
DIFFUSE I-RAY SCATTERING IN FAST-NEUTRON ~ ~ ~

large effects on anomalously transmitted intensi-
ties, and similar results were found for irradiated
copper. %hen defects are clustered, changes in
the x-ray-diffraction properties are produced with
a relatively small number of point defects. In fa.ct,
diffuse x-ray-scattering measurements as those
presented here would appear to be valuable in de-
termining whether isolated point defects had, in
fact, clustered after some treatment. These re-
sults as well as those obtained previously using
anomalous x-ray transmission should be less am-
biguous than electrical resistivity or lattice-pa-

rameter measurements, and a comparison with
measurements of other physical properties would

appear to be very useful in determining, for ex-
ample, if clustering were important in low-tem-
perature annealing stages. Such experiments are
now being planned for some of these crystals.
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Electronic Structure of Disordered Systems
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A method of calculating the electronic density of states in a disordered system is discussed.
The case of bound bands is considered in detail. By a transformation of the overlap integral
in the tight-binding theory, the Matsubara-Toyozawa and Matsubara-Kaneyoshi methods for
calculating the electronic density of states is extended to topologically disordered systems.
The same transformation is also applied to the band pxopagator expansion.

I. INTRODUCTION

In recent years, the problem of the effects of
lattice disoxder on the electronic density of states

has been studied extensively. ' The various tech-
niques employed may be classified according to the
types of disorder and the range of the electronic
energy. It is customary to divide the e1ectronic
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energy into two regions, the bound bands and the
"free, " or conduction, bands. As to the types of
disorder, we shall follow Ziman and classify them
according to structural disorder (the loss of spatial
periodicity in the arrangement of the lattice sites),
and cellular disorder (the lack of periodicity of the
atomic potential from cell to cell in an otherwise
periodic lattice).

The problem of cellular disorder is better under-
stood than the problem of structural disorder be-
cause the presence of a periodic lattice simplifies
the problem considerably. At present, many
sophisticated techniques for finding the electronic
density of states in systems with cellular disorder
have been developed and applied with considerable
success to the problems of alloys. The case of
structural disorder on the other hand has not re-
ceived the same attention since discussed in the
works of Edwards and Beeby and Edwards. '
Edwards showed that in the case of "free" bands
and structural disorder, the density of states can
be understood qualitatively from a perturbation ex-
pansion of the self-energy correction in the average
Green's function of the electron. Recently Ziman
reviewed Edwards's work and pointed out that the
summation of the perturbation series considered
by Edwards must be carried to higher-order terms
in order to produce the known band gaps even in a
coarsely polycrystalline specimen. The case of
structural disorder and bound bands is even less
well understood. Although much has been learned
by studying one-dimensional disordered systems,
very little is known about three-dimensional sys-
tems. Some insight into this problem has been
provided by the work of Beeby and Edwards. ' They
extend their calculations from free bands to bound
bands by replacing the scattering potential by a t
matrix.

As is well known, this leads to restricted sums
in the t-matrix expansion of the Green's function.
In order to perform the summation, Beeby and
Edwards introduced what they called the "geometric'
approximation, " i. e. , they treated the t-matrix
expansion as if it were a geometric series. The
corrections to the approximation are however dif-
ficult to treat in this case. A similar problem oc-
curs in the case of cellular disorder. There the
treatment is not complicated by lattice disorder
and considerable progress has been achieved in
calculating the correction terms. In view of this
progress it would seem advantageous if we could
carry over the techniques developed for systems
with cellular disorder to systems with structural
disorder. However, this program quickly runs
into difficulty because of the lack of a Fourier
transform commonly used in such cases. In this
paper we shall apply a transformation first used
by Wu and Taylor' in their work on the lattice dy-

namics of disordered alloys and glasses to the
problem of the electronic density of states. We
shall show that by this method, most of the tech-
niques developed for cellular disorder can be car-
ried over to the problem of structural disorder.
In Sec. II, we shall formulate the problem in the
tight-binding case and in Sec. III, we shall develop
the Wu-Taylor transformation for band structure
calculations. The application of the transforma-
tion to the locator expansion of the Green's function
will be treated in Sec. IV and the application to
band-propagator expansion, in Sec. V.

