
THEORY OF METAL SURFACES' WORK FUNCTION

(1968)]. Value used is average of high-coverage-limit
work functions for Li deposited on various faces of %
and Be.

8J. C. Biviere, in Solid State SN/ace Science, edited
by M. Green (Dekker, New York, 1969), Vol. 1.

~C. Herring and M. H. Nichols, Bev. Mod. Phys.
21, 185 0.949).

It might be mentioned that T. Schneider tPhys. Status
Solidi ~32 323 (1969)] has shown second-order effects in
6v to reduce —P, the bulk contribution to the work func-
tion, by 0. 1-0.2 eV for the alkalis andby 0. 3 and 0. 8 eV
for Al and Mg, respectively. The second-order effect
of 6u on the surface term &~tj must be determined, how-
ever, before any conclusions can be drawn concerning

the net importance of (6v) ~ terms in 4'.
BlBeference 19 gives also a second, much larger, value

of x~ for each of these metals, which leads to somewhat
less satisfactory results for bulk properties. The work
functions calculated with these r~'s are about 1 eV lower
than those corresponding to the preferred set, giving an
even greater discrepancy with experiment.

3 Cu and Ag: D. E. Eastman, Phys. Bev. B ~2 1
(1970); Au: E. E. Huber, Appl. Phys. Letters 8, 169
(1966}.

There is some theoretical evidence suggesting the
existence of occupied surface states in the noMe metals;
this could of course also affect 4P, See F. Forstmann
and J. B. Pendry, Z. Physik 235, 75 (1970).

PHYSICAL BEVIE% B VOLUME 3, NUMB EB 4 15 FEBBUABY 1971

Some Formal Aspects of a Dynamical Theory of Diffusion*

Michael D. Feit
Department of Physics and Materials Reseurek Laban atty,

University of Illinois, Uxbana, BBnois 61801
(Heceived 2 October 1970)

A classical dynamical theory of diffusion is presented in which the reaction coordinate and its
critical value are expressed in terms of a 3N-dimensional vector B. The Slater approximation
to the Kac equation is shown to be exact for classical statistics, and the jump rate is calcu-
lated accordingly. The jump rate ean be expressed in terms of the vector 8, and the dynamic
matrix; this leads to a frequency factor different from that obtained from the reaction-rate
theory, and an indication that the system does not jump through the relaxed saddle-point con-
figuration. The self-diffusion isotope effect is also considered. It is shown explicitly that the
migration energy is mass independent, and that the effect may be expressed simply in terms
of the reaction coordinate. In terms of the phonons, the isotope effect depends on a weighted.
average of the fraction of the energy carried by the jumping atom in each mode. Quantum
corrections are discussed and a connection is made between the isotope effect and thermomi-
gration.

I. INTRODUCTION

There has been increasing interest in recent
years in formulating the theory of diffusion jump
rates in a way that avoids some of the conceptual
difficulties of the absolute-rate theory. ' The rate
theory was applied to diffusion by Wert and Zener,
and elegantly formulated by Vineyard to show ex-
plicitly how the motions of many atoms are involved
ln the ]ump process. This can be seen ln Vine-
yard's form for the preexponential or frequency
factor

in which v, and v, are the normal-mode frequencies
of the equilibrium and saddle-point configurations,
respectively, with the unstable "mode" of the sad-
dle point left out of the product in the denominator.
The many-body nature is also apparent in the iden-
tification of the migration energy with the potential-
energy difference of the relaxed saddle-point and

equilibrium configurations.
The troubling aspect of rate theory is that it

focuses so strongly on properties of the relaxed
saddle-point configuration. In a quantum-mechani-
cal theory it would not only be impossible to treat
positions and velocities independently, but, more
significantly, it would be completely inappropriate
to speak of the properties of the intermediate state,
as has been pointed out by Flynn and Stoneham.

