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The plasmon excitation spectrum of an electron gas in a real crystal is analyzed in the
random-phase approximation without exchange for the weak-binding case. The features of
this spectrum are studied as a function of energy gap and electron density. Several plas-
mon branches, which do not always go down to q = 0, appear with increasing energy gap and
with the filling of the valence band. The contribution of normal and umklapp processes to
the behavior of the real part of the dielectric constant is analyzed and correlated with a
phenomenological model.

I. INTRODUCTION

In a recent paper, we evaluated the energy loss
of protons to valence electrons in solids under
channeling conditions. ' The model took into account
an electron gas having a space-periodic density and

allowed evaluation of the off-diagonal matrix ele-
ments of the response function.

The analysis of the excitation spectrum in our
particular case showed a very different behavior
both from the familiar free-electron case and from
another one studied by other authors. The latter
found for the first time a collective state at inter-
mediate q values as a consequence of the interaction
of the periodic potential with the electron gas. In
our case, however, the two branches of the plasmon
excitation line did not join through the continuous
single-particle excitation spectrum, and the upper
branch did not go down to momentum transfers
q= 0, but gave rise to a closed loop.

Therefore we thought it beneficial to study the
interrelation among the various oarticular cases re-
ported up to now by different authors. ' For this
purpose a systematic analysis of the excitation
spectrum has been carried out by varying some of
the parameters which characterize the electron gas
in real crystals (energy gap, electron density). In
particular, cases very similar to the ones pre-
viously treated, i. e. , metals with a small energy
gap and semiconductors, have been included.

We recall here briefly the essential features and
approximations of the model employed in Ref. 1.
The response function was calculated in the random-
phase approximation (RPA) without exchange for
the nearly-free-electron case. "6 The model was
particularized for s electrons in gold and the pa-
rameters chosen accordingly. The simple spherical
Penn model7 was modified in order to take into
account crystal anisotropy. The Brillouin zone was

still assumed as a sphere of equal volume parti-
tioned, however, in 14 equivalent sectors, one for
each first and second neighbor of the reciprocal
lattice. We notice, however, that this particular
assumption is of no importance in the present case,
since we limit ourselves to the diagonal terms of
the response function. This favorable circumstance
arises from the fact that for nearly free electrons
with small damping, the condition for plasmon ex-
istence is still determined by the usual condition'

001 0P

where ~0, is the real part of the diagonal dielectric
constant. In fact, in the weak-binding approxima-
tion, the response function is of the form"

&(q, G, &) = ~a, o „(-0 )
- (I —~a o)

o.(q, G, (u)
I+ o.'(q, o, ~) '

where &(q, G, +) are the polarizability components
corresponding to the reciprocal lattice vector G:

4m
o.'(q, G, ~) = — - —,~) (P~ exp(iq r )

~ j)Qlq+G I

x(j~ exp[ —i(q+G) r]~ P)

1 1
X 8 (u —(E, —E,) + in a'(u+ (E, -E,) + in

(3)

(where 0 is the volume and j, p are initial and final
states, respectively). In particular, for free elec-
trons

e (q, (o) = I + o.'(q, 0, ~) .
Therefore the singularities of the response function
are the same as for the usual case G= 0.

Obviously in a real crystal, plasmons can be
damped due to U processes. However, under the
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assumption of small damping, the dispersion rela-
tion of the real part of plasma frequency is still
given by (1) (see Ref. 2, p. 176).

Therefore, in order to determine the plasmon
excitation spectrum, it is sufficient to calculate &0,
as a function of q and &.

II. DESCRIPTION OF MODEL AND NUMERICAL RESULTS

In our model we introduced an energy gap for a
wave vector k equal to the Brillouin-zone radius
kD. The wave function in each of the 14 sectors was
assumed of the form

elk P g f(k4)'r
k

g1/2 (I+ (4)1I2
k

where the symbols have the same meaning as in
Ref. 1. In particular, G= —2kDk, where 5 is a unit
vector in the direction of the reciprocal-lattice vec-
tor lying in the same sector of k. This point differs
from the isotropic Penn's model, in which k is
simply directed along k. '

Moreover, for k & 2kD we assumed free-electron
behavior. We took into account both normal and

umklapp processes. We assumed an extended zone
scheme and, as usual (see, e. g. , Ref. 7) we refer
to transitions for which G=0 as "normal" and these
for which G c0 as "umklapp. " Consistently with
our model, the latter can occur only up to momen-

turn transfers q& 2kD.

