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A mathematical procedure is presented for applying the Born stability criteria to the deter-
mination of the mechanical stability of cubic crystals in the presence of applied forces and de-
formations. The general procedure presented is suitable for use in conjunction with an elec-
tronic computer and is independent of the specific model of interatomic interactions which may
be used in numerical calculations. In the present study, specific calculations are performed
for a body-centered-cubic (bcc) crystal lattice with an uniaxial force applied perpendicular
to a face of a unit cell. The atoms in the crystal are assumed to interact via the two-body
Morse interatomic-potential function determined by Girifalco and Weizer [Phys. Rev. 114,
687 (1959)] for bcc iron. Two ranges of stability, a bcc phase and a body-centered-tetragonal
(bct) phase, were found to exist. The bct phase has a theoretical strength of 0. 9&10 dyn/
cm with a corresponding theoretical strain of about 7%. These values are fairly close to
the values of 1.3 &&10'~ dyn/cm tensile strength and about 5% strain experimentally observed
for iron whiskers.

I. INTRODUCTION

Necessary conditions for the thermodynamic
stability of a crystal lattice are that the crystal be
mechanically stable with respect to arbitrary
(small) homogeneous deformations. These condi-
tions are often referred to as the "Born stability
criteria" after Born' who derived mathematical
expressions for these stability requirements for
cubic lattices of the Bravais type on the assumption
of central forces of a very general type. Misra
applied the Born stability criteria to the study of
mechanical stability of cubic crystals with inverse-
power-law interactions between atoms, and more

recently the present author used these criteria to
study the stability of cubic crystals with Morse-
potential interatomic interactions. These studies
were for unstressed (and hence undeformed) crys-
tal lattices.

The present paper is concerned with applying the
Born stability criteria, to the study of mechanical
stability of cubic crystals which are deformed
homogeneously under the application of external
forces. This study is of interest because the values
of stress and strain at which the crystal becomes
mechanically unstable, in terms of the Born cri-
teria, represent the "theoretical strength" of the
crystal. The failure of a real material under the
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influence of applied stresses occurs as a result of
the strength of the "weakest" region of the lattice
being exceeded; this region will evidently be "im-
perfect. " Thus, the limiting value, or upper bound
to the strength of a crystalline material, is apparently
the strength at which the perfect lattice would fail.
Since the perfect lattice, by definition, is homo-
geneous throughout, it would not fail at some local
weak spot, but would, instead, fail as a result of
the lattice as a whole becoming mechanically un-
stable. This instability occurs when the system,
consisting of the (deformed} lattice in the presence
of the applied forces, can lower its total energy
by spontaneously undergoing an additional arbitrary
set of small uniform deformations (or strains).

The problem of calculating the theoretical
strength of an ideal crystal (i. e. , a crystal free of
defects) has been studied by several investi-
gators. Before the development of the dislocation
theory of solids, this problem was of considerable
interest because of the fact that calculated values
of strength were typically greater than experimental
values by a factor of 100 or more. Currently, this
problem is still of theoretical as well as practical
interest because (a) there now exists the means
for obtaining high-strength crystalline whiskers
which are evidently relatively free of microscopic
defects and (b) the theoretical strength of ideal
crystals apparently represents an upper bound to
the actual strength of crystalline materials.

Born and Furth applied the Born stability cri-
teria to investigate the theoretical strength of a
face-centered-cubic (fcc) crystal lattice for the
particular case in which the external force is ap-
plied in a direction parallel to a cube edge of a unit
cell and in which the atoms in the crystal interact
via a two-body inverse power potential; in partic-
ular, numerical calculations were performed for a
Lennard-Jones 6-12 potential. This investigation
was carried out before the advent of electronic
digital computers; since the amount of calculation
involved is fairly large, at that time it would have
been more difficult to perform calculations for other
forms of interactions between atoms or other modes
of applied lattice deformation.

Thus, it is of interest to study the mechanical
stability of crystals with various modes of deforma-
tion applied and with various forms of interactions
between atoms. Present knowledge of interatomic
interactions in solids is probably insufficient to
allow accurate quantitative calculations of theoret-
ical strength to be made for most crysta. lline solids.
Nevertheless, by using simplified interatomic-inter-
action models such as an empirical two-body inter-
action law (as used by Born and Furth) or perhaps
apseudopotential model, ' it is possible to gain
qualitative or semiquantitative information about
the theoretical strength of crystals. Similar ap-

proaches have been taken by other authors to the
study of many. phenomena occurring in the solid
state. For example, empirical pairwise-inter-
atomic-potential functions (such as the inverse
power or Morse functions) have been used to study
elastic properties of metals"' and alloys, '3 lat-
tice distortion at surfaces, ' '" the defect structure
of solids including point defects'@'7 and disloca-
tions, '"' and the variation of lattice energy in
crystals with compression or expansion. De-
spite the recognition that the interatomic-potential
functions are purely empirical and that many-body
interactions may play a significant role, such an
approach is useful for the following reasons: (i)
The interatomic model is inherently fairly simple
and thereby allows detailed calculations of many
properties of solids to be made; (ii) more rigor-
ous quantum-mechanical solutions are not available
for a wide variety of solids; (iii) the potential
parameters are chosen to fit some specific experi-
mental data and thereby accurately reflect some
definite aspects of the crystal's behavior; and (iv)
the use of this model can lead to greater qualitative
and often quantitative insight into the nature of the
phenomenon being studied.