II. FORMULATION OF THE PROBLEM

4 = Zf +f@1~ (2.2)

where for simplicity we assume as in the Anderson
model that each atom has a single bound state.
The equation of motion for the coefficients nf is

(2. 3)

The matrix element H&&. is given by

(2.4)

where so~ is the bound-state energy and Vll is the
transfer integral

lii =(@i .+.U(r 1 )@")~

i"~i
The density of states for the electrons p(1, &) can

be derived from the Green's function of Eq. (2. 3)

(2. 6)

p(i, e) = —&-' lmG;f(s - e+fO). (2. 7)

Equation (2. 6) can be written simply in operator
form

where

G =G, +GQG, (2.6)

Go(g) =z 'I,

I being the unit matrix. The problem of calculating
G is then usually reduced to the summation of the
iterative solution of Eq. (2. 8):

In order to simplify the discussion of the effects
of structural disorder on the electronic density of
states, we shall use the one electron theory with
the Hamiltonian

H=p j2m+Qf g(r —l, ), (2.1)

where 1 denotes the atomic sites and s(r —1) de-
notes the interaction potential due to the atom at
site I. We are mainly concerned with the effects
of the disordering of the sites on the bound bands.
The wave function is expanded in terms of the atom-
ic orbitals
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G =Go+GoHGo+GoHGoHGo+' '
~ (2. 9) summation in (3. 6) into

III. TRANSFORMATION OF H Q~Hl, ," Le' ' = V(k')+U(l, k'), (3. 7)

The solution of Eq. (2. 8) can be greatly simplified
by a judicious choice of the transformation S of G,
such that

G=- S GS,

with G satisfying

where V(k') can either be chosen to approximate as
best as possible the average motion of the electron
in the potential field or calculated self-consistently.
For example, for systems which exhibit short-range
order, we may choose V(k') to be

G =G)+G)(S HS)G (3. 1) V(k') =N 'P-;f dRH;; gg(R) e ~"", (3.6)

For a periodic lattice, the transformation best
suited is the matrix

S""=vN ' e ' '
1R

with its inverse

(3.2)

Ef;=vN 'e ) i (3.3)

where k is defined to lie within the first Brillouin
zone and to satisfy periodic boundary condition.

For a structurally disordered system, F. is no
longer the inverse of S, and in addition, there is no
obvious Brillouin zone to limit the sum over k.
Therefore, if we wish to retain S as our transforma-
tion, these two difficulties have to be overcome.
This can be accomplished by adopting the method
introduced by Wu and Taylor~ in which the inverse
of S is written as

(V)ff ~ = V(k)6' i (3. 10)

(W)- =—Q - P "e""-"'U(i k')
N p- 1+8 „»g-,.

=Q S)„- U(l, k)SI) . (3. 11)

where g(R) is the pair correlation function. This
choice describes a model which in the limit of large
short-range order distances approaches the micro-
crystalline model.

For convenience in later analysis, we shall de-
fine the operators V and W so that

S HS =- H = V+ W, (3.9)

where V and W have matrix elements

(I+R) S l=E. (3 4) IV. LOCATOR EXPANSION

Multiplication on the right by S and using the defini-
tions of S and E then give the matrix element of R:

N-lg el(I7-t'&'f (3. 6)

The matrix element (I+R)ff. is simply related to the
structure factor of the solid; in a perfectly ordered
crystal, it is 5„"g, K, where K is a reciprocal lattice
vector. For a disordered system, the function
5p p, g is broadened but x-ray and neutron diffraction
studies of many amorphous materials have shown
that a strong peak remains. Thus, in the computa-
tion of the sum over k one finds that a natural cut-
off is built-in in the factors (I+R)g. , although it is
not as sharp as in the perfectly ordered case.

Using the transformations S and S ' described,
we find that

(s-'ss);„-.=& E (z s) Z e"'"""

G = o + o Vo +8Vo Vo + ~ ~ ~,

where

1 1-1 1-1™1o=-+- W —+- W —W —+ ~ ~ ~ .

(4. 1)

(4. 2)

In the case of cellular disorder, we have

R= 0,

U(1, k') =le;,

In this section we describe how one can calculate
G by generalizing the locator expansion method in-
troduced by Matsubara and Toyozawa, 9 by Matsubara
and Kaneyoshi, ' and the cumulant summation of the
expansion by Yonezawa and Matsubara, "briefly the
MTKY method. A comprehensive review of the
method can be found in a recent paper by Ziman,
and our generalization follows closely the outline
of the method as presented in that paper.