As in our previous paper, we use here nondimen-

sional units 2k~= 3.04 A ' for wave vectors and

4ED = 4h k ~/2m = 34. 8 eV

for energies. With these units, the parameter y
= (waok~)

' (where ao= Bohr radius) used by other
authors ' turns out to be y = 0. 198/k~, where k~ is
in our nondimensional units.

The two variables considered here were the en-

ergy gap E, and the Fermi radius k~: We varied
either of them, keeping the other one fixed. Starting
from the values of the parameters previously used
LRef. 1; energy gap E~= 0. 17, Fermi wave vector k~
= 0. 4 (half-full band)] we extended the analysis to

E~ values ranging from the free-electron case
(E~= 0. 0) up to fairly-high-energy gaps (E, = 0. 25,
i. e. , E, = E~), keeping the electron density constant.
A further extension to higher-energy gaps does not
seem consistent with weak-binding assumption.
Moreover, the case in which the filling of the band
varies from the semiconductor case (full band) down

to a, fairly empty band (kz -0.3, i, e. , about —, full)
keeping E, constant was considered.

The real part of the dielectric constant was eval-
uated by numerical integration using a digital com-
puter. Calculations were performed partly on the
CDC 6600 of tne University of Bologna and partly
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FIG. 1. Plasma excitation
spectrum as a function of en-
ergy gap with constant electron
density (kz-—0. 4). Along the
full line &0 &

= 0; dashed lines
bound the single-particle ex-
citation spectrum and N and U

indicate normal and umklapp
processes, respectively, (a)
E,=O. O; (b) Z, =p. ip; (c) E,
=Q. i3; (d) E,=O. i5; (e) E,
= 0. 25. {~ and q as well as E~
and kz in nondimensional units,
see text. )
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FIG. 2. Same as Fig. 1, but
as a function of electron den-
sity with constant energy gap
(Eg ——0. 17); (a) kg

——0. 5; (b) k p
=0.475; (c) k~=0. 45; (d) kz
=0.425; (e) k& ——0.4; (f) k&
= 0.35. (~ and q as well as E~
and k& in nondimensional units,
see text. )
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on the IBM 360/65 of the Nuclear Centre of Kronen-
boug (Strasbourg}.

Figure 1 shows the behavior of the excitation spec-
trum with increasing energy gap, keeping the lower
band half-full.

In Fig. 1(a} one sees the spectrum for E, =O, with
the usual plasmon branch. With the introduction of
an energy gap, the single-particle excitation spec-
trum shows a gap limited to a narrow q range: In-
side this region a new plasmon branch appears
[Fig. 1(b}j. This branch corresponds to the "zone-
boundary collective state" found by other authors.
We notice that for these not-too-high values of E~

the two branches join continuously through the sin-
gle-par ticle excitation spectrum.

With increasing E„u&~ at q= 0 decreases [Fig.
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FIG. 3. Contributions to the real part of dielectric
constant vs ~. o, N and o.& are the contributions due to N
and U processes, respectively. E~=0. 17, k&=0. 4, q
=0. 025. ((d and q as well as E~ and kz in nondimensional
units, see text. )
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FIG. 4. Same as Fig. 3 for (a) E~=0. 17; k+=0. 4; q
=0.3: (b) E~=0.25, k& —-0.4, q=0. 275.
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FIG. 5. Same as Fig. 3 for E~=0. 17; &+=0.45;
q=0. 025.
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FIG. 7. Same as Fig. 6, but for q=0. 2.

1.(c)]andfinally, concurrently with the appearance ot'

an energy gap in the single-particle excitation spec-
trum, the two branches split [Fig. 1(d)]. The zone-
boundary collective state ranges up to q= 0, while
the upper branch becomes a closed loop without
reaching low-q values any more. This corresponds
to the case previously treated by us. ' A further in-
crease of E, makes the loop shrink and the upper
plasmon branch tends to disappear [Fig. 1(e)].