In the present paper, a mathematical procedure is
presented for applying the Born stability criteria
to the determination of the mechanical stability of
cubic crystals in the presence of applied forces
and deformations. The general procedure pre-
sented is independent of the specific model of inter-
atomic interactions which may be used in numerical
calculations. A specific crystal model and type of
applied loading are then selected for stability
(i.e. , theoretical strength) calculations; the re-
sults of these calculations are presented herein.
In particular, calculations are performed for a
body-centered-cubic (bcc) crystal lattice with a
uniaxial force applied perpendicular to a face
of a unit cell. The atoms in the crystal are as-
sumed to interact via the two-body Morse inter-
atomic-potential function; the potential parameters
used in the present calculations are those deter-
mined by Girifalco andWeizer" for bcc iron. This
particular potential was selected as an initial "test
potential" because (a) the potential has a fairly
simple mathematical form, (b) the numerical
values of the potential parameters were readily
available in the literature, and (c) as is concluded
by Girifalco and Weizer, "for cubic metals, the
Morse potential can be applied to problems in-
volving any kind of a lattice deformation. . . . "

II. THEORY

A. General Theory

For a simple-crystal lattice which is homoge-
neously deformed by the application of external
forces, the internal energy may be expressed in
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(a)

bcc CRYSTAL IN THE ABSENCE
OF APPLIED STRESS. Cube Edges
aq = a2 = a3 = a', and angles between
edges a4 = aa = ae = vr/2.

(b)

fcc CRYSTAL IN ABSENCE
OF APPLIED STRESS.
aq = a2 = as = a'

a3 a4 = aa = ae = s /2. , f = 1, 2, . . . , 6, (sz&

l "a~) (aR
' (2)

cell evaluated for a specific set of lattice param-
eters Ia; j, i = 1, 2, . . . , 6.

In order for the lattice to be in equilibrium in
the state (a", ), there must be an equilibrium of
forces between the externally applied forces and
the internal forces resulting from the mutual po-
tential energy of the atoms. This equilibrium is
identically satisfied if the "generalized forces"
F» acting on the lattice in the state fa, ) are given
by22

(c)
bcc CRYSTAL WITH NORMAL

STRESS APPLIED TO THE PLANE
PERPENDICULAR TO THE aq AXIS.
a2 =esca
a4 = aa = ae = s'/2.

FIG. 1. Convenient unit cells for bcc and fcc crystals.

terms of the internal energy per unit cell. The
energy per unit cell may in turn be expressed as
a function of six independent variables that de-
scribe the unit cell. Figures 1(a)-1(c), respectively,
illustrate convenient unit cells for bcc and fcc
crystals, in the state of zero stress, and that of
a bcc crystal with a normal stress applied parallel
to an edge of the cube. The variables a;, i =1,
2, . .., 6 describe the unit cell; a superscript "0"
is used to denote the values of the lattice param-
eters in the absence of applied forces; thus in the
state of zero stress, the three cube edges are
a, = a~ = a3 = a, and the angles between these edges
are a4=a, =a6= —,'z. When the crystal is stressed,
the lattice will deform, and each c, will become
a;, where in the most general case, the edges
cy + a24 a3 and the angles between the edges

1a4~ a, W a6~-, g.
For applied stresses that are large enough to

cause failure of the ideal crystal, the deformation2'
of the crystal (and hence of the unit cell) fa, —ao),
in general, may not be small compared with ao, .
Thus, it will be necessary to use a formalism ca-
pable of dealing with large deformations. This
formalism will be discussed below. The following
notation will be used to express the energy per unit
cell of the lattice:

z(a „a,", a,", a 4, a „ab) = E)(,»), (1)

i. e. , E)~, &
is the internal potential energy per unit

where the F, are defined such that the work involved
in a small deformation of the lattice {5a";Jin the
state (a, ) is given by

6

5W=Z F ( 5a(

/sz)
E Ea,a„lsab~ (,g}

(4)

where b, d, c are permutations of 1, 2, 3.
For the case in which the cube edges depart only

These "generalized forces" may be related to the
more usual definitions of stress in a fairly straight-
forward manner. Thus, for example, if an edge
a, is elongated by a small amount 5a~, holding all
other a; constant, the increment of work is given
by2 3

5W= I'q5~;

clearly this is the work required to move the face
(of the unit cell) bordered by the remaining edges
a, and a„a distance Ba~ in the direction of g~. Thus,
Fb must be equal to the force acting on the face (of
the unit cell) defined by a, and a~ in the direction
parallel to ab. Note that 6ab (the deformation mea-
sured with respect to the equilibrium value a, ) is
small in the above argument; hqwever, the deforma-
tion (a, —a, ) or the deformations (a, —ao ) (i. e. , a,
and the other g; measured with respect to the
equilibrium values of the lattice parameters (a, )
in the state F0=0, i = 1, 2, . . . , 6) may be a,rbitrar-
ily large.

