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The empirical pseudopotential method is modified to calculate the temperature dependence
of the first direct gap E, of PbTe at the L point of the Brillouin zone. The same set of form
factors which had given a reasonable band structure throughout the Brillouin zone and which
adequately explains the optical properties of PbTe gives both the correct positive sign and
magnitude for (3E,/ oT)! p. The same method when applied to SnTe gives very unusual results,
namely, a negative temperature coefficient for the region in the Brillouin zone near the mini-
mum gap but a positive temperature coefficient for gaps slightly removed from the minimum
gap. This appears to be consistent with the negative temperature coefficient obtained from
tunneling experiments and the positive temperature coefficients obtained from optical measure-
ments. The origin of the temperature dependence of conduction and valence levels at the gap

is discussed in detail.

I. INTRODUCTION

Optical experiments!'? at constant pressure show
that the first direct gap E, of PbTe at the L point
of the Brillouin zone increases linearly with tem-
perature in the temperature range 80-350 °K; for
higher temperatures, the Eg(T) curve approaches
a constant value. The value of the linear tempera-
ture coefficient (8E,/8T)|, in the linear region lies
between!'? 4. 1x 10 and 4. 5x10"¢ eV(°K)™?. The
positive sign of the temperature coefficient is in-

teresting since most semiconductors have a negative
temperature coefficient. In this paper, a theoretical

calculation® of (8E,/3T)|, for PbTe using the pseu-
dopotential method is outlined. We obtain the cor-
rect positive sign and a value of 3.9%x10™ eV(°K)™!
for (9E,/3T)|p in the temperature range from 40 to
200 °K (Fig. 1); the slope of the theoretical curve
E,(T) begins to decrease for temperature above
200 °K.

In SnTe, metal-insulator-semiconductor tunneling

experiments? yield a negative temperature coeffi-

cient of — 2x10™* (°K)™! for the region near the min-

imum energy gap. This theoretical calculation of

the temperature coefficient in SnTe gives a value of

-1.3%10"* eV (°K)™ for the gap at the L point of

the Brillouin zone. The band structure of SnTe re-

sembles that of PbTe throughout the zone except at

040 Measured optical energy gap

® Theoretical calculation
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FIG. 1. Calculated and experimental temperature-
dependent energy gap E,(T) for PbTe. The theoretical
curve does not extend to high temperatures because
Debye-Waller factors were not available above 400 °K,
(The experimental data were taken from Ref. 1).
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FIG. 2. Zero-temperature band structure for SnTe
near L for directions parallel and perpendicular to the
A axis showing both the first minimum gap near L and
the L gap. Fermi levels corresponding to different hole
concentrations p are indicated.

and near the L point. The symmetries of the top
valence band and the bottom conduction band are

Lg and Lg, respectively, in PbTe; the ordering is
reversed in SnTe, causing the calculated minimum
gap to occur in the hexagonal face of the Brillouin
zone, °'® slightly removed from L. For this reason,
it is inadequate to discuss the temperature coeffi-
cient only at the L point of the Brillouin zone for
SnTe; rather, the temperature dependence of the
gap in the region of the zone near L should be taken
into account. In Fig. 2 the valence- and conduction-
band structure in the zone region near L is displayed
for T=0°, and the discussion of the temperature co-
efficient of SnTe will be given in Sec. IV.

