been shown' that
if the k, dependence of y is accounted for, the cross
section per particle is crz„,=0[~z, o~r{Ez/E, )']. Here
E~ is the Fermi energy referred to the band min-
imum of the lowest Landau level. Though (53) is
more complicated than the expression for scattering
parallel to the magnetic field, resonant el-ph cou-
pling will have the same effect on the spectrum as
qualitatively described in Fig. 11.

The n = 2 level scheme and scattered-light spec-
trum, as described, apply to rather pure samples
only. For InSb, by rather pure samples we mean
ones with electron concentration N= 10'4 cm 3, such
as are often used in cyclotron resonance experi-
ments. ' To date, light-scattering experiments
from semiconductor electron plasma are usually
done for N & 10"cm '. At values of the magnetic
field such that only the zeroth Landau level is oc-
cupied and for N sufficiently large when E~- So
(k, =0)» o.zk&oz, pinning to E, disappears and the
three branches I, II, and III collapse to the two
shown as the broken curves in Fig. 10. The cor-
responding cross section for values of the magnetic
field near the resonance has now only two peaks
shown as the broken curves in Fig. 11. The
strength of the scattering cross section moves from
the lower branch to the upper one with increase of m,.

Q» (~+i0) =P de p 6g —p
Az(Ez + 8(d

~ kg)g &CO+ Ep- 6

jv [p(ez ) —p(ez+ h(u) ] Az(zz+ h(o, k).

Inserting this expression into (44)-(47), each of the
I. functions can be separated into two terms, e. g. ,

VI. MAGNETOPLASMA AND COUPLED LO- PHONON-
MAGNETOPLASMA MODE

We shall briefly consider here the possibility of
observing resonance-enhanced polaron effects sim-
ilar to that which occurs for single-particle ex-
citations, in the magnetoplasma waves27 or the
coupled LO-phonon-magnetoplasma mode. There
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has been some experimental interest to search
for these effects. The purpose of the following is
to demonstrate such effects are nonexistent.

The linear response of the electron-lattice sys-
tem is described by the dielectric function given
via (36). To arrive at the coupled magnetoplas-
ma-LO-phonon modes, we look for poles in the
response function or zeros of the dielectric func-
tion. From (36), these normal modes v(q) satisfy
the equation

e ~ ((o) + 1 —(4me'/q') L,o(q, (o) = 0. (54)

+ ((u~ cos'8) /(u', (55)

where ~~ =4~Ne'/m* is the plasma frequency and
8 is the angle between q and H. For q lH, sub-
stituting (55) into (54) and solving for the normal
modes, we rederive the expressions as were given
by Kaplan et al. '

From this dielectric formulation of the coupled
modes it is clear that any effect due to resonant
coupling of Landau levels via LO-phonon emission
occurs through modification of

r.,(q, &u) =Q ~m„(q) ~'q„(q, ~).

In the limit q-O, im 8(q) i' is of order q~@
"~ "~~

and since we require only all the terms of order
q in J o, we need only consider terms in the sum-
mation over n and P with n =n~, na + i. The reso-
nant coupling of Landau levels alters the spectral
weight functions in (39) for Qa, (q, &u). Assume lo')

is resonating with IP) plus one LO phonon, and
n, =na+1. From (25), the [I-f(e8)] factor in the
phonon-emission term implies that resonance of
the form no/IE —E,i' exists only if the n8 level is
sparingly occupied such that E~ —~„(k,= 0) (the
Fermi energy measured from the na-level minimum)
is less than Q.o A~, . Nevertheless, even when the
last condition prevails the combination of Fermi
factors in (43) implies the contribution to Lo(q, &u)

is negligibly small. The arguments here preclude
the observation of resonant coupling of Landau-
level effects in the coupled magnetoplasmon-LO
modes or the magnetoplasma waves.

VII. DISCUSSION

We have thus extended the theory of light scat-
tering from a semiconductor plasma to include
el-ph interactions. In the course of the discussion
we have shown that resonant coupling of Landau

If we neglect, at the moment, the resonant coupling
of Landau levels, evaluating L, o(q, ~) in the long-
wavelength limit q -0, we find that~

(4we /q ) Lo(q, u&) = &u& sin 8/(+2- &u2)