For the special case in which the edges of the
unit cell a;, i=1, 2, 3 are orthogonal, E„may be
related to the normal stress acting on the plane
(of the unit cell) defined by the two edges a, and

a~ (i. e. , the plane perpendicular to ab) by

0b= Fb/a ag',

where b, c, d are permutations of 1,2, 3. Thus,
under the condition of equilibrium of forces, Eq.
(2), the normal stress acting on a face of the unit
cell when the cell edges are perpendicular to each
other is given by
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slightly from orthogonality, Eq. (4) still represents,
to the first order, the normal stress a ~ . In this
case, using an argument similar to that leading to
Eq. (4), the shear stresses on the faces of the unit
cell can be related to the derivatives of E by the
relation

1 'dE

a«a sa 3 «»a; «ax»
(6)

Z)«»» —E)«&» =Z .(a» —a» )
K

ea,. (,Ki

1 6 6 8~E

2
& y g y Ba~ aaj {+K}

(6)

The deformations (a', —a "]are taken to be small so
the series is terminated after second-order terms.
(Neither (a'. —as}nor (a, —ao} is necessarily small,
however )In terms of. the definition of equilibrium,
the generalized forces acting on the lattice in the
state (a";}must be («»Z/«»a;)«, r», therefore the first
term on the right-hand side of Eq. (6) is seen to be
identically equal to the work done by the external
forces in going from state (a, }to state (a'; }.Thus,
a positive expenditure of energy will be required
for this transition if and only if the second term
on the right-hand side of Eq. (6) is positive. For
convenience, let

=B]~ .K

where, for example, if i=6 and as is the angle be-
tween a, and a» 0 6 represents the shear stress on
the plane normal (or approximately normal) to as
in the a& direction.

Equation (2) thus gives the conditions for the lat-
tice to be in equilibrium with respect to internal
and external forces. However, in order for the
lattice to be in a stable equilibrium, there is an
additional constraint, viz. , that the total energy of
the system consisting of the lattice in the presence
of the applied forces must be at a minimum. In
other words, if the state of the lattice specified by
the six components (a~}is one of stable equilibrium,
there must be required a positive expenditure of
energy to go from the state (a; }to any nearby state
(a', }. This energy expenditure is equal to the dif-
ference in the internal potential energy between the
state (a'; }and the state (a";}plus the work done by
the lattice on its surroundings (i. e. , the negative
of the, work Bone by the external forces on the lat-
tice). The difference in the internal potential
energy between the states (a,'}and (a,}is expressed
in terms of a Taylor's series expansion

According to an algebraic theorem, 2 the double
sum in Eq. (6) will be positive for an arbitrary de-
formation (a'; —a,.}if and only if the principal
minors of the determinant I B,&

l are all positive.
Thus, the condition for stable equilibrium is that
the determinants of the matrices of successive
orders as marked out below (the principal minors)
are all positive,

KB)) B)3 B)3 Bq4 B(~ B1B

Bs» VBss Bss Bss Bss Bss

84»
[

84s
[

843 844 84s 84s

Bs« I Bss
~

Bss Bs4 ss BssI

r ——
Bs«» Bss» Best Bs4

I ss» ss

(The notation [8,.& ] = [8,&] is employed, for con-
venience. )

If these principal minors are not all positive in
the state (a; }; in which an equilibrium of forces
exists, then there exists a state (a', }into which the
lattice will transform (since it can "liberate" en-
ergy by doing so). However, there will not be an
equilibrium of forces in the stake (a', }, since the
external forces Il, have been held equal to
(BE/«»a, )«,rc», whereas the internal forces have be-
come equal to («»E/«»a, )«, »». The crystal will of
course fail under this imbalance of external and in-
ternal forces.

In applying the above formalism to a specific
crystal, one way to proceed wcmld be to select
arbitrarily various sets of (a,}, to calculate (for
each set(a, ]) the external forces F;, Eq. (2), that
must be applied in order for the lattice to be in
equilibrium in the state (a»}, and to calculate the
B,&

and examine the principal determinants of the
matrices 8;& (for each set (a;}» in order to deter-
mine if the lattice is stable in the state (a }.s'

Proceeding in this manner, one could presumably
determine a surface in the six-dimensional space
of a, representing the failure criterion of the crys-
tal. This surface would be constructed such that
if a specific set of values (a;}were to lie on one
side of the surface, the lattice would be stable in
this state; as soon as a set of a, "passed through"
this surface, the crystal would fail.

In practice, however, even with the use of elec-
tronic computers, the amount of calculation that
would be required in order to determine a surface
of this sort is fairly large. Thus, one could pro-
ceed instead by determining specific points of spe-
cial interestuponthis surface. Such a point may be
found by determining a path or a curve to be fol-
lowed (in the six-dimensional space a;) that will
pass from the stability side of this surface to the
side of instability at the point of failure, specified
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by, say, the set la;). The path to be followed may
be defined either by placing constraints directly
upon the a; (e. g. , a path could be specified by the
constraints ai = a2 = a3 and a4 = a5 = a~ = —,'m; this
would correspond to pure hydrostatic pressure
applied to the crystal), or by placing the constraints
upon the applied forces F;. In either case, the
set (a, ) at which the stability criteria, becomes
violated is found by examining the stability criteria
for sets of values $a; ) that lie on the particular
path (i. e. , that are subject to the specified con-
straints).