II. THEORY

The empirical pseudopotential method (EPM)
band-structure calculation has been done”’® for
PbTe and SnTe assuming zero temperature. The
EPM calculation involved the determination of three
symmetric pseudopotential form factors V*(G?
=4, 8, 12) and two antisymmetric form factors
V4(G%=3, 11); the reciprocal-lattice vector squared
G? being expressed in units of (2r/a)?, where a is
the lattice constant. At finite temperatures, band
energies differ from their zero-temperature values
because of two effects: (i) over-all expansion of the
crystal, i.e., an increase in the lattice constant,
and (ii) the thermal motion of the ion cores with a
mean-squared ion displacement which we will
call (6R§)av. The finite-temperature system, there-
fore, differs from the picture of a frozen lattice
with all ion cores at their equilibrium positions
((6R2)4,=0) which was assumed in the zero-temper-
ature calculation. In this calculation the EPM is
modified to take both contributions #ato account at
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finite temperatures. The lattice constants a(T) for
various temperatures, in the range 7'=0-400°K,
are deduced from experiments®!® and tabulated in
Table I. These are employed in the band-structure
calculations at different temperatures. For the
temperature dependence of energy bands arising
from contribution (ii), we follow the theory of Yu!!
and Yu and Brooks!? by including the Debye-Waller
factor into the pseudopotential as follows.

The pseudopotential V(G ) in the reciprocal lattice
is written as

V(G)=224,54(G) V, (@)

=D ee®Fav (@), (1)

where T « is the position of the ion « with respect to
an origin in the primitive cell.  V,(G) is the atom-
ic pseudopotential and S,,(G') is the structure factor.
[Often the quantity gasa(é) is also called the struc-
ture factor.] For the finite-temperature calculation,
s,,,(é) is replaced by a temperature-dependent
structure factor

S(G, )= /5 g WaBL D)

= oG+ Ty ,-CRORE 10y /2 ()
)
where e IGLT) i5 the square root of the usual
Debye-Waller factor related to the thermal average
of the squared ion displacement (6RZ),, .

III. CALCULATION FOR PbTe

Keffer and co-workers!3~!5 have calculated the
temperature dependence of the energy gap using
Debye-Waller factors of e”"P? and e ¥Te determined
from (a) x-ray diffraction experiment at 300 °K and
(b) values of (6R%(T)),, in the temperature range
0-400 °K calculated from phonon spectrum and
polarization vectors obtained by Cochran ef al.

In Table Il we tabulate these results’®! at various
temperatures for Pb and Te in PbTe. The tabulated
results have a common zero-point contribution for

TABLE I. Lattice constants a(7) for PbTe and SnTe
determined from experiment (Refs. 9 and 10).

Temperature a(T) (&)
(°K) SnTe PbTe
0 6.3130 6.454
20 6.3134 6.4543
40 6.3145 6.4556
80 6.3184 6.4595
100 6.3207 6.4624
140 6.3253 6.4675
200 6.3328 6.4751
240 6.3380 6.4802
300 6.3458 6.4879
340 6.3510 6.4929
400 6.3588 6.5006
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TABLE II. Calculated average ion displacements (6R,§)a,, for PbTe and SnTe. (The values for
PbTe were obtained from Refs. 13 and 15.)

(6R%¢)ay in PbTe

(BR%,)sy in SnTe

(8R%,)ay in SnTe

Temperature (8R%p) 4 in PhTe
CK) A% A% (&Y A%
0 0 0 0 0
20 0.0006 0.0002
40 0.002 0.008 0.008 0.007
80 0.0026 0.0021
100 0. 007 0.0036 0.0036 0.0030
140 0.0105 0.0056
200 0. 0157 0.0086 0.0089 0.0072
240 0.0192 0.0107
300 0.0244 0.0138 0.0142 0.0116
(x-ray measurement (x-ray measurement
gives 0.0331) gives 0. 0177)
340 0.0279 0.0159
400 0.0332 0.0189 0.0196 0.0160

each (6R%(T)),, subtracted out. This subtraction
occurs because the EPM determination of the band
energies at 7=0 °K involves potentials obtained by
fitting a few gaps to optical reflectivity experiments
and therefore already contains the zero-point mo-
tion. With the lattice constants ¢(T) and the calcu-
lated Debye-Waller factor e “GhT)  the finite-
temperature band energies of PbTe at the L point
of the Brillouin zone are calculated. The set of
form factors used for each temperature of interest
is merely scaled by an interpolation scheme from
the set used for the zero-temperature calculation
with no additional parameters or adjustments. The
pseudopotential form factors

