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In a recent paper we presented a contribution to the theory of metal surfaces with emphasis
on the shape of the electron-density distribution and the surface energy. The present paper
extends this analysis to a consideration of the work function. Some general theoretical rela-
tionships are established. Effects of the ions are included using a simple pseudopotential
theory, permitting the calculation of the variation of the work function from one crystal face
to another. For simple metals (Li, Na, K, Rb, Cs, Al, Pb, Zn, and Mg), agreement with
available experimental data is good (5-10%); for the noble metals, the computed work func-
tions are 15—30% too low.

I. INTRODUCTION

The present paper represents a sequel to one
concerned primarily with metal-surface charge
densities and surface energies. ' In the earlier
paper we presented, first of all, a theory of the
electronic structure of a model metal surface in

which the lattice of positive ions was replaced by a
uniform background charge. Exchange and correla-
tion effects were included using the self-consistent
version of the theory of the inhomogeneous electron
gas. '~ Following this, the effect of the actual ionic
structure on the surface energy was taken into ac-
count by calculating exactly a purely electrostatic
contribution (simila. r to a Madelung energy), and

by evaluating the interaction of the electrons with

the ion cores using first-order pseudopotential the-
ory.

In the present paper, we shall follow a similar
plan in developing a theory of the work function.
This quantity, denoted by C', and defined precisely
in Sec. II in terms most useful for theoretical
analysis, is equal to the minimum work that must
be done to remove an electron from the metal at
0 'K.

We give first a rigorous demonstration that

where 4fI5 is the rise in mean electrostatic potential
across the metal surface and p, is the bulk chemical
potential of the electrons relative to the mean elec-
trostatic potential in the metal interior. In spite of
its simple form, this expression includes all many-
body effects, in particular, that of the image force.

For the uniform-background model we evaluate
AP from the electronic charge density n(r), com-

puted in LK-I, and we take p. from the available
theory of exchange and correlation of a uniform
electron gas. This yields the work function C„of
this model as a function of the mean bulk density
n (or of the Wigner-Seitz radius r, ) 'These . results
are compared with experiment and with the theo-
retical calculations of Smith, who used a similar
approach but did not carry out a fully self-consis-
tent calculation. '

Finally, we incorporate the effect of the actual
ion cores. We show first that when the difference
between the pseudopotentials of the ion cores and
the electrostatic potential of the uniform charge
background is treated as a small perturbation 5v(r),
the change of the work function of a particular crys-
tal face due to this perturbation is given to first
order by the following rigorous expression:

M'= J 5v(r)n, (r) dr. (1.2)

Here the integral is carried out over a slab whose
surface consists overwhelmingly of the face in ques-
tion; and n, (r) is the change of the electron density,
calculated in the uniform-background model, fol-
lowing the removal of one electron from the system.
This electron deficiency is of course localized near
the metal surface. We have calculated the charge
density n, by a method analogous to that of LK-I,
except that we have now had to look for self-consis-
tent solutions with a zero mean electric field deep
inside the metal but a small finite field outside it.

Since n, (r ) depends in fact only on the distance
x from the nominal surface, it is possible to re-
duce (1.2) to a one-dimensional quadrature. In
this way we have calculated the total work function
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for the principal faces of nine simple metals —Al,
Pb, Zn, Mg, Li, Na, K, Rb, Cs —and the noble
metals Cu, Au, and Ag. Experimental data are
generally available only for polycrystalline samples
of unknown surface structure. This makes a de-
tailed comparison between theory and experiment
impossible. Nonetheless, we can state the follow-
ing conclusions.

Simple metals: The measured work functions
range over 2. 1-4.3 eV. With the possible exception
of Li (where there is considerable uncertainty both
in the experimental data and in the pseudopotential),
agreement between the full theory and experiment
is typically within 5-10/0. The ionic lattice contri-
butions 64, which are characteristically of the or-
der of 10/o of the total work functions, contribute
to establish this rather good agreement. Anisotro-
pies among the different faces are typically also of
the order of 10%%u() of the mean work function. In ac-
cordance with the arguments of Smoluchowski, we
find the lowest work function to be associated with
the least densely packed face among those consid-
ered [(110) for fcc, (111) for bcc].