The locator expansion of G is given by

(3. 6)

As expected, (3. 6) cannot be separated into a struc-
tural and a scattering part. However, for the pur-
pose of generating a perturbation or self-consistent
type of calculation, we shall decompose the last

Ws-, ~ —-N Pfe"" ""'))-1)

and hence

o„„,= N Zf (-&-—)Uf) e-1 -1 f (k-k ') '1

The quantity

(4. 3)
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oi = (& —tV f) (4 4)

c-1
of727'=~1 ~j",1 o11'S1'&'~

or simply

g =S-'g S

(4.5)

(4. 8)

The generalized locator o can be determined from
(4. 8) and (4. 2)

o=SoS 1

is called the locator in the MTKY formulation, and

(4. 3) is its Fourier transform. For systems with
structural disorder, we generalize (4. 3) by

o' = od+ona ~ (4. 1O)

This decomposition can always be done. Here, ,~e
choose o„and o,~, such that

the behavior of o; plays an essential role in deter-
mining the localization of electrons. We thus expect
the diagonality condition in cr to play a similar role
in systems that are structurally disordered as well.
In fact we shall show that if (J has a large diagonal
part, it is possible to reduce the problem into a
form similar to the case of cellular disorder. In
order to do this, we formally decompose o into a
diagonal and nondiagonal part,

where

or

=-+—SS'S —+—SS'S —+ ' ' '1 - 11 1

=(&-si) ',

w =SS'S

(4. I)

(4. 8)

(od)ii' oil 511' t

(o,d),",".= crii'(1 —5fr.).
In order to make the diagonal elements of o„similar
in form to the MTKY locator, we also decompose
so into a diagonal and nondiagonal part in the follow-
ing way:

%iit —Z Sip Wji e S
N'

(s'dii =Nif 5ii ~

where

uif =—Zi-, U(l, k)SIi", S-„; . (4. 11)

=Z U(f, k')S;i-, .S„.i,ft

In the case of cellular disorder, U(l, k') is inde-
pendent of k' [U(1, k') = ur;], so that (4. 9) becomes

(4. 9)

+'ll ' -W f ~11' ~

~11 ' +1 ~11' &

where o; is simply the MTKY locator (e —si,") '.
The success of the MTKY method depends on the
diagonalization of o, i.e. , the local propagation of
an electron from site 1 back to 1, the propagation
from 1 to 1' being accounted for completely by the
Fourier transform of the transfer integrals. For
systems with structural disorder, o is no longer
diagonal and the fluctuations in local potential also
contribute to the transfer of electrons. The extent
to which the nondiagonal part of o contributes to the
transfer depends on the choice of V because the

.magnitude and k' dependence of U(f, k') depend en-
tirely on the same, as can be seen by rearranging
(3 &)

U(l, k') =pL Hi i i, e " ' "—V(k') .
Thus, if V(k') were selected to approximate as best
as possible the average motion of the electrons,
the contributions from the nondiagonal elements of
o will be small; their contributions becoming zero
in the limit of cellular disorder when V(k') is chosen
to be the Fourier transform of the transfer integral.
It is known3 that for systems with cellular disorder,

Qw=w —w~ ~

«si)ii -~r U(4k)Sir« ff -Sa~il )

Expanding (4. 12) in terms of

(4. 13)

(4. 14)

we get

o =o '+o' '5wo''+o' '
u5i' o' su5o' '+ ~ ~ (4 15)

,We can introduce a diagrammatic scheme for sum-
ming (4. 15):

(a) Define the matrix elements of o'0' by

(0) (0)
o 1i'=ok

where
(0&

oi =-(&-~i)

and denote it by a loop, Fig. 1(a).

Sw-;~ -'-—-&
1 1' 1 1'

(b)

FIG. 1. Diagrammatic representations of ay
&o)

11 ~

The generalized locator (4. 7) can now be written as

o =(e —iii, —5io) ', (4. 12)

where
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Summing (4. 16), we get

((j;= (1 —Qjoj") 'o)i"

= (& —(()j —Q j) (4. 17)

+ o o ~

FIG. 2. Diagrammatic representation of 0 11'

(0) (+ 2 2 (0) 3ojj =0"j +Qj(o( ) +Q)(gl ) +' ' ' (4. 16)

where QI is represented schematically by Fig. 3.

(b) Define the matrix elements of 6((), i. e. ,
(6(())jj., by a dashed line between 1 and 1', Fig. 1(b).