It is easier to place the constraints directly up-
on the a, since once a set (a;) is specified, the F,
and the B,&

may be calculated from Eqs. (2) and
(7). However, from a physical point of view, it
is usually more interesting to place constraints
upon the F, (For example, a constraint placed
upon the F, might be the specification that the
state (a;) correspond to a state in which a, uniaxial
force is applied to the crystal; this partic-
ular case is considered in greater detail in Sec.
IIB. ) If the forces F, are constrained to certain
values, then it is necessary to determine the set
of values (a,) subject to the conditions that (&E/sa, ),
evaluated for the crystal in the state (a;) be equal
to the F;, g. =1, 2, . . . , 6. If for a given set of
forces F', a "starting set" (a',) is known, additional
states (a,) (subject to constraints upon the F, ) may
be found by using the iteration procedure presented
below. (A convenient "starting set" is the set
fao) for which all FO=0. )

Using the set of values (a';), the B',
&

are eval-
uated [Eq. (7)]. In order to find a nearby state
(a/ satisfying the conditions of force equilibrium
in the presence of a specified set of applied forces
F,, Eq. (6) is rewritten as

Thus, given a state (a',) in which the equilibrium
applied forces F', are known, the general problem
of finding a nearby state (a";) in which the equilib-
rium forces are specified as F";, reduces to one of
solving the linear system of equations summarized
in Eq. (11). After finding the Ia, ), the B,&

can be
evaluated; the "new starting point" can then be
taken to be the state fa",j [i.e. , B",&, F"„anda& are
ubstituted for Bs&&, F&s and as& respectively, in

Eqs. (11), and this procedure can be repeated in
order to determine a new equilibrium state, say
{aI), for a new set of external forces, F,').

The above process can be repeated until a set
B;& is found that violates the stability criteria. The
(aI —a, ) for any successive iteration must, of
course, be small with respect to fa";); however,
the (a,. —a';) may become relatively large after
several iterations.

B. Case of Uniaxial Force

Now, as a specific application of the above for-
malism, consider a cubic crystal with a uniaxial
force applied perpendicular to a cube face, parallel
to, say, the edge a, . In the absence of applied
shear stresses, the components a4, a„and a~ will
retain their initial values of —,v (at least up until
failure occurs). For a tensile force, the edge a,
will elongate and the edges a~ and a3 will contract;
by symmetry it is seen that the relation a~ = a3 will
be maintained. (The deformed crystal will possess
tetragonal symmetry. )

An equilibrium state la, ) must satisfy the condi-
tions of force equilibrium

and

6 6
+ —Z ZB;~ (a, —a', )(a~ —a~),

i,=i )=i

and differentiated with respect to a,. to obtain

where

FK

K
3 7

a4 = a5 = ae = 2~ & ~

(13)

(14)

(»)
and F, is the applied load. The normal stress in
the a, direction is simply

B

=F ]+— B] ~ a) —a) + 8)] ~ a) —a)
&=i $~2

cr", = F",/(a, )' . (16)

Taking into account that internal energy i.s a
"state function" independent of path so that B;&
=B&„Eq. (10) becomes

(10)
As a result of the symmetry of the crystal struc-
ture, for i =4, 5, 6 the equations summarized in
relation (12) are identically satisfied [since BE/Sa4
= 8E/9 (- a, ), etc. ] and for i = 2 and 3 these equa-
tions are identical to each other. Hence, the re-
lations (12)will be satisfied if

B

F, =F';+PB;& (a& —a&), i=1, 2, . . . , 6. (11)
J~2

(17)
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Thus, in this case, the problem of finding an equi-
librium state {a„)reduces to determining a", and
a»a subject to Eqs. (l3) and (17).

Furthermore, the special symmetry of the crys-
tal in this case also greatly simplifies the matrix
[B,J] T. he following relationships are seen to
occux",

8» &0

Relations (25), (26), and (29) then imply

and relation (27) leads to

(29)

(3O)

8]~=8~]

Bq&=0 if j=4, 5, 6 and i wj

8aa ——833 and 855 ——866

(ls)

(»)
(20)

8E eE
Ba, Ba~ Ba, B (- a&)

'

j=4, 5, or 6 and i cj, etc.

The matrix [B,&] then takes the form
'I

Bqj Ba Bqa 0 0 0

For example, Eq. (19) can be demonstrated from

B» (Baa+ Baa}-2 (Bia)"o ~ (3l)

=0

Relations (28)-(31)are the necessary and suffic
ient conditions for the lattice to be in stable equi
librium in terms of the Born criteria.

In the above case, the remaining symmetry of
the crystal in the presence of the applied forces
results in a considerable simplification of the it-
eration procedure for determining the values of
the lattice parameters. Equations (ll) reduce to

~1 ~1+Bll (s1 ol) + la (sa a}

B)a Baa Bas 0 0 0

Bia Baa Baa o
8]))=

0 0 0 844 0 0

0 0 0 0 85S 0

(22)

B1a (sl s1) + ( aa+Baa} ( a a}

upon rearranging Eq. (33),

sa s2 . IBla/(Baa+Baa}] (s1 o1)

and substituting Eq. (34) into Eq. (32),

(33)

(34)

0 0 0 0 0 B~~
Z", = F', + [B'„-2(B'„)'/(B'„+B'„)](a", —s', ).