Noble metals: In view of the success with simple
metals, we have applied the same technique to the
noble metals to learn about the limits of validity of
our theory. Here the experimental work functions
range over 4. 0-5. 2 eV, and the calculated values
are 15-30%%uo too low. It may be assumed that the
presence of the filled d bands not far from the Fer-
mi level makes our highly simplified theory, based
on the inhomogeneous-electron-gas model with
small pseudopotential corrections, much less ap-
propriate for these metals.

In summary, the theory we have outlined appears
to describe well the work functions of simple met-
als. Additional reliable experimental data for this
class of metals would be highly desirable, partic-
ularly data on the work functions of single-crystal
faces. In the case of the noble metals, on the other
hand, where, for metallurgical reasons, the ex-
perimental data are much more consistent and re-
liable, the present theory is less successful, and
further theoretical work is needed. There is need
also for additional theoretical studies on the transi-
tion metals, which are not discussed in this paper. '

Density

Uniform

Sackground, n+ (x}

Electrons, n (x)

(a)

Energy

$ (+(o )

Fermi

y()() Level()()

FIG. 1. Schematic representation of (a) density dis-
tributions at a metal surface and (b) various energies
relevant to a study of the work function.

Z(n)= Jd(r)d(F)dF+ — """," drdr'Ir-r'I

ative to the mean electrostatic potential there (see
Fig. 1). It is important to know if this expression
includes properly all many-body effects, in par-
ticular, the work done against the image force in
removing an electron from the metal. This is in
fact the case. As we have not found any rigorous
demonstration of Eq. (2. 1) in the literature, we
present one in this section.

Since we are interested in removing one electron
from the metal at O'K, we first develop a simple
extension of the theory of Hohenberg and Kohn (HK)
to allow for a variable number of electrons, and
then use this theory in establishing the validity of
Eq. (2. 1).

In HK, it was shown that for a fixed number of
electrons N and arbitrary static external potential
v(r), there exists an energy expressione

II ~ RIGOROUS EXPRESSION FOR WORK FUNCTION
+ G[n], (2. 2)

Qualitative considerations, in the spirit of the
Sommerfeld electron theory of metals, strongly
suggest that the work function is given by the ex-
pression

(2. 1)

Here 4P is the change in electrostatic potential
across the dipole layer created by the "spilling
out" of electrons at the surface, and LU. is the chem-
ical potential of the electrons in the bulk metal rel-

with the following properties: (a) G[n] is a univer-
sal functional of n(r ), not explicitly dependent on

v(r), given by

G(d)-:td„, (1' ~ 11)@„)-—f -, d jdr',
(2. 3)

where the wave function )i„refers to the (unique)
electron ground state with density n(r ), and T and
U are, respectively, the kinetic- and interaction-
energy operators; (b) E„[n] is equal to the correct
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ground-state energy for a given v(r} when the cor-
rect density n(r), corresponding to u, is used on
the right-hand side of the equation; (c) the first
variations of E„[n] about this density, consistent
with the restriction

5N = J-«( r }d r = 0,
vanish:

6E„[n]= O.

(2. 4)

(2. 5)

5 Q„[n]= 5 E„[n]= 0. (2. 'I)

Now let n„„(r) and n„,, „(r)be the correct elec-
tron densities corresponding to a given v(r ) and,
respectively, to p, and p, + 6p, . These two chemi-
cal potentials describe two systems whose total
numbers of particles differ by ~¹

&N= f [n„,~ „(r)—n, „(r)]dr —= J «2(F) dr.
(2. 6)

The corresponding first-order change of 0, ~ is
given by

&aQ„„[n]= E„[n„,, „]—E„[n, „]—p5N= 0,
(2. 0)

where the vanishing follows from the thermody-
namic definition of the chemical potential at T= 0
'K. Since an arbitrary small variation 5n is a
(unique) sum of variations of the types 6n, and «a,
it follows that, in general,