In this way, the diagonal elements of 0 mill be
represented by those diagrams which cannot be
split into two parts by cutting only one dashed line,
i.e., as in Fig. 2, where all the loops not labeled
by 1 should be summed over all sites except l.
The expansion (Fig. 2) is evidently a power series
in a', , as can be shown by collecting terms with

(o)

one loop at 1, two loops at 1, etc. A simple calcu-
lation shows that

(&4) if=alii=~i ~ (4.19)

To illustrate the difficulties, we examine the
terms in the locator expansion of the ensemble-
averaged (G„-f). Consider a third-order contribu-
tion containing two identical sites 1 and a third dif-
ferent site 1'. The contribution would then have the
for m

which is similar in form to the MTKY locator ex-
cept that se1 is now w1+ 01. Looking back at the
expression (4.11) for (() j, we see that it corresponds
to the local potential in the case of cellular disor-
der, except for the fact that the extra structural
factor S,"t», S„=g is needed to define it. The additional
term 01 can be thought of as a shift in the local po-
tential at 1 arising from the correlation with all the
local potentials at other sites. This is a feature
which has not been treated until now.

Ne shall finally show that by neglecting the non-
diagonal part of 0 one can reduce the problem into
a cellular disorder problem. Even with a diagonal
0 the problem remains difficult because instead of
the Fourier transform of the locator (4. 2), we have

(()":))'-~j j) j& i jh' (4.18)

where for convenience, we define

-1 -1
((Sj)j0'jSj))ri) V i()S)ifi ~ ) 0'jSjjii ~ ) Vjii (Sfii i(io')iiS jif))

1tgllgl II

~0

X e" "" V."V-...oq o -,
I+R (4. 20)

From E(l. (4. 20), it is obvious that structural dis-
order prevents the collapse of the exponential fac-
tors by introducing the intervening matrix elements
of (1+8) . However, considerable simplifications
occur when the 01's vary slowly over 1 because then
we can move (o j o;, ) out of the summation over 1

and 1'. The summation over 1' and q" gives

617,17" - j'+f

N 1.~" i+R
f(q" -fc) ~ 1

lr.
"' R t

and the summation over 1 and q, q' gives

((. ~ i.; -f) j)(' 1
N 1 ~ ~i i+R g~ (1+R

+ 0 ~ ~

FIG. 3. Diagrammatic representation of Qy.
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Therefore, (4.20) becomes

V Fg(o, o"i )-,

approach involves the derivation of an effective
Hamiltonian which is defined by the equation

where
«)=-(~ -&.«) ' (5. 5)

(4.21)

which is similar to the result of the MTKY method
when applied to a system with cellular disorder,
except that here V is given by (4.21) instead of
N 'g p Vg. We see that the reduction into the case
of cellular disorder involves the assumptions of the
smallness of the nondiagonal elements of 0 and the
slow variation of the diagonal elements O',". Both
assumptions are approximately true for most phys-
ical systems and the approximation can be improved
by proper choices of V. The result of the reduction
is the redefinition of o'," by (4. 17) and V by (4. 23).

The band propagator expansion of G is then

G=g+ /WE+ QS'/gal+ ~ ~ ~ (5. 2)

The ensemble-average G can be evaluated by sum-
ming Eq. (5. 2) directly. It can also be calcu-
lated by applying a self-consistent scheme such as
the one due to Velicky, Kirkpatrick, and Ehren-
reich (VKE). The direct summation can be done
by defining the "proper self-energy" part Z(X, z),
where

Z(k, z)=—Wg~+ Z, Wg„g(k', z) W„".„"

k '4k

V. BAND PROPAGATOR EXPANSION

The transformation discussed in Secs. II and III
can also be applied to the band propagator expansion
of G. The part of B which is diagonal in k, i.e. ,
V, serves naturally for defining a band propagator:

&(~)=(~- V) '. (5. 1)

The calculation starts by selecting as good an ap-
proximation K to H,«as possible and defining in
terms of K a T matrix by

G=g+hT9,

where

g-=(z-Z) '.
(5.5)

In terms of T and &,', VKE found that

a„,=Z+(r)(I+9(r))-' . (5.7)

H -K=X," V, , (5.8)

which is needed in VKE for calculating T, becomes

0-K= W, (5. 9)

from which we find the matrix element of V; to be

V,"(k, k') =S„";U(l, k')S;p ~ (5.10)