The principal minors in the determinant of the
above matrix will be positive if

855 &0

Baa &0,

(23}

(24)

(25)

Baa Bas'
&0

Bas Baa
(26}

B~~ Bia B~a

Bn Bas Baa

Lattices Neith Central, Painuise
- Interatomic Eorces

Bia &0

Further simylifications in the above relations
result from the approximation of yairwise central
forces; in this approximation B~ and 8 3 are
equal to (a, aa) ' B» and (a"aaa) ' B«, respectively
[see Eqs. (56) and (57)], so relations (23) and (24)
are equivalent to

(»)
The iteration process may begin with the known
values of the lattice parameters a;=aa=a for
which all I' ', =0. After calculating the values of

8&&, the lattice parameter a, is elongated by a
small amount af —a', . The value of aa (for which

F,"=0) is then found from Eq. (34); the value E,
(which "results in the elongation" af —a', ) may be
determined from Eq, (35), or may be calculated
directly from Eq. (2). The Bfz are evaluated for
these values of lattice parameters and the process
is repeated fox' another incremental elongation
a', —a, of a,. This is continued until one of the
stability relations is violated. The value of F, /
(sa ) a't which the instability occurs ls the theoreti-
cal strength (stress) of the crystal and (a», —aa)/

a, is the theoretical maximal strain.

C. Numerical Calculations in Model of Central
Pairwise Interatomic Interactions

In the previous discussion, the means of deter-
mining an equilibrium state of the lattice {a,j in
the presence of generalized forces E& is outlined
in detail. It has been assumed implicitly that for
a given set of lattice parameters {a,] the quantities
F, [Eq. (2)] and Bo [Eq. (7)] can be calculated.
In this section the calculation of -these quantities-
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for a particular model of a cubic crystal, viz. , one
in which the atoms interact in a central pairwise
manner, is discussed. As was mentioned earlier,
this model has been used by many authors" in
investigations of a wide variety of solid-state phe-
nomena. A basic assumption is that the potential
energy of interaction between two atoms Q (r,~)

may be written as a function of the interatomic
spacing x,J between the atoms. The conditions
which "any potential function [If)] must satisfy if it
is to describe reality" have been discussed in de-
tail by Girifalco and Weizer. " In Sec. III, explicit
nume.'ical results are presented for calculations
carried out for a bcc crystal lattice using the well-
known Morse function,

P(r„)=D [e "'"»~ "o' —2e ''"»I "o']

The potential parameters used in the calculations
are those which have been determined for bcc
iron"; this potential satisfies each of the requisite
conditions discussed by Girifalco and Weizer.

In the pairwise interaction model, the energy per
unit cell of the lattice may be written as

BE 1 gpss Bf(r) Br
ca) 2 g, g2, 3

ex ~a,
(41)

B E 1 gyp B Q(r) Br
Ba,Ba&. 2 .. . , (Br~)3 Ba, Ba~

By(r) B'r'
O'I/ eg;9Q~

(42)

where r is taken to mean (r, »2, , )»„), the deriva-
tives are all evaluated for the particular set (a,f,
and the BP/Br and B P/(Br ) are found directly
from the particular form of two-body potential
function that is used. The Br /Ba& and B~r /Ba,.Ba&

are evaluated by differentiating Eq. (39), which,
when expanded, takes the form

r =- [ls a»+2l, l~a&azcosae+2l, isa, a3cosa5

teger values l; (i. e. , until convergence is obtained).
The F;, Eq. (2), and the f3;&, Eq. (7), may then

be found by differentiating Eq. (40),

E)». ;»
= l & ~~ & [(r~ ) a;) 1 (37) + l2az+ 2121,aza3cosa4 + l,a3] . (43)

where n is the number of atoms per unit cell and

x& is the distance from an arbitrary atom in the
lattice (chosen as the origin) to the jth atom; the
sum is to be evaluated for a specific set of lattice
parameters (a,) and the index j runs over all atoms
in the crystal. Of course, in actual calculations,
the index j need include only enough terms to obtain
convergence to within the desired number of signif-
icant figures.

In a bcc or an fcc crystal lattice which is subject
to uniform deformations, the vector r& passing
from the origin to the jth atom in the crystal may
be written as

r& =
r&»a&3

2ex = —; l2l, aza3sina4,
Ba4

(45)

2 2
)3

2
a1

(46)

82r2
1= —
2 l2l3a2a3 cosa4,

ea4
(47)

Thus, for example, some of the derivatives of in-
terest in Eqs. (41) and (42) are

ef' 1 2
2

= —, [l,a, +l&i~a& cosa, + l, l,a, cosa, ], (44)
ea1

= —Z l, a, »f,
i, =1

and the square of its magnitude is given by

(ss)

(39)

= 2 ~1l2COSae,
~a 1803

= —
2 l1E3a3 sina5,

801805

(4s)

(49)

the d', are unit vectors in the directions of the cell
edges a;, and the l, are integers. For a bcc crys-
tal, the l; run over all integer values for which

l1, l~, l3 are either all odd or all even, and for an
fcc lattice, the l; are subject to the conditions
that the sum l1+ l2+l3 is even. In this notation, Eq.
(3V) becomes