Attempts to circumvent these difficulties have

been made by several authors. ' These "dynami-
cal" theories view the jump process as resulting
from a special kind of fluctuation from equilibrium,
and attempt to calculate the frequency of such fluc-
tuations. In the earlier work, fluctuations were
considered that carried the system to a definite
configuration, e. g. , the relaxed saddle-point con-
figuration. Glyde~ has shown that, for this case,
the dynamical and rate theories have the same
formal content. More recently, Flynn' has con-
sidered fluctuations in a reaction coordinate, made

up of a linear combination of particle displacements,
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whose significance is that a jump is guaranteed if
the magnitude of the fluctuation exceeds a critical
value. This approach is probably preferable to the
earlier one since the contributions of all sets of
displacements that move the system in the correct
phase-space direction are included; it is the ap-
proach that will be used in the present paper.

An appropriate reaction coordinate will be de-
termined largely by the crystal structure; e. g. ,
Flynn chose the relative separation of the jumping
atom from the center of mass of the barrier atoms.
The problem then reduces to calculating the fre-
quency with which this reaction coordinate, due to
atomic vibrations, exceeds the critical value. The
critical value determines the size of the energy
fluctuation needed to effect the jump, and therefore
determines the migration energy.

Aside from the jump rate itself, it is of interest
to study the motion volume and the diffusion-isotope
effect. The motion volume can be simply inter-
preted, according to rate theory, as the change in
crystal volume upon activation of the defect. In the
dynamic theory, ' however, it depends mainly on
shifts in the normal-mode frequencies as repre-
sented by the pressure dependence of the elastic
constants. We shall not pursue this subject in the
present paper; we shall consider the isotope effect
for self-diffusion. The relative change in the jump
rate due to a small change in the mass of the jump-
ing atom is important because it is a direct indica-
tion of the many-body nature of diffusion. Since a
number of atoms participate in the jump process,
the mass dependence of tht.' jump rate is reduced
from the inverse-square, . 'root dependence of a sim-
ple oscillator. As is well known, the rate theory
predicts that this reduction depends only on the
fraction of kinetic energy carried by the migrating
atom in the unstable "mode" of the relaxed saddle-
point configuration. Calculations based on this
prescription appear to give a larger mass depen-
dence than is found experimentally. '

In the present paper we explore some general
features of a classical-dynamical theory of the jump
process. In Sec. II, we start from a general form
for the reaction coordinate and show that the Slater
approximation" to the Kac equation' for the up-
zero frequency of trigonometric sums is rigorously
valid for classical statistics. The jump rate is
calculated accordingly in terms of the reaction co-
ordinate and a definite critical fluctuation value.
This leads to an effective frequency different from
that of rate theory and to the prediction that, on
average, the system does not pass through the re-
laxed saddle-point configuration when making a
jump.

In Sec. III, the previous results are generalized
to the case of unequal atomic masses so that the
isotope effect can be treated. It is shown explicitly

that the migration energy is mass independent so
that the effect depends only on the mass dependence
of the preexponential factor. This dependence
takes on a simple form when expressed in terms of
the atomic displacements; in terms of the phonons,
it involves a weighted average of the fraction of
energy carried by the jumping atom in each mode.
Quantum corrections to this result are discussed,
and, finally, a connection is made to the theory of
thermomigration. In Sec. IV, these results are
discussed and a model calculation is described.

R= Q„A„e„ (2. l)

where the sum extends over all phonon modes.
We make no assumption as to the form of the eigen-
vectors, and let the A.„, for generality, be complex
numbers so that the reaction coordinate will mea-
sure fluctuations of both kinetic and potential ener-
gy. The relative sizes of the coefficients A„de-
termine the structure of the reaction coordinate,
while their absolute magnitudes specify the size
of the harmonic-energy fluctuation ~E necessary
to carry the system to the point R in phase space:

&E = —.
'

m P„A„ l' ~3 (2. 2)

The reaction coordinate is then x (t) =y (t) R, where

y (t) = P„u„e„e'"" (2. 3)

describes the thermal motion of the system. We
wish to find the frequency with which x (t) exceeds
the critical value q, i.e. , the up-zero frequency of

x(t) q-P g u e' n (2. 4)

This problem has been solved by Kac' who gives
the frequency v (q, ju„})corresponding to the criti-
ca.l value q and the set of phonon amplitudes {u„j
as

p(q, (u„))=(2m) '
~ cosq& Ill~a

"dEdq
«CO ~ 00

&&(l&.u. l
() —ff~o(l~".