V@)= (1/Q)[ [ Vel IF1) €= %y
+ [ Va([F) e Fadr], (3a)
VA@G)= (1/3’2)[f VPb(IFl ) e i F g3y

- f‘VTe(,f[)e’a"d"’r] (3b)

scale according to IG| (units of 2r/a) in the exponen-

tial as well as in the volume factor Q=%a% The
atomic pseudopotential in real space V,(IT])is as-
sumed to be independent of temperature in the scal-
ing process, which is the rigid-ion assumption.
Specifically, the interpolation and scaling procedure
involves (a) taking the zero-temperature symmetric
form factors™?® (in Ry) V5(G2=4)=- 0. 241, V5(8)
=-0.0352, V5(12)=0.017, V5(16)=0; (b) fitting a
smooth curve V(g) with a polynomial of order three
to these points; (c) reading off the values of VS at
G%(T)=4, 8, 12 [G? is implicitly a function of temper-
ature through the lattice constant a(7)]; and (d)
scaling each value of V5 by a(0)/a*(T). The same
procedure applies to the antisymmetric form fac-
tors (in Ry) V4(G?=3)=0.052, V*(11)=0.021,

V4(16) =0. In addition, since Wp, (I G|, T)
is not equal to Wy (|G|, T), the property of the van-
ishing of symmetric structure factor for odd |G |2
and antisymmetric form factors for even [GI2 (as
discussed for the zero-temperature case®!” is no
longer valid. For finite temperatures, VS(|G|?
=3, 11) and VA(IG|%=4, 8, 12) are needed, in addi-
tion to the five required for the zero-temperature
calculation, namely, V5(1G|2=4, 8, 12) and VA(IG|?
=3, 11). These five additional form factors are
again obtained by the interpolation and extrapola-
tion scheme from the original five with no arbitrary
adjustment.

Figure 1 shows both the calculated PbTe E(T)
vs temperature and that obtained from experiment. !
The nonlinear temperature dependence of the gap
below 40 °K is a result of the temperature dependence
of the expansion coefficient

1 8V
3V oT|,

at low temperatures (V being the volume). In the
temperature range 40-200 °K, the theoretical tem-

perature dependence

°F,

- -4 orr)-1
o T P- 3.9%10™* eV(°K)

is in agreement with the experimental value of 4.1
x10*eV(°K)"l. Above 200 °K the slope of the
theoretical E,(T) curve decreases, but the experi-
mental slope of 4.1x10™*eV(°K)™! persisted up to
about 350 °K; the theoretical temperature coefficient
between the two temperatures 100 °K and 300 °K is
only 3.3%10™eV(°K)™.

In order to gain a better understanding of the
deviation of theoretical result from experiment for
the temperature coefficient, the calculation was
redone to examine the two principal contributions:
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the lattice effect and the Debye-Waller effect.
These two contributions were separated and ex-
amined in turn. Since the two convenient variables
for the theoretical calculation of band energies are
volume V and temperature 7, the temperaturé co-
efficient for the energy gap E,(V, T) at constant
pressure is

3E,(V, T) | _3E,(V,T)| 8V |  8E(V,T)
aT IS av r 9T |p T v’

4)
the first term in Eq. (4) accounts for the lattice
effect, the second term accounts for the thermal
motion or Debye-Waller effect. To obtain only the
first term in Eq. (4), one scales the five zero-
temperature form factors to values corresponding
to lattice constants at 7=100 °K and T =300 °K,
obtaining

[E,(T=300°K) - E, (T=100 °K)] /200 °K
=1.8x10" eV(°K)™ . (5)