5II„„[n]= O. (2. io)

We now apply this theory to the work function.
We consider a neutral slab of metal, all of whose
dimensions are macroscopic but whose surface
consists overwhelmingly of two parallel faces the
work function of which we wish to consider (the
physical properties of these two surfaces are taken
to be identical). Let n(r) be the correct electron
density corresponding to the given nuclear poten-
tial, the chemical potential p, , and a total number
of electrons N. By (2. 6), (2. 2), and (2. 10) we
have, for a small variation in density 5n(r),

P(F)+ 5n(r) dr —p6N=O,
&G[n]
6n r (2. 11)

where

Now consider an ensemble of macroscopic elec-
tronic systems at the absolute zero of tempera-
ture, specified by the external potentials v(F) and
the chemical potentials p.. The subsidiary condi-
tion (2. 4} will no longer be imposed on the density
variations of interest. We define

&„„[n]=—E„[n]—p, J n( r ) d F. (2. 6)

Clearly, for a first variation of the density 5n, (F)
which does satisfy the condition (2. 4),

(2. 12)

is the total electrostatic potential. Now consider
first a particle-conserving, but otherwise arbi-
trary, variation 5n. Equation (2. 11) then gives

P(F)+ «[n]/«(F) = p, ', (2. iS)

where p, is some constant, independent of r.
Next, consider a particle nonconserving variation;
from (2. 11) and (2. 13) we then see that

p, = p,
'= P(F)+ 6G[n]/5n(r) .

The work function is, by definition,

@= [4 (~) + Ex.i] —E~ i

(2. i4)

(2. 15)

where P(~) is the total electrostatic potential far
from the slab considered above and E„ is the
ground-state energy of the slab with M electrons
(but still with N units of positive charge). [Both
P(~) and E~ depend on the choice of energy zero,
but the combination (2. 15}does not. ] Using the
definition of the chemical potential and Eq. (2. 14),
this can also be written as

4'=4(")- V=[4( )-4]—9,
where

e -=(~( )),
u = u —%=(«[n]/«(F)) .

(2. 16)

(2. 17)

Here () denotes an average over the metal. p. is
the bulk chemical potential relative to the mean
interior potential; its independence of this poten-
tial may be verified from the definition (2. 3) of
G[n]. Equation (2. 16) is equivalent to the postu-
lated Eq. (2. 1).

All many-body effects are contained in the ex-
change and correlation contributions to p, and in
their effect on the barrier potential &P. In par-
ticular, the image-force effect on 4 may be re-
garded as contained in the disappearance of part
of the correlation energy when one electron is
moved away from the metal surface.

III. UNIFORM-POSITIVE-BACKGROUND MODEL

Here kz = (3& n)'~ is the bulk Fermi wave number

We consider in this section a model of a metal
surface in which the positive ions are replaced by
a uniform positive charge background filling the
half-space x& 0. ' The electron density in this
model is shown schematically in Fig. 1(a).

We consider first the quantity p, in Eq. (2. 1).
Since deep in the metal interior the electron den-
sity has a constant value n, P takes on the simple
form

p, = —,'k~+ p„,(n) .
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2

2. 5

3
3. 5

4. 5

5

5. 5

6

2k@
1 2

(eV)

12.52
8. 01
5. 57
4. 09
3. 13
2. 47
2. 00
1.66
1.39

~«
(e V)

—9, 61
-7.90
—6.75
—5. 92
—5.28
—4. 78
—4. 38
—4. 04
—3.76

JLt,

(ev)

2. 91
O. 11

—1.18
—1.83
—2, 15
—2. 31
—2. 38
—2. 38

2 Q 37

(eV)

6. 80
3. 83
2. 32
1.43
0, 91
0. 56
0. 35
0. 16
0. 04

@u

(eV)

3.89
3.72
3.50
3.26
3, 06
2. 87
2. 73
2, 54
2, 41

TABLE I. The work function C'„of the uniform-back-
ground model, and its bulk and surface-barrier compo-
nents. The Wigner-Seitz radius x, characterizes the in-
terior density. @„=~/—JM, where p = 2k&+p«. The bar-
rier term &P is given with a self-consistency of 0. 03 eV
or better (this is a somewhat greater self-consistency
than that of the preliminary report, Ref. 4).