I

«''~'. n')'")] . (2. 5)

The most useful form of this equation, for our
purposes, was derived by Slater, "and also used by
Flynn, ' under the approximation that all the phonon
amplitudes are essentially equal. The desired

II, REACTION COORDINATE AND CRITICAL VALUE

The dynamic approach rests on the assumption
that there exists a particular unique type of fluctua-
tion, called the reaction coordinate x (t), such that
if the magnitude of this fluctuation exceeds a cer-
tain critical value q, the jump is guaranteed. We

may, without approximation, express the reaction
coordinate as the projection of the actual motion of
the system onto a phase-space vector R which we
write in terms of the phonon eigenvectors e „as
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equation, however, has a more general validity as
can be seen by considering the system as a canoni-
cal ensemble, thereby allowing for energy fluctua-
tions. The ensemble average jump rat. e I' is found

by averaging over all possible sets of phonon ampli-
tudes:

where

I' = f v(q, {u„])p„P(e„)de /kT, (2. 8)

2 2
Q(e ) —e 6n /(( T —e

- 1/2m' n un /" r
n (2. I)

gives the distribution of the amplitudes {ug. The
resulting integrals are easily evaluated using

2f"Z, (o(Vx) e "dx -= e- '4

0
(2. 8)

The resulting jump rate is

r =(~,/2w)e s-/"

where

(2. 9)

(2. 10)

and

= —,'m((/ q /& I[2. 11)

which is exactly the same form as obtained from
Flynn's equation (2. 8) after inserting the thermal-
average amplitudes Iu„ I

~= 2kT/m&@3.

Since the reaction coordinate is a projection of
the system motion onto a phase-space vector R
whose magnitude determines the energy fluctuation
involved, we may reasonably assume that a critical
value is reached when this projection has magnitude

)8(, That is, a jump will take place if the system
starts off in the right direction in phase space with

just enough energy. Thus, we take q = I R I =g„ I&„l
so that Eq. (2. 11) for the migration energy becomes

E.=-,'m~2
f
R f~. (2. 12)

We may also rewrite Eq. (2. 10) in bra-ket notation
as

~0=m 'f R f~/(R
f
D 'f R) (2. 18)

to show how cdp depends on the reaction coordinate
and the force constants. In this last equation, D

is the dynamic matrix.
There are two interesting observations about

these formal expressions [Eqs. (2. 9), (2. 10), and

(2. 12)] that can be made immediately.
The preexponential factor looks quite different

from that of rate theory [Eq. (1.1)]. In the rate
theory, each of the equilibrium and saddle-point
"normal-mode" frequencies enters on an equal basis.
In the present picture, cop is a weighted average of
the equilibrium frequencies with those modes most
important to making a jump weighted the heaviest.

However, we have to be careful because the effec-
tive frequency of rate theory is a product of an at-
tempt frequency and the entropy term e ~ ", where
~S is the entropy of motion. Vineyard separated
these factors by imagining a hypersurface Sp passing
through the equilibrium point and similar to the
saddle-point surface S. The attack frequency then
is the effective frequency of oscillations out of Sp,
and the activation term depends on the free energy
needed to reversibly carry the system from Sp to
S. The important point is that the attack frequency
depends only on those normal modes whose eigen-
vectors do not lie in Sp, In analogy, our urp is de-
termined only by those normal modes whose eigen-
vectors do not lie in the hyperplane norma1. to R.
So we are led to interpret ~0 as an attempt frequen-
cy, an interpretation reinforced by the fact that our
E in Eq. (2. 11) is temperature dependent and leads
naturally to an entropy term. Despite this similar-
ity, we expect the dynamic theory attempt frequen-
cy to be larger than that of rate theory. This is
because the weighting factors LA„ I', as shown by
Flynn, favor the high-frequency modes, while the
average of rate theory is practically unweighted.