The value of 1.7x10™* eV(°K)™ is obtained if the ex-
perimentally measured pressure dependence of the
energy gap, compressibility, and expansion coeffi-
cient [a=(1/3V)(8 V/8T)lp is constant above T
=100 °K and has the value 1, 97x10™%(°K)"!] are used
The agreement between the theoretical and experi-
mental results is therefore very good for the lattice
effect. To examine the second term in Eq. (4), the
calculated Debye-Waller factors for 7=100 °K and
300 °K were put into the structure factors. Zero-
temperature form factors and lattice constant were
used. The resultant gap temperature dependence
arising from the Debye-Waller effect alone is

8E,(V, T)

- -4 o -1
oL , 1.3x10"% ev(°K)! . (6)

A value of 2.4x10™ eV(°K) would be expected from
experiment. The above analysis indicated that

the discrepancy between theory and experiment
arises mainly from the Debye-Waller effect. In
Table II it is seen that (6R2),, (at 300 °K) from mea-
sured x-ray experiments is different from that
which was calculated from phonon data (used in this
temperature-dependent calculation). With the
Debye-Waller factor derived from this x-ray de-
termination of ( 6RZ) ,, at 300 °K, one obtains a gap
almost 0.02 eV larger than that obtained before;
this factor alone could change the resultant
(8E,/8T)| p by as much as 1x10™ eV(°K)™, which
is enough to bring the theoretical result into excel-
lent agreement with the experimentally determined
value.

IV. CALCULATION FOR SnTe

The procedure employed for PbTe is followed
closely in the calculation for SnTe. The lattice
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constant in the temperature range 0-400 °K is ob-
tained from the experimental thermal expansion co-
efficient a(T), °and the form factors are scaled ac-
cording to the respective lattice constants at vari-
ous temperatures. The zero-temperature form
factors are those given in Refs. 7 and 8. However,
a complete listing of polarization vectors from the
phonon spectrum is not available for the computa-
tion of (5RZ%,),, and ( 6R%,),, as in the PbTe calcu-
lation. Instead, the mean-squared displacements
were calculated from the frequency distributions of
Sn and Te motion'® (the frequency distributions are
the sums of polarization vectors over phonon modes
t and wave vector q)

Eléﬁ,,(Sn)|2, Z_l-éa,,(Te)la,

t,q t,q

respectively, in each frequency range; the polar-
ization &g, (Sn) is defined by

- noo\/2. -
6Rg =2 (M) [ (Sn)(ag €'¥ Fsa

Q¢

+age i) | (7

The calculated mean-squared displacements for Sn
and Te as a function of temperature are tabulated
in Table II, together with those of PbTe.

The total temperature coefficient of the L gap is
-1.3%10* eV (°K)™! between temperatures 100 and
300 °K. A graph of E,(T) vs temperature in the
temperature range 0-400 °K is given in Fig. 3. The
band structure near the L gap had been shown to be
complicated. * %8 Figure 2 gives the zero-tempera-
ture band structure near L° in directions both par-
allel and perpendicular to the A axis near L. It is
clear that the first minimum gap in SnTe is in the
hexagonal face of the Brillouin zone perpendicular

0.32

0.31

0.30

Eq(L), eV

0.28
0.27 | | !
0 100 200 300 400
Temperature, °K
FIG. 3. Calculated temperature-dependent energy

gap E,(T) at L for SnTe.
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to the A axis; the second smallest gap is at L. In
Table III the values of energy gaps (for 7=0 and
400 °K) for k near L along and perpendicular to A
are tabulated. The gap decreases with increasing
temperatures for all 2 values lying between the gap
at L and the first minimum gap. The magnitudes
of the temperature coefficients, however, are
small and decrease with increasing distance from
the L point.