E)». , )
= '&~ ~ ~ 0 [(r-»,»,», )».,)l (40)

l1 /2 l3

where the sums are performed over all allowed in-

82r3
=0,

ea18a4

2+$2
=Q.

ea48a5

(50)

For the particular case of a uniaxial tensile
stress applied parallel to the a, axis (a2 = a~ and

a4=as = a») = —,')»), the cosines in the above equations
are zero and the sines are unity. Equations (41)
and (42) then lead to the following lattice sums for
the I'; and the &;& ..
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I']= —na( ~ l1 2, j=1 2 32 9

l1l l
(52) ra= 2. 845 A,

@=1.3885 A

as 484» ~ as'
11 8~1 ~ 1 / 2i2 +4n ~ li 8 2 P

l1l2l3 ill
(53)

2
1 aa s4

B12 = —,na1a2 ~ l1l2,
l1l 2l 3

(54)

a
44 () n(aaaS) ~ f2 f2 2 2 '

123
(55)

The remaining B;& may be found by switching sub-
scripts in the above equations. For example, to
find B22, a1and l, are changed to a2 and l2 in Eq.
(53); for Baa, a, and f, are changed to aa and la
in Eq. (54); and for Ba, =Baa, aa and la are changed
to a) and f, in Eq. (55). As a result of the assump-
tion of pairwase central forces, the relations

B44 =a2 3B23 (58)

BS5 =a1&2B12

occur, as may be verified by comparison of the
respective lattice sums. Any lattice sum that con-
tains an l; to an odd power will be zero; so terms
such as

8
F() = —na, aa Z lala 2 =0 .

12 3

III. NUMERICAL RESULTS AND DISCUSSION

D=0. 4174 eV,

Section II presented in detail a mathematical
procedure for applying the Born stability criteria
to the calculation of the mechanical stability of an
ideal crystal in the presence of externally applied
forces. To obtain numerical results, it is of course
necessary to use a particular model for interatomic
interactions. In the present study, explicit numer-
ical results are obtained for the particular case of
a bcc crystal lattice with two-body Morse-function
[Eq. (38)j interactions between atoms. Morse-
function interactions have been used by many
authors to calculate behavior or properties of
solids; e. g. , Morse functions have been used to
calculate equations of state, "elastic moduli of
metals"' and alloys, ' lattice distortion at sur-
faces, ' '" the propagation of shock waves in cry-
stals, and characteristics of point defects and
dislocations. '

The values of the potential parameters used in the
present calculations are those determined by
Girifalco and seizer" for bcc iron, viz. ,

where the equilibrium value of the lattice param-
eter a = 2. 8631 A. These parameters were de-
termined by fitting the Morse function to experi-
mental values of cohesive energy, compressibility,
and the equilibrium lattice parameter of bcc iron.
That is, the Morse function, with these particular
parameter values, satisfies the following conditions
for bcc iron: (i) Substituting the Morse function
»I)(r) into Eq. (40) yields a value of E) (,P

) equal to
the experimental value of cohesive energy (at
0'K); (ii) substituting (1)(r) into the appropriate ex-
pression ' for compressibility yields the respective
experimental value; and (iii) substituting»I)(r) into
the expression for applied forces, Eq. (52), yields
F,= 0 when (a») = (aQ».

In the present study, numerical calculations of
lattice stability are made for the case of a uniaxial
force applied parallel to an edge of the unit cell,
parallel to, say, the lattice parameter a, . In this
case, the conditions for lattice stability are given
by relations (28)-(31). The quantities in these
relations are calculated using the lattice summa-
tions of Eqs. (53)-(55). The values of the lattice
parameters which are used in evaluating these
summations are those for which Eqs. (52) are sat-
isfied, i.e. , those which the lattice summations of
Eqs. (52) yield F,equal to the applied force (per unit
cell) and Fa =Fa =0. The applied stress o) =F&/
(aa) . The first and second derivatives of $(p')
which appear in these lattice summations are

r 2n (r -rp) -n(r -rp) ]-)8 —e
Br (58)

and

Dn & 1 ) e an(„„())
(sra)2 ) 2 2r ij

~-I ( r - t'() )I& 1
2 2r (59)

The magnitude of r appearing in these expressions
is given by the square root of Eq. (43). The summa-
tions are evaluated with the aid of an electronic
digital computer; approximately 2000 lattice sites
are included in each sum.

Results of numerical calculations of the applied
stress o„ the internal energy E) (, ) (or simply
E), and the stability criteria for the bcc latticeap
are shown as a function of lattice parameter a, in
Figs. 2-4. In Fig. 2 it is seen that the applied
stress increases from zero at the unstressed
equilibrium value of lattice parameter a1 = 2. 8631A
to a maximum of 1.7x 10 dyn/cm at a) = 2. 9128 A,
where the stability criteria are violated. Figure 3
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FIG. 2. Internal energy and applied stress as a func-
tion of lattice parameter a& in the region of stability of
the bcc crystal.