Other, more recently suggested, forms of the cor-
relation energy give substantially similar results. '

The quantity P and its two components —,'k2r and
LL(,„,are shown in Table I for r, in the metallic
range 2-6. By Eq. (2. 1), —p, can be regarded as
the bulk contribution to 4'. It will be seen from
Table I that, for metals of low electron density
(K, Rb, and Cs with r, =4. 96, 5. 23, 5. 63,
respectively), —p. is much larger than the other
term nP. The rather good agreement with ex-
periment (see Table II) constitutes therefore a
good confirmation of the expression (3. 3) for e„,.
This is especially meaningful since the theory of
the correlation energy is most difficult at low elec-
tron densities.

We turn now to the double-layer contribution
By Poisson's equation,

and p„,(n) is the exchange and correlation part of
the chemical potential of an infinite uniform elec-
tron gas of density n. p„, is given by the relation

p.„,(n) =—[n~„,(n)],
d

(3. 2)

with E„, the exchange and correlation energy per
particle of the uniform gas. In our computations,
we have used the expression"

e„,(n) = —(0. 458/r, ) —0. 44/(r, + 7. 8) (3.3)

f ~r', =1/n (3.4)

from Wigner's classic analysis of the electron gas;
here the Wigner-Seitz radius x, is given by

@.= (&4' —P)..gf., ~ (3. 6)

It will be noted that while b, P is negligible for
metals of low electron density, it becomes domi-
nant for high-electron-density metals. It is also
striking that while p, and ~P separately change by
5. 3 and 6. 8 eV, respectively, over the metallic

np=p( ) —p( — )=4m J x[n(x) —n, (x)]dx,
(3. 5)

with n(x) and n, (x), respectively, the electron-
and positive-background densities in the uniform
model. n(x), calculated in LK-I with a, self-con-
sistency of better than I%%uq of n, was recalculated
for the present work to an accuracy of 0. 2%%ug or
better. The resulting values of &P are listed in
Table I, as is the total work function in the uni-
form model

e~, (eV)
(polyc rys talline)

@' (eV)
(loo)

ae (ev)
(loo)

'e

(111) (11O)(110)

TABLE II. Theoretical and experimental work functions of nine simple metals. 4„ is the work function for the uni-
form-background model; (54 is the first-order pseudopotential correction: 4 = 4„+64 (rounded to the nearest 0.05 eV).
The pseudopotential core radii x~ are taken from the work of Ashcroft and Langreth (Befs. 18—20). In the cases in
which these authors give two possible values of x~ for a metal, the choice which yields agreement with experiment for
a wider range of bulk properties is marked with an asterisk. Experimental values 4~t for polycrystalline samples
were taken from Refs. 25-27 (see text for details of selection). [The most densely packed faces for the various struc-
tures are: fcc (111), hcp (0001), bcc (110).]
Metal Structure x~ @„(eV)

Al
Pb

Zn

Mg
Ll

Na

K
Rb

Cs

fcc
fcc

hcp
hcp
bcc

bcc
bcc
bcc

bcc

2. 07
2. 30

2. 30
2. 65
3.28

3.99
4.96
5. 23

3.87
3.80

3.80
3.66
3.37

3.06
2. 74
2.63

2.49

1.12
1.12
1 47+
1.27
1.39
1.06*
2.00
l. 67
2, 14
2. 61

13+
2.93
2. 16+

—0.21
0
0

0.36
0.38
0.19

—0.99
0.03
0.01

—0.45
0.03

—0.23
0.10

0.32
0.13
0.72

for (0001)
for (OOO1)