Figure 2 shows the variation of the spectrum when
the band is progressively emptied for the particular
E, used in our previous paper. Figure 2(a) corre-
sponds to a lower band completely filled, i. e. , to
the more usual case of a semiconductor. Also in
this case we have a single plasmon branch. The
essential difference compared to free electrons lies
in the fact that the line e0, = 0 does not go through
the origin. This is strictly correlated with the well-
known fact that the limit of eo, (0, (u) when co 0 is
finite (incomplete static screening). ' Obviously,
in this case only excitations corresponding to inter-
band transitions are present. As the band becomes
more and more empty, an intraband excitation spec-
trum and correspondingly a plasmon branch, sepa-
rated from the other, appear [Fig. 2(b)]; this branch
expands with decreasing kz [Fig. 2(c)]. The transi-
tion between this type of excitation spectrum and

tha, t with a closed loop, in which the upper plasmon
branch does not reach the point q= 0 any more, is
shown clearly in Fig. 2(d). The upper branch splits
off and gives rise to a closed loop. In a narrow
region of small q values, a plasmon branch still
survives, which, however, disappears as k~ de-
creases: Then we obtain again the case previously
treated by us' [Fig. 2(e)]. As k~ decreases fur-
ther, the closed loop shrinks more and more and
finally disappears [Fig. 2(f)].

III. OISCUSSlgN

Our results can be correlated on the basis of the
simple phenomenological model proposed by Wil-
son. '0 In this model, the real behavior of the elec-
tron gas is approximated by two sets of oscillators,
one representing free electrons, the other repre-
senting bound electrons which can undergo transi-
tions which give rise to an optical absorption band.
The behavior of the zeros of the real part of the
dielectric constant is analyzed as a function of the
relative position of the free-electron plasma fre-
quency and the optical absorption band, and of the
width and intensity (i. e. , the oscillator strength)
of the latter.

It is convenient to separate the contribution of
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FIG. 6. 1+md for k& ——0. 4; q=0. 1 and two different

values of Ez ——0. 0 and Ez ——0. 17 (~ and q as vmll as Ez and
Az in nondimensional units, see text. ) FIG. 8. Same as Fig. 6, but for q=0. 4.
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0 1 N+ Up (6)

where N stands for normal and U for umklapp. Gen-
erally, the contribution of &~ is on the average
about 20% and can be considered a small correction.
However, in some cases which are of particular
interest here (e0, -0}this is no longer true. This
occurs when E, is sufficiently great (E, ~ 0. 15) and

the band is full enough (kz —-0.4). In these regions
&~ produces the following effects:

(i) For small q (here and in the following, for
"small" qwe mean q&k~-k~, i.e. , q is inadequate
for producing normal interband transitions) a no-
ticeable shift in the zero of eo, occurs (d &~ =0.04,
see Fig. 3}.

(ii} For large q(q=0. 3), &v, even though small,
maintains two zeros at large (d in &0, which other-
wise will tend to disappear in 1+ o„[Fi g4(a)]. This
causes the loop to be larger and, indeed, to persist
up to high values of E~ [E~= 0. 25, Fig. 4(b)].

A third and more considerable effect occurs
when the band becomes even fuller (k~=0. 45). In

this case for small q, o.'~(&) is of the same order
of 1+ o.'z(&) over an extended &u region and varies
strongly with frequency. It behaves as in the case
treated by Wilson when a broad and strong optical
absorption band is present, [see Figs. 3, 4(a), and

5(a) of Ref. 10]which splits the plasma frequency
in three (Fig. 5), giving rise to the plasmon
branches of Figs. 2(b) and2(c).

Now we analyze the behavior of 1+ n„(&u) For.
small q values it does not depart greatly from the
free-electron case. However, the curves show a
general shift towards lower & values which in-
creases with q (see Fig. 6); this occurs concurrent-
ly with the depression to lower & values of the in-
traband excitation spectrum compared to the free-
electron case (see Fig. 1).

For q high enough to produce normal interband
transitions, the behavior is very complicated. By
comparing with the free-electron case, one can
regard the trend as being due to a superposition of

a free-electron-like curve and an optical absorp-
tion band (Fig. 7). As a consequence, in agree-
ment with the Wilson model's expectations for the
case of a strong optical absorption band, the plas-
ma frequency splits again in three frequencies
(possibly shifted by U processes). With increasing

normal and umklapp processes to dielectric constant
in the following form:

q this oscillation in 1+&~ damps out, i.e. , the
oscillator strength for interband transitions de-
creases, and 1+ n~ tends again to become free-
electron-like (Fig. 8).