A quantitative observation can be made about the
activation energy & . From Eqs. (2. 2) and (2. 12),
we can easily show that

(2. 14)

unless only one mode is involved in the reaction
coordinate or all the frequencies are equal, in
which case the two energies are equal. Notice that
this relation is true at all temperatures. That is,
the migration energy is less than the harmonic-
energy fluctuation corresponding to the critical
value of reaction coordinate. If the migration en-

ergy represents the potential-energy difference of
the relaxed saddle-point and equilibrium configura-
tions, the system will not jump through the relaxed
saddle point, but, instead, through a slightly high-
er-potential configuration. This conclusion is
physically reasonable since, at finite temperature,
there is a region of phase space around the relaxed
saddle point through which the system can jump.
The slightly higher-potential configurations are
favored, on the average, because of their large
number. This is to say that the system will be vi-
brating in the saddle-point surface while crossing
it.

We can write Eq. (2. 9) in a more familiar form
by treating E as a free energy, as mentioned
above, and by explicitly writing out its temperature
dependence,

z.(r(=z„(o),r ("-)
= E (0) —TE (0) = =, (2 15)

s ln(R ID 'IR)
9T
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by Eq, (2. 13). It is seen that the migration enthalpy
e H is to be identified with E (0) and the entropy
48 with

1/2

J3„=Z An —' e„,e„=Q V„e„
40, mk e

sin(RID'In))
m- m 8T (2. 16)

The analysis proceeds just as before; we find

l&„ I I&„l (s. 3)
This last expression correlates the migration en-
tropy with the migration enthalpy and the tempera-
ture dependence of the force constants; it is essen-
tially the Zener relation.

3N

m„= Z m e„', , (D-m„(u'„)e„=O,
Q=1,

(s. i)

III. ISOTOPE EFFECT

The effect on the jump rate I' of a small change
in the mass of the jumping atom appears rather
complicated in this model. Not only must we know

the mass dependence of the phonon frequencies,
but also that of the coefficients A„. The problem
can be simplified, as we shall see, by using the
atom-coordinate rather than the normal-mode rep-
resentation.

It is not difficult to carry through the analysis of
Sec. II for the case where the atomic masses m
(u= I -3N) are different. The main difference is
that each normal mode n has associated with it a
reduced mass" m„,

We need to find the mass dependence of these ex-
pl esslons,

We will assume that the vector R is mass inde-
pendent, i. e. , that the V 's are mass independent.
Consider the numerator of Eq, (3.8). We have that

IQ n) Q» Va V na ng

n mn nea mn

yg yZ (m m )1/2 na n8
flag m~mg

(s. io)

The mass dependence in Eg. (3. 10) is completely
explicit. We may write this result in bra-ket no-
tation as

where e„=e„~x . The frequencies are determined
by the equation

(3. 11)

(D'-(u„') e„=O . (3. 2)
The denominator of (3. 10) can be treated similarly:

Here D = m ' '
~ D ~ m ' ' is the mass-weighted dy-

namic matrix and D is the usual dynamic matrix.
The mass-weighted orthonormal eigenvectors e„
are related to the nonorthogonal normalized eigen-
vectors e„ through the mass matrix m:

n n= n (3.3)

We may write the vector R in terms of the e„or the

R=+„A„„e-=g,V„x, ; (s. 4)

the A„reduce to their value in Sec, II when all the
masses are equal. The motion of the system is
given by

y(t) =Z„u„e„e '"" . (3. 5)

x(t) =Q„B„u„e'"", (s. 6)

As before, we choose y(t) ~ R as the reaction co-
ordinate and q =g„(A„}3as the critical value. Some
care has to be taken because the vectors e„are not
orthogonal. Thus, the form of the reaction coordi-
nate is [compare Etl. (2.4)j

, If'„)~ V* Vg e„e„q
n mn~n naa (mama) ~n

= &H, ID-'IH& . (3. 12)

Since both R and the dynamic matrix D are mass
independent, the mass dependence of coo arises
solely from (H) m 'iH&. Further, since $„]A„i
=

I R(~, it follows that the migration energy [Eq.
(3. 9)] is mass independent, as one would suspect.