—0.05
—0.95
—0.29
—0.34
—0.53
—0.26
—0.61
—0.21

0.19
o.06
"}.33

face
face
—0.13
—1.05
—0.39
—0.40
—0.60
—0.34
—0.67
—0.27

3.65
3.80
3.80
4. 15
4.05
3.55
2.40
3.10
2. 75
2. 20
2. 65
2. 25
2. 60

4. 20
3.95
4. 50

for (OOOl)

for (0001)
3.30
2. 40
2.75
2.40
2.10
2.35
1.90
2.30

4.05
3.85
4. 15

face
face
3.25
2. 30
2. 65
2. 35
2.05
2. 30
l. 80
2. 20

4, 19
4.01

4.33
3.66
2. 32, 3 1

2.7
2. 39
2. 21

2. 14
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density range, the total work function, given by
their difference, varies only from 2. 4 to 3.9eV. "

The values of 4„given in Table I are similar to
those obtained by Smith, ' although Smith did not
include in his calculations the Friedel density os-
cillations near the surface. The reason for this
is the following: The contribution —p, to 4„ is
identical in both calculations. For high electron
densities, hQ is substantial, but since the Friedel
oscillations at these densities are rather small, '
Smith's calculations give similar results to ours.
For low electron densities, the Friedel oscilla-
tions are important and our hP is substantially
smaller than that of Smith (by about a factor of 2

for Cs), but at these densities AQ is negligible
compared with —p, .

Figure 2 compares the computed values of 4„
with recent experimental data on the work func-
tions of polycrystalline simple metals. There is
rather good agreement between theory and experi-
ment for these metals, to which the uniform-back-
ground model would be expected to be best appli-
cable. A more realistic treatment of the positive
ions, presented in Sec. IV, improves this agree-

ment somewhat and also permits calculation, for
a given metal, of the anisotropy of 4, i.e. , the
variation of 4 from one crystal face to another.

IV. ION-LATTICE MODEL

A. Theory

54 = J 5v(r)n, (r) dr,

which has already been explained in Sec. I [Eq.
(1.2)], and which avoids the solution of three-
dimensional wave equations. '

To derive (4. 1) we begin with the definition
(2. 15) of the work function

(4. 1)

4 = [p(~) + Ex.t] —EN ——EN —Ex, (4. 2)

where the system in question is a large metal slab
whose surface consists almost entirely of two
parallel faces of a given orientation relative to the
crystal axes. E„ is the ground-state energy of
the neutral slab, containing N electrons; and g
is the energy of an excited state of the N-electron
system in which (N-1) electrons reside in the low-
est possible state in the metal, while one electron
is at rest at infinity. The first-order change of
4 due to 6v is then, by standard perturbation the-
ory,

When we pass from the idealized uniform-back-
ground model to a more realistic model in which
the effect of each metal ion on the conduction elec-
trons is represented by a pseudopotential, a
straightforward attempt to calculate C from Eq.
(2. 1) would involve the prohibitively difficult task
of solving self-consistently a system of equations
which no longer separate, but which are truly
three-dimensional. To avoid this problem we shall
use the fact that the replacement of the uniform
background by the ion pseudopotentials represents
a small perturbation 5v(r). To first order in 5v,
the change of the work function 64 will be shown
to be given by the expression

02
I

4&s~

FIG. 2. Comparison of theoretical values of the work
function with the results of experiments on polycrystalline
samples (open circles). (The reason for the presence of
two experimental points for Li is discussed in the text. )

@„, the work function in the uniform-background model,
is shown as a dashed curve. The C' values in the ion-
lattice model were computed for the (110), (100), and

(111) faces of the cubic metals and the (0001) face of
the hcp metals (Zn and Mg). For qualitative purposes,
the simple arithmetic average of these values for each
metal is indicated by a cross (two crosses are shown

for the cases in which there were two possible pseudo-
potential radii). The experimental and theoretical points
for Zn should be at x, =2.30; they have been shifted
slightly on the graph to avoid confusion with the data for
Pb.