The temperature coefficient becomes positive
with k& values beyond the first minimum; or, using
the language of a previous paper, ° beyond the hump
structure. This result is anticipated from the band
structure of SnTe calculated previously by the
EPM®" and by the augmented-plane-wave method. '°
Dimmock et al. # originally proposed the reversal
of band ordering at L from PbTe to SnTe. If one
explores (using a simple perturbation model) what
happens as one goes from the PbTe band ordering
at L to that of SnTe, the bands would cross at the
hump structure (Fig. 2) if they did not interact with
each other. The bands, however, do repel each
other, thus forming gaps at this point. Because of
the larger band mass along the A direction, the
hump structure does not appear along this direction.
With this model, the SnTe valence band at L within
the humps in the direction perpendicular to A comes
from the piece of conduction band connected with
Lg in the PbTe structure; whereas, the SnTe con-
duction band within the humps arises from the PbTe
valence-band structure connected with L. Outside
the humps, the PbTe and SnTe band-structure sym-
metry is the same. The temperature dependence
of the gap near L in PbTe is positive because one
level is more sensitive than the other to tempera-

ture. Specifically,
5E pper level 5E lower level
ﬁr Y >0 ®)
P P

With the further assumption that each band edge
connected with Ly, Lj, respectively, in the PbTe-
like structure, moves as a whole with temperature,

Y. W, TSANG AND M. L. COHEN
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it is clear that in the SnTe structure, the gap tem-
perature coefficient will have the same sign as
PbTe outside the humps, but an opposite sign within
the humps. Esaki and Stiles* had reported that the
minimum gap in SnTe has a temperature coefficient
of about — 2x10~* eV(°K)™ between 4.2 and 100 °K.
Burke and Riedl?! have obtained apparently contra-
dictory results for the temperature coefficient of
the direct gaps for the photon-energy regions 0. 35
eV-0.65 eV, using optical data. They obtained a
small negative temperature coefficient [0 to —1.5
X 10™* eV (°K)!] for photon energies below 0. 4 eV;
above this photon energy, a positive temperature
coefficient is obtained. Because of the thermal
broadening of the Fermi level, the experimental
photon energies given may not?! correspond directly
to the direct gap in the band-structure calculation.
However, there is no question that these data
strongly suggest gaps having positive temperature
coefficient near the band edge. Only states very
close to the band edge will have a negative tempera-
ture coefficient, in agreement with the tunneling
experiments? and the results of this calculation.

The value of the Fermi level as a function of
carrier concentration in SnTe (according to the
EPM) has been previously computed. ® In Fig. 2
this information is entered on the zero-temperature
valence-band structure. Note the small calculated
Er. It is clear from the figure that a carrier con-
centration of about 7% 10! cm™ will give a gap that
has a positive temperature coefficient. For the
carrier concentration of 3.6%10!® cm™ used in op-
tical gap experiments, 2! the Fermi level falls be-
tween the levels given in Fig. 2, somewhat below
the L point. Table III shows that the temperature
coefficient at this point (AK is about 0.08 27/a from
L) is almost zero. This theoretical calculation of
the temperature dependence near the band edge in
SnTe therefore gives a consistent picture of the
present experimental situation.

Table III shows that a negative gap temperature
coefficient is obtained from the A direction near L.
This results from the large mass along A. The de-

TABLE III. Energy-gap values for SnTe near L for 7= 0°K and T = 400°K. AK’s are measured
from the L point of the Brillouin zone.

|AK| (units of 2n/a)

E, for direction L A axis

E, for direction || A axis

E3(T = 0°K) E3(T = 400 °K) EY(T = 0°K) E(T = 400 °K)