In conclusion, our results show that as the en-

ergy gap and the electron density vary, the plasmon
excitation spectrum varies much more markedly
than one could expect on the basis of the simple
cases usually considered, i. e. , the free-electron
gas and the semiconductor.

The main features which can be present are:
(i) a plasmon branch at intermediate q values

(zone-boundary collective state), which joins to the
ordinary branch through the single-particle excita-
tion spectrum,

(ii) a closed loop which does not reach q = 0,
(iii) three plasma frequencies at q = 0.
In the first two cases, the presence of several

plasmon branches for intermediate and large q is
essentially due to the occurrence of normal inter-
band transitions. Umklapp processes play a minor
role, which, however, becomes more important
with increasing E~. In this case the shift of &~ at
small q's turns great enough to produce the excita-
tion spectrum with a closed loop.

In fact, in our nearly-free-electron model this
contribution depends on the C~'s [see Eq. (8) of

k
Ref. 1]:When k~ increases, electronic states which
lie nearer to the zone boundary and therefore have
a greater Cg contribute to these processes.

It is important to point out once more the limita-
tions of our model: Actually the crystal symmetry
has been considerably underestimated, and the
treatment was restricted to nearly free electrons.
Furthermore, the lattice spacing was not included
among the variables. However, in spite of these
simplifications, this work shows very complex fea-
tures of the excitation spectrum and can give an in-
dication of what one should expect for different real
solids.

Finally, with regard to a possible comparison
with experiments, recall that we were interested
in the stopping power of protons under channeling
conditions, '" rather than in discrete energy-loss
problems; however, we think that experiments
aimed at checking the characteristic features out-
lined above are feasible and of interest. However,
a proper evaluation of the damping due to interband
transitions, whose importance was pointed out also
recently' '" and which could weaken or even mask
these effects, would be necessary.
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di Bologna, Bologna, Italy, Istituto Nazionale di
Fisica Nucleare, Sezione di Bologna, Bologna, Italy,
and Gruppo Nazionale di Struttura della Materia del
C. N. B., Italy.
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The empirical pseudopotential method is modified to calculate the temperature dependence
of the fi.rst direct gap Ez of PbTe at the I point of the Brillouin zone. The same set of form
factors which had given a reasonable band structure throughout the Brillouin zone and which

adequately explains the optical properties of PbTe gives both the correct positive sign and

magnitude for (BE~IBT)IJ„The same method when applied to SnTe gives very unusual results,
namely, a negative temperature coefficient for the region in the Brillouin zone near the mini-
rnum gap but a positive temperature coefficient for gaps slightly removed from the minimum

gap. This appears to be consistent with the negative temperature coefficient obtained from
tunneling experiments and the positive temperature coefficients obtained from optical measure-
ments. The origin of the temperature dependence of conduction and valence levels at the gap
is discussed in detail.

I. INTRODUCTION 0.40

Optical experiments ' a't constant pressure show
that the first direct gap E~ of PbTe at the I. point
of the Brillouin zone increases linearly with tem-
perature in the temperature range SO-350 'K; for
higher temperatures, the E,(T) curve approaches
a constant value. The value of the linear tempera-
ture coefficient (SE /&T) }p in the linear region lies
between'2 4. 1x10 and 4. 5x10 eV('K) . The
positive sign of the temperature coeff1cient 1s 1n-
teresting since most semiconductors have a negative
temperature coefficient. In this paper, a theoretical
calculation3 of (8E~/&T) }p for pbTe using the pseu-
dopotential method is outlined. %e obtain the cor-
rect positive sign and a value of 3.Qx10 eV('K)
for (SE~/S T) }p in the temperature range from 40 to
200'K (Fig. 1); the slope of the theoretical curve
E~(T) begins to decrease for temperature above
200 'K.

In SnTe, metal-insulator-semiconductor tunneling
experiments yield a negative temperature coeffi-
cient of —2x10 ('K) ' for the region near the min-
imum energy gap. This theoretical calculation of
the temperature coefflclent 1n SDTe gives a value of
—1.Sx10 4 eV ( K) ' for the gap at the I. point of
the Brillouin zone. The band structure of SnTe re-
sembles that of PbTe throughout the zone except at
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FIG. 1. Calculated and experimental temperature-
dependent energy gap E~(T) for PbTe. The theoretical
curve does not extend to high temperatures because
Debye-Wailer factors were not available above 400 K.
{The experimental data were taken from Ref. 1).