Thus, if we let the jumping atom (et = 1-3)have
mass m + 6m, and call

(3. 13)

the change in jump rate is found from

~,'(nm)/~, '(0) —i = - (~m/m) ~,
where

tdf = (I v, I
'/I RI')(I+ nm/m)-' .

(s. 14)

(s. is)

The experimentally observed isotope effect for the
diffusion constant is equal to the product of ~ with
the correlation factor f. Equation (3. 15) shows that~ is simply related to the fractional part of R that
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refers to the jumping atom. We can gain some in-
sight by recasting it in terms of the normal modes.
Note that

where

is a projection operator onto the space of the jump-
ing atom. We see that

where

(3. 19)

It is seen that, in this mode representation, the
diagonal elements ~ represent the squared am-
plitude of the jumping atom in mode n (that is, the
fraction of energy in mode n carried by the jumping
atom). In particular, if the reaction coordinate
were to involve only one mode, bE would be deter-
mined by the energy sharing in that mode.

There are several things to notice about the above
result. First, recall that no assumptions were
made about the structure of the eigenvectors, i. e. ,
that they are plane waves or that local modes do
or do not occur. Thus, this formal result applies
to both the perfect and defective lattices. In fact,
the most surprising aspect of Eq. (3. 15) is that the
isotope effect is dependent only on the form of the
reaction coordinate. Since the appropriate reac-
tion coordinate is largely determined by the crys-
tal structure, one thus expects crystals of the same
structure to have about the same self-diffusion iso-
tope effect, consistent with experiment.

The especially simple form for ~ found above
is a result of using classical statistics. In a quan-
titative calculation, quantum statistics should be
used since, for the highest frequencies (where the
density of states is largest), the occupation num-

bers are only about 2. In the quantum case, the
isotope effect will depend on the frequency spec-
trum as well as on the form of the reaction coordi-
nate. A recent quantum calculation by Achar' us-
ing the Slater approximation to Kac's equation,
Flynn's reaction coordinate, and realistic phonon

spectra has, indeed, given a good quantitative ac-
count of the isotope effect in several fcc and bcc
metals.

Notice also that both the reaction-rate theory and

the above formalism depend on a special direction
in phase space. In the rate theory, one looks at
the flux of representative points across the saddle-
point hypersurface (i. e. , along the normal to this
surface), while in the dynamic theory one considers

fluctuations in the direction R. Each direction in
phase space can be associated with an effective
mass as in Eq. (3. 1), and the isotope effect is de-
termined by the dependence of this effective mass
on the mass of the diffusing atom. Since the rate-
theory preferred direction corresponds to a single
normal mode (the saddle-point dissolution mode),
it is only the effective mass of this mode that en-
ters, and ~ equals the fraction of kinetic energy
carried by the jumping atom in this mode. The
reaction coordinate of the dynamic theory is, in
general, a linear combination of many modes so
that ~ is an average of the energy sharing in
these modes [ Eq. (3. 18)].

The dynamic picture also implies a close con-
nection between the isotope effect and the P factor
of the Wirtz-Brinkman~5 theory of thermomigration
which measures the fraction of the migration en-

ergy that is actually transported across the bar-
rier by a diffusion jump. The classical calculation
of P for fcc lattices in Ref. 9 gave about 0. 8 for
several interatomic potentials; this is just the
value of ~ one finds with the present formalism
and Flynn's reaction coordinate.

IV. DISCUSSION

A basic question to be asked of a dynamic theory
based on critical fluctuations is whether there ex-
ists a "best"-reaction coordinate to be used. Un-

fortunately, this question cannot be answered as
yet. However, some ingredients of a good re-
action coordinate are apparent. For example, the
relative separation of the jumping atom from the
barrier atoms is clearly important, Likewise, the
motion of the barrier atoms transverse to the

jump direction is significant since the barrier
has to open up at just the right time to let the mi-
grating atom through.