(A1) (V) (eV) (eV) eV)
0 0.327 0.279 0.327 0.279
0.02 0.304 0.258 0.35 0.305
0.04 0.244 0. 201 0.412 0.374
0.06 0.195 0.168 0.51 0.464
0.08 0.232 0.229 0.628 0.566
0.10 0.349 0.359 0.756 0.675
0.12 0.497 0.506
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termination of energy gaps by optical experiments
involves direct transitions from all the holes on

the Fermi surface, which according to this analysis
includes regions of both positive and negative tem-
perature coefficients. The measured temperature
coefficient will be an average over the Fermi sur-
face. A previous calculation®? which maps out the
Fermi surface demonstrates the complexity of the
surface and it is not obvious which sign of the gap
temperature coefficient will dominate at a given
carrier concentration. Therefore, the comparison
of this calculation with the optical experiments is
only qualitative. The tunneling experiments, how-
ever, explore the region near the minimum gap.
The magnitude of the calculated temperature coeffi-
cient at the minimum gap is small compared with
the experimental values. The discrepancy, we
believe, again arises from the uncertainty in the
set of Debye-Waller factors used in the calculation,
as will be discussed in Sec. V.

V. DISCUSSION FOR PbTe AND SnTe

It is easier to analyze the above calculation for
SnTe if the two principal contributions to the tem-
perature coefficient (lattice effect and Debye-Wal-
ler effect) are examined separately, as was done
in Sec. III for PbTe.

Lattice effect will be dealt with first. Table IV
gives the shift of the energy levels at the L point of
the Brillouin zone from 7'=100°K to 7=300°K.
[100 and 300 °K are chosen because they are within
the temperature range where the expansion coeffi-
cient a=(1/V)(8V/8T) |, can be taken to be linear. ]
With increasing temperature, the lattice constant
expands, thus reducing the kinetic-energy term
#21%+G1%/2m in the pseudopotential Hamiltonian
matrix element. This accounts for the negative
temperature coefficient of each individual level in
both SnTe and PbTe. The magnitude of the temper-

TABLE IV. Temperature coefficients between
T=100°K and 300 °K arising only from the lattice ef-
fect for the L levels in SnTe and PbTe. The labels cb
and vb refer to conduction bands and valence bands.

SnTe PbTe
E(T=300°K) E(T'=300°K)
-E(T'=100°K) -E(T=100°K)

Symmetry (eV) Symmetry eVv)
Li(ch) -0.09 Li(ch) -0. 083
Li(cbd) -0.142 Li(ch) -0. 088

gap gap
Li(wb) -0. 088 Li(wb) -0.124
45 @D) -0.083 Lis@b) -0.076
L (wb) -0.096 L(vd) -0.091
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TABLE V. SnTe temperature coefficients between
T = 100 and 300 °K arising only from the Debye-Waller
effect for the L} and Lg levels and E,.

aL¢ 8Lg BEg| _8(Li-L®)
(RYedy 0T lv  (5R%)ay a7 |y oT |, oT |y
@A) (10" eV/°K)  (A) (10" eV/°K) (10" eV/°K)
0.0116 4.88 0.0142 3.51 +1.37
0.0116 4.74 0.0232 5.45 -0.71
0.0116 4.94 0.0058 1.54 +3.4
0.0024 1.02 0.0036 0.78 +0.24
0.0024 0.99 0.0048 1.26 -0.27
0.0024 1.07 0.0012 0.33 +0.74

ature coefficient for each individual level is of the
same order in both SnTe and PbTe, with the excep-
tion of the L{ level at the gap. This Lg level is
more sensitive to the lattice change than the other
levels. It forms the top valence band in PbTe and
the bottom conduction band in SnTe, thus giving a
positive gap temperature coefficient in PbTe and a
coefficient of opposite sign in SnTe. The gap coef-
ficient arising only from the lattice effect is 1.8
x10"* eV(°K)"! in PbTe and - 2.8%10" * eV(°K)™}

in SnTe. The ordering of the gap is crucial in giving
the correct signs of this lattice part of the tempera-
ture coefficient in SnTe and PbTe. For this contri-
bution pseudopotentials in SnTe and PbTe only
slightly affect the temperature coefficient of the
levels.

The Debye-Waller effect will be discussed next.
The L¢ and Lg levels at the gap come from the sin-
gle-group symmetry L, and L,, respectively.