levels via LO phonons can cause magnetic-field-
dependent structures in the Landau-Raman scat-
tering spectrum. In our discussion we have focused
our attention on the n = 2 level. Under the condi-
tions as states in V, its level scheme has features
different from the n = 1 level (see Fig. 10). In ad-
dition to Raman scattering, infrared cyclotron reso-
nance experiments should also be able to reveal its
structure. Preliminary experimental results3' in
InSb have confirmed these features. Throughout
the discussion we have neglected the complexity
of the magnetic energy levels in the conduction
band of InSb-type semiconductors. "'" With inclu-
sion of such band effects, the cyclotron resonance
frequency at a given value of magnetic field will
depend upon n, the Landau-leve1 quantum number.
The effect of this is to limit the validity of our an-
alysis to energies E outside bands of width 5~~,
centered around the pinning lines E, and E,
Here b,~, is the difference between the two cyclotron
frequencies at a magnetic field near resonance.
Otherwise the results we have obtained for the en-
ergy spectrum of the n = 2 level remain unaltered.
For InSb, 4(d, can be estimated from the magnetic
energy levels at k, =0 deduced from experiments. "
At H=30 kG, 56~, is about 1 meV. Moreover, the
density of states near the bottom of the conduction
band can be expected to depart from simple para-
bolic-band behavior, principally because of inter-
actions between the conduction band and other near-
by bands. 3' However, any modifications on the
predicted magnetic-field-dependent structures in
the scattered-light spectrum due to band nonpara-
bolicity is not important as can be seen from a re-
cent calculation by Johnson and Dickey. " They
have considered the variations of infrared cyclotron
resonance and the density of states near the con-
duction-band edges of InSb. Their calculated cy-
clotron resonance joint density of states, as ob-
tained from dispersion relations based upon 4 p
interactions with nearby bands and parameters de-
termined by experiment, is broadened by less than
0. 5 meV. Finally, since only phonons near the
zone center are involved in the polaron self-energy
of a semiconductor plasma under a strong mag-
netic field, the dispersion of LO phonons can also
be ignored.
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APPENDIX

In this Appendix the contributions of some typical



P -=[n-, k -Q -Q, k -Q -Qp' v v v' Q„', k,-Q,'},f -(' FIG. 12. Lowest-order skeleton
diagram for the EPI-vertex part.

higher-order diagrams to the el-ph interaction-
vertex part will be considered. We shall find that
these contributions are smaller than the bare el-ph
vertex part at least by an order o&0/l(E —E,)/Kvoi'
thereby justifying their neglect. The vertex part
has been defined by the diagrammatic prescription
illustrated in Fig. 3; explicitly one has

(Al)

g„"~' is the lowest-order correction and is fully il-
lustrated in Fig. 12. According to the rules of

evaluating skeleton diagrams, 5

g&»(q g t. g ) I T g 'U~~(Q)U6&&(Q')U~&&(Q)

[@~o+(C,—L, —5 )][K, —~&r
—g&-(f, )][K, +5 —~.— ~.(C, +h -)]

In the sum over n- and e& @re shall isolate our attention to only the summand with n- = 0 and ~ = 1. The sum-
mation over r, , is converted to an integration over f, , , analogous to that leading from (20) to (23). The q'
sum is converted to an integral over Q,', &&&&,

' and Q' (the azimuthal angle of q'). Further, to obtain an esti-
mate of V'„I&' it is legitimate to replace the electron propagators contained in (A2) by free propagators. vVe

arrive at the estimate

/&v) (& ) /&v& (& )

I&ldoi t(g& —$~ —6&&) 5(doi k(g& —e~) E&& + (~ —
EN

Here Jz denotes the Bessel function and f"' the Fermi occupancy (vacancy) function, as defined before. The
term in (AS) that contains the factor f"'(e-)/[f

&
e„- -hwo. ] will lead to a resonant contribution. In fact,

from {I'Ia), explicitly, it is

f'(e-.) I
~qr year

Ql
I + I

-h Q& /2m cozy
g, —.,(u, =o) -(e'/2m*)(I, q,)'-e~,. ~-, +—~.—.—.

(A4)

Integration over 8Q, contributes a resonance of
order

c&,/! (g, —E,) /e~, !
'".

We have also examined higher-order vertex parts

'U'„~~', etc. Although the addition of an extra phonon

line leads to the appearance of an extra propagator
pair which could yield a resonance, yet we can show
for all n ~ I, 'V',"&I is at least of order c&P'/l&{E —E,)/
k~ol" . This justifies the replacement of the full
el-ph vertex part I",~ by the bare vertex 'U„~(Q).
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The response of the ref lectivity spectrum of single-crystal gallium arsenide to uniaxial stress
in the [001] and [111]directions was determined. Interband transitions were detected at 1.425
+0.015, 1.76 +0.02, 2.89, 3.12, and 4.5 eV. The direct edge at 1 is found tohaveadeformation
potential ratio d/b =3.2, using a stress-optical response model based on the Pikus —Bir Hamil-
tonian. The 2.89- and 3.12-eV spin-orbit-split transitions exhibit modulated reflectivity line
shapes expected of A symmetry. Comparison is made with the stress-modulated response of a
symmetry-related transition in germanium. The deformation-potential ratios Df / Df —0.55
+0.03, D35/D3 ——p. 77 + p. 03 have been derived. Comparison of the hydrostatic component of the
perturbation with the energy derivative of the unmodulated reflectivity spectrum shows good
agreement with a rigid-shift model. Finally, the 4. 5-eV transition has shown a response to the
stress perturbation indicative of a 4 symmetry.

I. INTRODUCTION

The band structure of gallium arsenide has been
investigated in recent years by a number of differ-
ential optical-reflection techniques. Perturba-
tions as electric fields, ' temperature, stress,
or combinations of these effects have been used to

lift degeneracies and shift the energy bands in an
attempt to obtain modulated ref lectivity line shapes
characteristic of the band symmetry.

Stress, as a perturbation, is, in many respects,
the ideal approach to band-structure analysis. The
band symmetries are easily traced from the unde-
formed to the deformed structure by elementary