One possible way to find a reaction coordinate,
provided the effective interatomic potential is
known, is to start the system in the saddle-point
dissolution mode with very small kinetic energy
and follow the backwards jump down the potential
hill by integrating the equations of motion. ' At the
bottom, the velocities are reversed, and the re-
sulting positions and velocities are taken as the
necessary initial conditions for a jump which de-
termine a unique reaction coordinate. The reaction
coordinate so derived depends not only on the po-
tential around the equilibrium and saddle-point
configurations, but on the potential in the entire
region of phase space traversed during a jump.

To illustrate this method, we carried out a model
calculation for a two-dimensional hexagonal lattice,
containing a vacancy, with Born-Mayer interactions
(the boundary atoms were held fixed). Several in-
teresting results were obtained. First, that part
of the reaction coordinate involving displacements
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in the jump direction (x axis) was almost precisely
the reaction coordinate of Flynn. Instead of being
proportional to x& ——,'(x~+xs), where x„xa, and xz
are the x components of position of the jumping
atom and ring atoms, respectively, this part of
R had the factor of —,

' replaced by 0. 446.
Gf course, the total reaction coordinate also in-

volved transverse displacements and initial veloc-
ities. We can, however, treat each of the coef-
ficients jA„j as arising from pure displacements,
and find an equivalent real R. In this procedure,
the sign of each A„ is undetermined. This reflects
the fact that in a harmonic well of X dimensions,
a given direction (not along a mode axis) is equiv-
alent to 2 —1 other directions. Choosing as re-
action coordinate the vector that points most direct-
ly in the saddle-point direction, we find an equiv-
alent reaction coordinate proportional to

x, —0. 432(x, +x,)+0.602{ya-X,) .
Again, the part dealing with the jump direction is
almost the same as Flynn's reaction coordinate.
The last term shows the importance of transverse
(y-axis) motion; the ring has to open up in order
to let the jumping atom through.

This is an important result. It indicates that the
simple reaction coordinate suggested by intuition
is appropriate even for very anharmonic potentials.
This is so because one is actually looking for large
fluctuations of kinetic energy near the equilibrium
configuration where the harmonic description is
valid. The fluctuation involved moves the jumping
atom and ring toward each other while opening the
ring.

The jump rate was calculated according to both
the rate-theory prescription and Eqs. (2. 10) and
(2. 12). The migration energies were slightly dif-
ferent (that of the dynamic approach being about
6/g smaller than the rate-theory value), but this
may be attributed to the lack of vibrational energy
in the hypersurface modes at the beginning of the
back jump as suggested in Sec. II. More interesting
is the result that the dynamic-theory attempt fre-
quency cog2v was about twice the effective frequency
of rate theory given in Eq. (1.1). This is sugges-

tive because rate-theory calculations appear to
give too small a value for the effective frequency.
If we write the dynamic-theory effective frequency
in terms of the rate-theory quantities as in Eq.
(4. 1) below,

(& j2 ) &Esp/0 &ik lna+Esr+~
V~gg — (d O

(4. 1)
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we see that, effectively, we have increased the
rate-theoretic motion entropy by several entropy
units. Here &8„ is the migration entropy of Eq.
(2. 16), +8„ ls the migration entropy of rate theory,
and v is the attempt frequency of rate theory.

The physical origin of this difference lies partly
in the difference in the preferred directions
singled out by rate and dynamic theories. The
direction normal to the saddle-point hypersurface
involves motion of the barrier atoms only to a
very limited degree so that all modes that move
the migrating atom in the jump direction contribute
to the jump rate. The dynamic picture, on the
other hand, looks for modes that move the jumping
atom against the barrier. In a monatomic lattice,
only the high-frequency modes are effective in
doing this and a higher effective frequency results.

As for the isotope effect, use of Eq. (S. 14) leads
to values of ~E in better agreement with experi-
ment than those of Ref. S. Achar's calculations show
that this agreement is made much better by treat-
ing the phonons quantum mechanically.