54 = J 5v(i)n„'(r) dr —J 5v(r )n„(i) dr, (4 3)

where n„and n~ are the electron densities in the
uniform model, associated with E„' and E„, re-
spectively. Now since 5v(~) = 0, the "escaped"
electron does not contribute to the first integral
and we may rewrite (4. 3) as

54= J 5v(i)n, (r) dr,

where

(4. 4)

n, (r ) = n„,(i) —n„(r ), (4. 5)

Jn. (r) dr= —1. (4. 6)

with n„, the density distribution of the (N 1) elec--
trons in their ground state. Clearly the density
deficiency n, satisfies the normalization
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Now in the (N -1)-electron ground state, associ-
ated with E„„the electric field 8 inside the metal
is zero, and outside each of the two parallel faces
is given by 8 =4fT/2A (directed along the outward
normal), with 2A the total surface area. Let us
take the x axis to have its origin in one of the faces
and point outwards [see Fig. 1(a)]. Then n, is a
function of x only. Further, let us denote the y-z
average of 6v(r) by

I.O

0.5—

EPOS IT I VE
BAC KGROUND

IC

ba—0.0 I

&v(x) =- J„6Ef(x,y, z) d~f dz/J„dy dz.

Then, using (4. 6), Eq. (4. 4) reduces to

M =AJ 6v(x)n, (x) dx

(4. 7) 0 I ~ ~ I ~=8 -IO -5 ~ 0
DiSTANCE (atomic units)

Bulk density corresponds to r, =2
(Surface charge density

iS —I.oox IO s atOmiC unitS)

(a)

= —J bv(x)n, (x) dx/f n, (x) dx

= —J,
"

&v(x)n, (x) dx/f n, (x) dx, (4. 8)
I.O- ——

~POS I TI VE
n(x) ~, BACKGROUND

where a is a length large compared with a screen-
ing length but small compared with the thickness of
the slab. In the last step both numerator and de-
nominator have been reduced by a factor of 2. Since
(4. 8) is homogeneous in n„n, ( )x can now be taken
to be the surface-charge density in the semi-in-
finite uniform-background model induced by an ar-
bitrary weak electric field 8 perpendicular to the
surface.

0.5—

-nQ

-15 ~ID -5 0 .5
DI sTANcE (atomic units)

Bulk density corresponds to r, = &

(Surface charge density
is -s.oox IO-4 atomic units)

Ia

b

—0.02

0, r&r,
—Z/0, r&r, ' (4. 9)

These authors have determined the radius x, for
each metal to give a good description of bulk prop-
erties.

C. Results and Comparison with Experiment —Simple Metals

Our calculated results for 4'„, 64, and 4'=+„+ ~4

are given in Table II for nine simple metals. For

B. Calculations

To evaluate (4. 8) we require n, ( )xand off(x). fs, (x)
was determined as the difference between two self-
consistent densities: one corresponding to a neu-
tral metal with vanishing field outside, and the
other corresponding to a metal with a small surface
charge and finite field 8 outside. The method used
was the same as that described in LK-I, and n, (x)
was evaluated for x, between 2 and 6." The func-
tions n, (x) for 0; = 2, 4, and 6 are shown in Figs.
8(a), (b), and (c), respectively. They are rather
wide density distributions, which outside the metal
drop to half their maximum value at approximately
2-3 a. u. (or 1.0-1.6 A) from the nominal surface. "

The perturbation potential 6v(x), Eq. (4. 7), was
obtained, as explained in LK-I, Appendix D, '7 using
pseudopotentials of the form employed by Ashcroft
and Langreth

IC

I.O

0.5—

n(x) ,

l

~POSITI VE
BACKGROUND

IC

a
—0.05

I I

-IO -5 0 5,
DISTANCE (Uf0mlC UIlffS)

Bulk density corresponds to r, =6
(Surface charge density

is -Z.OO~ IO " atomic units)

'=fS

(c)