A self-consistent scheme can then be generated by
requiring that (T[K])= 0. In actual calculations,
the propagator g is usually chosen to approximate
the band structure as best as possible. This re-
quires the knowledge of some band structure be-
forehand and the commonly chosen one is the per-
fectly ordered lattice band structure. The calcula-
tion is then vastly facilitated by the existence of a
Fourier transform for the approximated band prop-
agator. The limitation of this perfect lattice type
of theory is that it will be quite difficult to find a
periodic lattice which approximates amorphous
materials. This can be easily removed if we work
with the transformed Hamiltonian H = V+ W. The
natural choice of K would then be V, and g will be
the same as (5.1). The operator

+ 2 ~ Wg„-. 8 ( k ', z) W "„.g "
k', k''0k

g (k ", z) Wg"„"+ ~ ~ ~

Then we have

(5. 3)

The scattering from individual sites is then given
by the potential U(f, k ') which is due to fluctuation
from local order. For cellularly disordered sys-
tem, Vi(k, k ') reduces to se; e"" " ' '.

V;(k, k ') as given by (5.10) permits the matrix
element of the T matrix associated with site 1

(G(k, z))=([z —V(k) —Z(k, z)] ) . (5.4) T,"= (1 —V; l)) Vj— (5.11)

The essential feature of Z(k, z), which distinguishes
it from the case of perfect lattice, is the appearance
of the structural factors contained in the W's. The
degree to which effects of structural disorder is
important in determining band structure can then
be investigated by studying Eq. (5. 3).

The average Green's function (5.4) can also be
calculated self -consistently. For simplicity, we
follow the elegant formulation by Velicky, Kirk-
patrick, and Ehrenreich. We shall adopt their
notation to the extent possible. The self -consistent

to be summed analytically. To do this, we sub-
stitute the definitions of S„;and S;„.into (5.10) to
get

J(1 k)-Z ~++ kk"

we rewrite (5.12) as

(5. 13)

V;(k k ') =2 e' " " "U(l k'); (5. 12)
jul I +B k kIt

then defining
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V;(k, k') e"" " "Z(1, k)U(1, k ') . (5.14)

Note that the factor Z( 1, k) depends onl~ on the
structure of the lattice, and for (1+R)jf," peaked
at k"=k this factor is essentially 1. The factor-
ization of V,"(k, k ') into a product of functions of k
and k ' makes it possible to sum (5. 11):

T f (k, k') = V,"(k, k ')+Q V; (k, k' ')
fit

x g(k ", z)V; (k", k ')+ ~ ~

J'(1 k)U(i k )
1 -gf U(1, k)~j(k, z)J(1, k)

(5. 15)

Thus the effect of multiple scattering from a single
site is to enhance the local scattering V",(k, k ') by
a site depend factor [1 -)' f U(1, k)g(k, z)J'(1, k)] ~.

After making the average effective wave approxi-
mation, ' VKE were able to reduce (5.7) into

a.„=If+2;(Tf)(1+8(Tf ))-' . (5.16)

As the matrix elements of T," given in (5.15) are
still in the factorized form, the matrix elements of
(T,")(1+9(T,")) ' in (5.16) can again be summed
analytically. Thus the VKE method can be carried
through without much complications from structural
disorder. Although further analysis of the result
will depend on the specific system or model en-

sembles, it is clear from this illustration that the
present formulation would apply readily to the band-
propagator method in general.

VI. DISCUSSION

In this paper, we have introduced a method for
treating the problem of structural disorder in the
calculation of the electronic density of states in
disordered systems. The central point of the for-
mulation is the application of the Wu-Taylor trans-
formation to the Green's-function equation. This
enables us to define a site-dependent scattering po-
tential U(1, k). Using U(1, k) it is then possible to
define a generalized locator in the case of the lo-
cator expansion and a T matrix in the case of the
band-propagator expansion. However, use of the
Wu- Taylor transformation also introduces struc-
ture-dependent factors of (1+R) ' into the expan-
sions. These factors are of course to be expected.
Fortunately they do not present any serious com-
plication to the calculation. In fact, we have il-
lustrated the applicability of the formulation by ex-
tending two known methods, the MTKY method and
the VKE method, for systems with cellular disorder
to systems with structural disorder. Although we
presently place our emphasis on the formulation,
the two cases considered were carried sufficiently
far so that when applied to specific systems, ob-
tainable results are clearly in sight. These results
for one-dimensional as well as three-dimensional
disordered systems will be discussed in a subse-
quent paper.
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