FIG. 4. Independent moduli B&& as a function of lattice
parameter a, in the region of stability of the bcc crystal.
The long-short dashed line indicates the position of sta-
bility for zero applied stress.
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position of stability for zero applied stress.

shows that it is the stability relation

Bi( [BII+BIg]—2B)q) 0

which is violated at this point; evidently this re-

lation becomes violated when a further increase
in lattice parameter a, leads to a decrease in the
equilibrium stress rr, (or in other words when the
lattice cannot accommodate a further increase in
applied stress). Thus, in this model, the bcc
lattice becomes unstable at a theoretical tensile
stress of l. 7 x 10' dyn/cmI and a corresponding
maximal strain of

e, =(2.9128 —a )/a'=o o1'135.

In compression, the bcc lattice becomes unstable
at an applied stress o, = —5. 05 x 10 dyn/cmI at
lattice parameter a, = 2. 8166 A corresponding to
a strain &, = 0. 0162. Figure 3 shows that instability
in compression results from the vjol3tion of the con-
dition B~z —8» &0. The violation of this condition
corresponds to the mode of failure by which the
crystal can lower its total energy by undergoing
spontaneously the following lattice deformation:
The lattice parameters a~ and a3 deform oppositely
by equal amounts (e. g. , if az, say, increases, then

a, decreases by the same amount) while a, and the
angles a4, a5, and ae remain fixed.

Figure 4 shows the variation of the four indepen-
dent moduli 8», B,~, B2z, and &z, in the range in
which the stressed bcc lattice is stable as a function
of lattice parameter a, . The relations 8» = &22

and B,~ = Bz, occur for a& = a (i.e. , for zero applied
stress a, = as= a, = a ); these relations of course
result from the cubic symmetry of the unstressed
crystal. None of the individual B;&'s become neg-
ative at the points of failure of the stressed bcc
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lattice [it is noted that the satisfaction of the sta-
bility relations (28) —(31) also implies B» & 0 and

B2t & 0].
There are several noteworthy aspects to the be-

havior of the bcc crystal under the influence of the
tensile stress o,. First, it is noted that the crystal
fails at a relatively low value of stress o, =1.7
x 10' dyn/cm2; then, instead of approaching zero
asymptotically, the equilibrium (but unstable) value
of stress becomes negative. The internal energy
E, of course, passes through a maximum at the
value of a, at which o, becomes negative (a,

0
= 2. 9687 A). Since the nature of the interatomic-
potential function P(r) requires that B must ul-
timately increase (to zero) as a, increases, the
energy E must pass through another minimum
and 0; must pass from a negative to a positive
value again at some larger value of a&, say a& = b, .

Thus at a, =b„ there exists another crystalline
phase, a, body-centered-tetragonal(bct) phase, which
is in equilibrium in the absence of applied forces;
the lattice parameters of this phase (in the un-
stressed state) are denoted as a, = bo~, az =a, =b2O,

and ~4 =a, =as = ~. Some questions of interest
regarding the bct phase are: (a) Is this phase (in
the unstressed state) at a higher or lower internal
energy then the unstressed bcc phase'? (b) Does
the bct phase exist in a stable equilibrium? (c)
If it does exist in a stable equilibrium, what are
the values of its theoretical strength and maximal
strain and what are its modes of failure in tension
and in compression? The answers to these ques-
tions may be found in Figs. 5 and 6.

Figure 5 shows the lattice parameter az (as de-
termined by the condition o~ = 0), the applied stress
o„and the internal energy F. over a fairly large
range of lattice parameter a, . The unstressed
(a, = 0) bct phase possesses the lattice parameters
ag= bg=3. 6055 A and aq= b2=2. 5495 A correspond-
ing to the minimum of internal energy E = —13.501
x 10 '3 erg/unit cell. In Fig. 5 it is seen that the
internal-energy minimum of the bct phase is con-
siderably lower than that of the bcc phase (about
—13.4139 x 10 ' erg/unit cell). Furthermore,
the potential well corresponding to the bcc phase
is relatively shallow (hence the relatively small
value for the maximum stress of this phase).

Figure 6 shows that at a, = b„all of the stability
conditions are fulfilled; thus, the bct phase is in
stowe equilibrium in terms of the Born criteria.
In this figure it is seen that the bct phase is stable
within the range of lattice parameter a, = 3.3375 A
to a, = 3. 8606 A. It is noted that the range of
stability of the bct phase is considerably greate&
than that of the bcc phase. From Fig. 5, the
theoretical strength of the bct phase is 8. 90&&10'

dyn/cm in tension and —3.22x 10' dyn/cm in
compression; the corresponding strain &, = 0. 0707
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FIG. 5. Internal energy, applied stress, and lattice
parameter a2 as a function of lattice parameter a~.
Regions of lattice stability and instability are separated
by short dashed lines. Ordinate and abscissa scales
are considerably different from those of Fig. 2.

in tension and —0.0740 in compression. The lat-
tice fails in tension by violating the condition 823 & 0
and in compression by violating the condition

iifBaa+ B23] —2Bia'0 ~

The violation of the latter condition results when
the lattice cannot support an additional compres-
sive load (i. e. , when a decrease in lattice param-
eter a, results in an increase rather than a decrease
in stress o,). When the condition Bms & 0 is violated,
the lattice can lower its energy by undergoing a
spontaneous deformation wherein the angle a4 (the
angle between a2 and a, ) deviates from 90'.