We have shown how the viewpoint that diffusion
jumps result from fluctuations along a certain
phase-space direction leads directly, classically
at least, to simple expressions for the jump rate
and the ~K factor of the isotope effect in terms of
the dynamic matrix and the vector R. The rate and
dynamical theories are analogous in that both pick
out a preferred direction in phase space; this
choice determines the attack frequency and isotope
effect.
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The dispersion relation for the normal modes of vibration of holmium metal at room temper-
ature has been measured by means of slow-neutron inelastic scattering techniques. Phonon
frequencies for wave vectors along the principal symmetry directions have been determined
and, in addition, some experimental information about the phonon frequencies along the bound-
aries of the Brillouin zone are reported. The data have been fitted with a Born-von Klrmln
force model which includes interactions out to the eighth nearest neighbor. The interactions
have been assumed to be general (tensor) out to the fourth nearest neighbor and axially sym-
metric beyond. The model has been used to calculate a frequency distribution function g (v), the
lattice specific heat, and the corresponding Debye temperature.

I. INTRODUCTION

As part of a program to obtain detailed informa-
tion about the lattice dynamics of the heavy rare-
earth metals, we have made neutron inelastic scat-
tering measurements of the phonon-dispersion rela-
tion of holmium at room temperature. Data have
been obtained for all six branches of the dispersion
relation in the principal symmetry directions. The
data obtained along the zone boundaries are less
complete than those obtained for Tb, but they are
sufficient to permit the evaluation of the force-con-
stant parameters in an eighth-nearest-neighbor
model such as was used for Tb. ' Previous measure-
ments on Ho by Leake et al. are in good agreement
with our results where there is an overlap of the
two sets of data.

The model fitted to the measured dispersion re-
lation has been used to calculate a frequency distri-
bution function for Ho, and this in turn has been used
to calculate a variety of thermodynamic properties.
In particular, the lattice specific heat has been cal-
culated and compared with measurements3 to permit
the determination of the magnetic contribution to the
total specific heat.

II, MEASUREMENTS AND RESULTS

to check the data, some measurements were carried
out using scattered neutrons with frequencies of 7. 2
and 10 THz. As monochromator and analyzer the
(0002) Bragg reflections from two Be crystals were
used,

Two samples were studied. Both were irregularly
shaped disks grown by the strain-anneal method by
Reed of the Oak Ridge National Laboratory Solid
State Division. One crystal, about 30 mm in diam-
eter and 3 mm thick, was oriented with the c axis
about 45 from the normal to the disk, and measure-
ments in the ab plane were made with this crystal.
The second sample, 20 mm in diameter and 6 mm
thick, was oriented with the c axis nearly parallel
to the normal of the disk, and was used for the re-
mainder of the measurements. For Ho, the lattice
parameters at room temperature are a = 3. 577 and
c =5. 616A.

A selection of measured phonon frequencies in Ho
at room temperature is given in Table I, where they
are compared to the corresponding frequencies in
Tb. ' The complete results are shown in Figs. 1 and

TABLE I. A selection of measured normal-mode
frequencies in Ho and Tb at room temperature (10 cps).

Ho Tb Ho Tb
The measurements were carried out at the Oak

Ridge high-flux isotope reactor on a triple-axis neu-
tron spectrometer. The majority of the data was
obtained with the constant-Q method. For most of
the measurements the analyzer was set to accept
scattered neutrons with an energy E' corresponding
to a frequency of 5 THz (- 25 meV), although in order

r;
A3
M4

Mg

K6
L, Q)

1.94+0. 03 1.82+0. 03
1.34+0. 03 1.30+0. 02
1.96+0. 03 1.75+0. 03

3.08+0. 05 3.05+0. 04
2.46+0. 05 2. 32+0. 04
1.85+0. 07 1.78+0. 06

3.40+0. 07
A) 2. 56+0. 04

M4 1.65+0. 03
M3 3. 04+0. 03
M&' 3.05+0 ~ 05

3.25+0. 04
2. 44+0. 04
1.59+0. 04
2. 90+0. 03
2, 89+0. 04