FIG. 3. The change n, (x) in the electron-density dis-
tribution n(x) of the uniform-background model, induced

by a weak external electric field along the outward nor-
mal to the surface (i. e. , along +x). Curves are shown

for (a) r, =2, (b) r, =4, and (c) r, =6. n is the mean
electron density deep in the metal.

the cubic crystals the calculations were done for
the (111), (100), and (110) crystal faces, ' and for
hcp crystals, for the (0001) face. In the cases for
which Ashcroft and Langreth give two possible
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choices for the pseudopotential radius x„we have
carried out the computation for both. In these in-
stances, the r, value marked with an asterisk in
the table is generally found to yield agreement with
experiment for a wider range of bulk properties
than the other. '9'~0 There exist at present practical-
ly no experimental data on the work functions of
single-crystal faces of the metals listed. Of those
few recent data, which we could find, ~ almost none
were determined by more than one group of workers
and some appear to disagree with accepted results
for polycrystals. We therefore felt that comparison
of our results with single-crystal measurements
was premature. We remark however that the gen-
eral trend of a decrease of the calculated 4 with
decreasing density of ions in the lattice plane2' is
in keeping with the arguments of Smoluchowski and
with the extensive body of single-crystal work on
metals such as W, Mo, and Ni. ~4 For the polycrys-
talline data we have, so far as possible, used recent
results which agreed substantially with earlier mea-
surements. With the exception of Li, we have used
only experimental data obtained by the photoemission
or Kelvin contact-potential-difference methods. '
These methods are in wide use, they yield the work
function in a direct way, and they avoid high tem-
peratures. For Li, however, the most frequently
quoted result was obtained over 20 years ago, by a
type of contact-potential-difference method, 26 and

disagrees seriously with that of a very recent field-
emission experiment by Ovchinnikov and Tsarev. ~7

In this case we have included both experimental re-
sults. The reader is referred to the article by
Riviere for a general review of the experimental
situation.

The measured work function of a polycrystalline
sample represents a certain average over various
crystal faces, which depends on the technique used,
the conditions of the measurement (e. g. , tempera-
ture), and the relative proportion of each face on
the surface. ~~ For qualitative orientation the simple
arithmetic average of the 4 values computed for
the several faces of each metal is shown in Fig. 2

as a cross (there are two crosses for the cases in
which there were two r, values).

However, it should be remarked that for higher-
density metals, theory predicts that the more
closely packed faces will have substantially lower

surface energies than the others, ' and therefore
should be preferentially present. These surfaces
have the highest work functions. Thus, in the cases
of Al and Pb, for which the work-function measure-
ments were made on evaporated films, the appro-
priate theoretical estimates are probably somewhat
higher than the crosses. For Zn and Mg (whose
experimental work functions were also obtained
using evaporated films) the crosses already cor-
respond to the most closely packed faces, which
were the only ones calculated.

It should also be mentioned that photoemission
measurements weight the low-@ faces most strong-
ly. This effect is probably of greatest importance
for the lower-density alkali metals whose quoted
work functions were obtained by this method and
for which the surface-energy anisotropy is small.
Hence, for these metals, the appropriate theoreti-
cal estimates are probably somewhat lower than
the crosses.

In view of the uncertainties concerning the cor-
rect crystal-face average for polycrystalline ma-
terials, it is not possible to state just how much,
if at all, the ion-lattice corrections 64 to the uni-
form model improve the agreement with experi-
ment. However, we note (see Fig. 2) that for the
alkalis, for which 4„&4, „ the average 6& is
negative, as it should be, and of the right order of
magnitude, while for Al, Pb, and Zn, 4„&+,~„
and the average 64 is properly positive and again
of the right order. (For Mg, C„agrees exactly with
4, „and the addition of 54 produces a 10% error. )
Thus it appears that, all in all, the inclusion of the
ion potential in the theory improves the agreement
with experiment to within 5-10/0. '0