These symmetries imply that the L level is s-like
about Sn or Pb and p-like about Te, whereas, Lg

is s-like about Te and p-like about Sn or Pb. The
Debye-Waller factor e”¢%¢®2&>av/2deals with the
mean-squared displacement of the ion cores from
the rigid-lattice positions. Intuitively, one would
correlate the p character of an energy level and a
sensitivity to temperature arising from the Debye-
Waller effect since the movement of the atom brings
it into contact with the electron density away from
the core. The s character in the energy level is
expected not to be sensitive to changes in (OR%),,be-
cause of the spherical symmetry. Table V verifies
this prediction. The first row of this table tabulates
the three temperature coefficients between T=100
and 300 °K for SnTe

9L 9Ly oF

-6 bl % ——a

5T |, Ty ™ BTy
where

E,=Lg-Lg

for SnTe, and the mean-squared displacements

(6R%y ., and (5R%),, for T=300°K. In the second
and third row (8Rgy),, is artifically varied to dou-
ble and half of the mean-squared displacement of
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Te, keeping (éR%e)av constant, The resultant tem-
perature coefficients with this change in (5R§“>av
are then tabulated. These values indicate that the
temperature coefficient of the energy level L g which
is p-like about Sn changes withthe artifical changes
imposed on (3R 3,)ay. The temperature coefficient
of the Lg energy level which is p-like about Te re-
mains essentially unchanged. The above procedure
is now repeated for small values of (6R %,>a‘, and
<5R§,,>w in rows four, five, and six. An arbitrary
value of approximately one-fifth of the value calcu-
lated from Cowley’s'® phonon spectrum is chosen
for (6R2y,, in row four. In the fifth and sixth rows
of Table V we list the temperature coefficients re-
sulting from a variation of (6RZ,),, to double and
half that of (GR%QM in row four. The temperature
coefficients (8Lg/87T) |, and (8L;/87) Iy of row four
clearly are a factor of 4 to 5 smaller than that of
row one. The temperature coefficient (8L5/87T) |,
of rows four, five, and six again remains quite
constant.

This point is made most clearly using a graph.
In Fig. 4 the solid curve represents (8L;/87) |, vs
(6RZ,)., (T=300°K) and the dash curve plots
(8Lg/aV) 1y vs (6RZ,)., (T=300°K). This figure
clearly indicates the following :
(a) (8L;/8T)ly is linearly proportional to (BRZ,(T)),,,
that is,

(8Lg/8T) |y =BAT)(BRE, (T))uy+5_; 9

(b) (8L¢/87T)1y is linearly proportional to (SR2(T)) .y,

that is,
(aLg/aT‘ V= B+(T) <6R '?‘e(T»av"’ 5, 3
(c) the slopes B,(T) and B.(T) are both positive and
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FIG. 4. Graph of temperature coefficients
(8L%/8T | yand (8L;/0T) | y vs (BR%e)ay (T'=300 °K) and
(OR%)ay (T=300 °K), respectively. (The brackets on
the dash curve show the range of values of (8Lg/9T) |y
given in Table V.)
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B.(T)>B(T).

Properties (a) and (b) can be partially arrived
at by symmetry considerations alone. The tem-
perature coefficients of individual level (8Lg/87T) |y,
(8Lg/3T) |y, etc., are all positive because the
increased vibrations of the ion cores adds extra
energy to the system. In case (c) the observation
that B,(T) is greater than B_(T) may be attributed
to the fact that Te probably has more affinity for
the valence electrons. The same property holds
for PbTe; the exact values of B,(T) and B.(T), how-
ever, are very much dependent on the pseudopoten-
tial form factors used.