It is noted that the bct lattice fails in tension con-
siderably before the maximum equilibrium stress
of 4. 44x 10"dyn/cm2 is reached; this behavior
demonstrates the necessity for examining the
stability relations (28)-(31) in order to determine
the theoretical strength of the crystal, rather than
simply calculating the maximum value of stress
and corresponding maximal strain.

Calculations such as those shown in Figs. 5 and
6 were carried out throughout the range of lattice
parameter a, =2.00 A to ay=9 20 A; the lattice
was found to satisfy the Born criteria only in the bcc
and bct regions indicated in Figs. 5 and 6.

It is of interest to comment upon the result that,
for the interatomic potential used in the present
study (i. e. , the Morse function determined by
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Girifalco and Weizer for bcc iron), the bct phase
is at a lower energy and is evidently more stable
than the bcc phase. Although this result is not in

correspondence with the actual behavior of pure
iron which exists in the bcc phase, it is interesting
to note that when carbon or nitrogen is dissolved
into iron, the lattice distorts into the bct form. The

FIG. 6, B))[B22+B23]—2B(2, B22 —B23, and the four
independent B» 's as a function of lattice parameter a&.if
The lattice is unstable in the regions where the numerical
values of any of these curves are less than or equal to
zero.

lattice parameter a, elongates and a~ and a3 con-
tract; the carbon or nitrogen atoms occupy inter-
stitial positions midway along the equivalent edges

30a, of the unit cell. As is pointed out by Cottrell,
"a study of the bcc cell shows rather surprisingly
that these are not the positions of the largest inter-
stitial holes in the cell." Thus iron containing dis-
solved carbon or nitrogen exists in the bct struc-
ture even though, based upon considerations of
size alone, this structure is not the one which ac-
commodates the carbon or nitrogen atoms most
readily.

In the present calculations the lattice (in the bct
phase) was found to remain stable up to a tensile
strain of about V% with a corresponding strength
of about 9&&10M dyn/cms. It is of interest to com-
pare this estimate of theoretical strength and
strain with the results of some experimental mea-
surements in which the stress and strain apparently
approach the theoretical limit. Crump and
Mitchell ' have recently reported observing elastic
strains as high as 4. 5% in "nearly perfect" crys-
tals of cadmium. Brenner ' has measured the
tensile strength of fine iron whiskers and has re-

10ported ultimate tensile strengths of about 13&& 10
dyn/cm with corresponding strains close to 5%.
The values of stress and strain obtained in the
present calculations for the bct phase are reason-
ably close to these experimentally observed values.
The theoretical values of stress and strain for the
bcc phase, however, are considerably less than
the experimental values quoted above.
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The exponents of the Debye-Wailer factor for the cubic metals copper, silver, gold, alumi-
nium, nickel, sodium, chromium, and e-iron are determined at different temperatures from
the vibrational spectrum derived from a model for the lattice dynamics of metals recently
propounded by Cheveau, which includes the influence of conduction electrons on lattice vibra-
tions. The calculation uses Blackman's root-sampling technique for a discrete subdivision
in wave-vector space. The results of the calculations are compared with available experimen-
tal data in terms of the Debye-Wailer-factor temperature parameter 7; the effective x-ray
characteristic temperature e&, and the mean-square displacement of the atoms I . Except
for chromium, the theoretical values show reasonably satisfactory agreement with the experi-
mental measurements.

I. INTRODUCTION

In the no~resonant elastic scattering of waves
(slow neutrons, x rays, etc. ) from scatterers which
are bound in crystals, the fall in the intensity on
account of lattice thermal motion is governed by an

exponential factor e ', called the Debye-Wailer
factor. The exponent 2M depends upon the mean-
square displacement of the atoms, and can be cor-
related with many other solid-state phenomena. In
the recent past, considerable interest has been shown
in the experimental study of the thermal variation of
the Debye-Wailer factors of metals by means of
x-ray diffraction. The experimental data have usu-
ally been interpreted in terms of the Debye theory,
using volume-change corrections due to Paskin. '

It is now well known that electrons in metals in-
fluence considerably the vibrational frequencies
and their lattice-dynamical behavior. In recent
years, a number of models have been propounded
for calculating the phonon frequencies of metals by
taking cognizance of electrons in various approxi-
mate ways. However, many of these models violate

some symmetry properties of a cubic lattice. Lax'
has attributed this inadequacy to the neglect of trans-
lational invariance of the lattice. Recently, Krebs6
has attempted to remove this difficulty by consider-
ing umklapp processes. However, this model suf-
fers from a serious defect of internal equilibrium,
i.e. , the derivative of the long-range screened
Coulomb interaction energy does not vanish at the
equilibrium configuration as it does for the short-
range Born-von Karman term. This necessitates
external forces to maintain the system in equilibrium.
Quite recently, Cheveau' has propounded a model
for the dispersion of lattice waves in cubic metals
which satisfies the symmetry requirements of a
cubic lattice and preserves internal equilibrium
without recourse to any external force. The model
considers the ion-ion interaction as the first two
terms in Taylor expansion of the potential energy.
For the electron-ion interaction, the linearized
Thomas-Fermi equation is used over the whole cry-
stal. The model has recently been used by the au-
thors to study the thermal variations of the Gruneisen
parameters of cubic metals and was found to give