D. Results and Comparison with Experiment - Noble Metals

Our calculated results for the noble metals Cu,
Ag, and Au are given in Table III. Again we have
used local pseudopotentials of the simple form
(4. 9), with values of r, taken from Ref. 19." The
calculated work functions are seen to be 15-30%
too low compared with experiment, the absolute
discrepancies being in the vicinity of 1 eV. For
these metals the experimental data are consistent
and appear to be reliable, so that this error is al-
most certainly due to the theory. We do not know
at present how this error is apportioned between

TABLE III. Theoretical and experimental work functions of the three noble metals. See Table II for explanation of
symbols. Experimental values for polycrystalline samples were taken from Ref. 32,

Cu
Au

Ag

fcc
fcc
fcc

2.67
3.01
3.02

3.65
3.49
3.49

0.81 —0.08
0.81 0
1.04 —0, 15

0.14
0.18
0.07

0.26
0.30
0.19

Metal Structure x~ 4'„(eV) ee (ev)
(100) (111)

4 (ev)
(»0) (100)

3.55 3.80
3.50 3.65
3.35 3.55

3.90
3.80
3.70

e, (ev)
(polycrystalline)

4.65
5.22
4.0



1222 N. D. LANG AND W. KOHN

—p. and the barrier potential dP. (Significant out-
ward movement of the last layer of atoms would
reduce 4Q and thus further increase the error. ")
It is not clear whether more sophisticated pseudo-
potential theory would remove most of the discrep-
ancy or whether these metals, with hybridized s-d
bands, require a different approach.
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A classical dynamical theory of diffusion is presented in which the reaction coordinate and its
critical value are expressed in terms of a 3N-dimensional vector B. The Slater approximation
to the Kac equation is shown to be exact for classical statistics, and the jump rate is calcu-
lated accordingly. The jump rate ean be expressed in terms of the vector 8, and the dynamic
matrix; this leads to a frequency factor different from that obtained from the reaction-rate
theory, and an indication that the system does not jump through the relaxed saddle-point con-
figuration. The self-diffusion isotope effect is also considered. It is shown explicitly that the
migration energy is mass independent, and that the effect may be expressed simply in terms
of the reaction coordinate. In terms of the phonons, the isotope effect depends on a weighted.
average of the fraction of the energy carried by the jumping atom in each mode. Quantum
corrections are discussed and a connection is made between the isotope effect and thermomi-
gration.

I. INTRODUCTION

There has been increasing interest in recent
years in formulating the theory of diffusion jump
rates in a way that avoids some of the conceptual
difficulties of the absolute-rate theory. ' The rate
theory was applied to diffusion by Wert and Zener,
and elegantly formulated by Vineyard to show ex-
plicitly how the motions of many atoms are involved
ln the ]ump process. This can be seen ln Vine-
yard's form for the preexponential or frequency
factor

in which v, and v, are the normal-mode frequencies
of the equilibrium and saddle-point configurations,
respectively, with the unstable "mode" of the sad-
dle point left out of the product in the denominator.
The many-body nature is also apparent in the iden-
tification of the migration energy with the potential-
energy difference of the relaxed saddle-point and

equilibrium configurations.
The troubling aspect of rate theory is that it

focuses so strongly on properties of the relaxed
saddle-point configuration. In a quantum-mechani-
cal theory it would not only be impossible to treat
positions and velocities independently, but, more
significantly, it would be completely inappropriate
to speak of the properties of the intermediate state,
as has been pointed out by Flynn and Stoneham.

Attempts to circumvent these difficulties have

been made by several authors. ' These "dynami-
cal" theories view the jump process as resulting
from a special kind of fluctuation from equilibrium,
and attempt to calculate the frequency of such fluc-
tuations. In the earlier work, fluctuations were
considered that carried the system to a definite
configuration, e. g. , the relaxed saddle-point con-
figuration. Glyde~ has shown that, for this case,
the dynamical and rate theories have the same
formal content. More recently, Flynn' has con-
sidered fluctuations in a reaction coordinate, made

up of a linear combination of particle displacements,