With the former analysis, the temperature de-
pendence of PbTe and SnTe is completely consis-
tent. For PbTe at the L point, Lgforms the con-
duction band and Lgthe valence band. For the
lattice effect, all levels move down with increasing
temperature, but Lg is more sensitive, thus giving
rise to a positive gap temperature coefficient. For
the Debye-Waller effect, all levels move up with
increasing temperature. If (5RZ2,),, and (5R%,),,
were the same, property (c) would predict that
the Lg moves up more than the Lg in a given tem-
perature range. However, Table II shows that
(6R%,)> (5R%, ), for each temperature, thus com-
pensating for the smaller slope B.(T) for the Lj
level. The result is that the L actually moves up
more than Lg, giving a positive gap temperature
coefficient.

SnTe has the opposite band ordering at the L
point, Lg on top and Lg on the bottom. For the lat-
tice part, Lgis again sensitive and moves down
more than the Lg for a given temperature range,
thus giving rise to a negative gap temperature co-
efficient of — 2.8x10*eV(°K)™!. For the Debye-
Waller effect, all levels move up. Since (SRZ),,
is only slightly greater than (5RZ,),, (Table II), it
is not big enough to compensate for the larger
slope B,(T). Therefore, the L; level moves up
more than the Lg level and gives a positive tem-
perature coefficient for the Debye-Waller effect.
The total temperature coefficient of the gap in-
cludes both the lattice and the Debye-Waller effect.
The theoretical calculation gives — 1. 3X10™*eV(°K)~*
at L for SnTe and much smaller magnitude for
states near the minimum gap. Tunneling experi-
ments yield a temperature coefficient which is ap-
proximately — 2X10"*eV(°K)™l. The actual Debye-
Waller factor used in this calculation has a large
influence on the temperature coefficient. In the
calculation for PbTe, it was found that whereas
the Debye-Waller factors deduced from x-ray
experiments and phonon calculations (involving
phonon polarization vectors throughout the Brill-
ouin zone) both give (6R%,),, > (6R%,),, a spherical-
model calculation based on PbTe phonon frequency
spectrum along symmetry directions gives (6RZ,),,
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> (8R% )4 This set of Debye-Waller factors from
the spherical model will give rise to a negative
temperature coefficient in PbTe, contrary to ex-
periment. For SnTe, a complete set of phonon
polarization vectors and frequency throughout the
Brillouin zone is not available. Therefore, the set
of Debye-Waller factors used in the above calcu-
lation is deduced from the phonon frequency dis-
tribution (see Sec. IV). The results were similar
to the Debye-Waller factors obtained from the
spherical model. Should phonon polarization vec-
tors be available for SnTe it would be interesting
to investigate the Debye-Waller factors deduced
from these measurements to recalculate the tem-
perature dependence of SnTe.

VI. SUMMARY

In summary, this calculation has shown that: (i)
The set of zero-temperature pseudopotential form
factors which gives a reasonable band structure
throughout the Brillouin zone, and which adequately
explains the optical properties of PbTe %2 also0
yields, in this finite-temperature calculation, both
the correct sign and magnitude of the temperature
coefficient of the direct gap at L. A similar cal-
culation for SnTe near the L region gives the cor-
rect sign but less satisfactory results for the mag-
nitude of the temperature coefficients. (ii) The
different gap ordering at L is crucial to give op-

posite signs for the lattice contribution to the tem-
perature coefficients in SnTe and PbTe. (iii) Re-
liable Debye-Waller factors are necessary in this
type of calculation to give a quantitative description
of the temperature-dependent band structure. (iv)
Similar calculations have been done for GaAs® in
excellent agreement with experiment. The success
for GaAs and the fact that the set of form factors
for PbTe gives good agreement with experiment
for the lattice-expansion contribution to the tem-
perature coefficient indicate that the discrepancy
between theory and experiment for the total tem-
perature coefficient might be accounted for by the
uncertainty in the Debye-Waller factors. This adds
further evidence for the usefulness of the EPM for
gaining information about the temperature variation
of band energies. Furthermore, since the tem-
perature coefficient is sensitive to the choice of
form factors, this kind of calculation serves to
indicate how good the form factors are, and puts
an additional constraint on the pseudopotential
form factors.
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