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Lattice 'Ihermal Conductivity of Plastically Deformed Copper plus 10 Atomic Percent
Aluminum Specimens in the Temperature Range 1—O'K*
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The total thermal and electrical conductivities of seven polycrystalline rods of copper plus
10 at. % aluminum, which were in a total of 25 different states of recovery from plastic de-
formation at 77 K, and one commercially pure nickel single crystal were measured in the
liquid-helium temperature range. The low-temperature lattice thermal conductivity of a speci-
men which had been plastically deformed 9% recovered slowly as it was annealed between 300
and 700 'K, and then rapidly recovered to its prestrain magnitude after being annealed between
700 and 800 'K. The recrystallization temperature was 725 K. Metallographic grain-size
studies supported these conclusions. An application of the theory of Klemens and Ackerman
and Klemens to the variation of the dislocation lattice thermal resistivity with annealing tem-
perature (below 700 'K) due to impurity atmospheres made it possible to determine the frac-
tional atomic-volume difference 0. between the aluminum and copper atoms to be 0.23. When
the same theory was compared with variation of the dislocation lattice thermal resistivity
with aluminum concentration found by Charsley, Salter, and Leaver, it was found that & =0.24.
From the experimental x-ray data, 0. is 0.20. A later theory of Klemens which treated the
variation of dislocation resistivity with annealing time at fixed annealing temperature was
found to be inconsistent with the data of this work, but the experimental error was large. The
theory contained the assumption that a unique diffusion constant could be defined for the de-
formed alloys, but this may not have been true, since plastic deformation generates excess
vacancies. An anomalous departure of the phonon-electron lattice thermal resistivity from
a T"2 temperature dependence was thought to be an effect associated with the small electron
mean free paths in these alloys. The theory of Lindenfeld and Pennebaker qualitatively ex-
plained the anomaly.

I. INTRODUCTION

The lattice conductivity of a metal is sensitive
to defects in the crystal structure. The different
types of defect give rise to lattice thermal resis-
tivities which have their own characteristic tem-

perature dependences. Plastic def ormation gener-
ates dislocations; these produce a lattice thermal
resistivity which is proportional to T . Charsley
et al. found that the thermal resistivity per dislo-
cation had a concentration dependence in copper-
aluminum alloys which, could not be explained by the
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K,= L oT/po (2)

where Lo and T are the ideal Lorenz number
(2. 445x10 WQK ) and the absolute temperature,
respectively.

The lattice conductivity may be found by sub-
tracting K, of Eq. (2) from the total thermal con-
ductivity,

K~=K- LoT/po (3)

The lattice conductivity was found in this way for
the specimens considered in this investigation.

The lattice conductivity is sensitive to lattice
defects, and in particular, each type of defect will
give rise to a characteristic temperature depen-
dence. In order to study the effect of each defect
on the lattice conductivity, use is made of the ad-
ditive-resistance approximation (see Klemens for
a discussion of the use and validity of the approx-
imation)

W~ = 1/K~ = 5~( W) (4)

where S'~ is the total lattice thermal resistivity,
and %'& is the lattice thermal resistivity due to the
ith type of defect.

In a well-annealed alloy, the lattice thermal
resistivity is due to scattering of phonons by elec-
trons in the temperature range 1-4 'K. According
to early theories, the temperature variation of the
phonon-electron thermal resistivity 8'„ is T
Experimentally there were deviations from T
which will be discussed in detail in Sec. IV. Lat-

then-existing theory. ' Klemens3 suggested a model
in which impurities modulate the strain field of the
dislocations to explain the concentration dependence
of the thermal resistivity (this will be discussed in
detail in Sec. IV). It is the purpose of this work to
investigate the variation of dislocation thermal
resistivity with annealing time and temperature, and
test the predictions of the theory of Klemens, ' and
Ackerman and Klemens. '

The total thermal flux in a metal is the sum~ of
the fluxes carried independently by the conduction
electrons and the lattice. The total thermal con-
ductivity K is thus the sum of electronic thermal
conductivity K, and the lattice thermal conductivity
K~ (e. g. , see Ref. 6):

K =%~+K~

In this copper-aluminum alloy, the electrical
resistivity po is constant in the liquid-helium tem-
perature range, and is due to elastic scattering of
electrons by point defects and lattice defects.

At low temperatures in a concentrated alloy,
the electronic conductivity is related to the residual
resistivity through the Wiedemann-Franz law (e. g. ,
see Ref. 6):

tice thermal resistivity due to point defects is not
important at these low temperatures. Klemens'
discusses these and other lattice thermal resistiv-
ities, and their characteristic temperature depen-
dences.

The specimens of this investigation were ten-
silely and torsionally deformed in the plastic-flow
region up to about 9%%uo (except one specimen which
was swaged from a relatively large diameter, and
thus cold-worked several hundred percent), and

thus dislocations were generated in large numbers.
Cottrell gives a, review of the theory of dislo-

cations in terms of elastic continuum theory.
Dislocations scatter phonons in the liquid-heli-
um temperature range. Thus the total lattice ther-
mal resistivity of these copper-aluminum specimens
will arise from scattering of phonons by both elec-
trons and dislocations; individual point defects
produce no significant scattering in this temperature
range and other defects are probably negligible
also. The lattice dislocation thermal resistivity
8'«has been the subject of a number of previous
studies, among which were Kemp et al. , Lomer
and Rosenberg, ' and Kemp et al. "which showed
that the theory correctly predicted the observed T
temperature dependence of W'«. These studies were
also concerned with correlating the dislocation den-
sity N„estimated from the theoretical expression'
for dislocation thermal resistivity with the disloca-
tion density found by experimental stored-energy
measurements, ' and direct observation with an
electron microscope. ' The thermal estimates
yielded N~'s, which were a factor of about six
higher than the experimental estimates. This
discrepancy was not explained theoretically.

In Sec. II of this paper, the preparation and
condition of the specimens will be discussed. Sec-
tion III is a brief discussion of the experimental
techniques used. Section IV is a short outline of
the modified Klemens theory. In Sec. V the exper-
imental data will be presented. Sec. VI will sum-
marize the results and conclusions.

II ~ SAMPLE PREPARATION

The copper plus 10 at. % aluminum specimens
were obtained from the Materials Research Corp.
(Orangeburg, N. Y. ). The alloy was prepared by
vacuum induction melting 4. 5%%uo by weight of
99. 999%%uo pure aluminum with 99. 999% pure copper.
The resulting slug was machined to remove the
surface contamination and slag, and then swaged
(from about 1 in. diam) without annealing to a ~~ in.
diam.

Half of the ~6 in. stock was swaged to a~ in.
diam. The 8 in. stock was put into liquid nitrogen
and kept there until a section designated sample A.

was cut off and mounted (at 2"/3 'K) for the thermal
conductivity measurement; it was in a very heavily
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cold-worked condition. The diameters were found
to be within 0. 0002 in. of their nominal values.

A nickel single crystal was measured and used
to test the apparatus and thermometer calibration.
This sample (99.9% pure with Fe, Si, and C impuri-
ties) was grown from a seed crystal in an alumina
crucible using a variation of the Bridgman method.
A (111) axis was oriented along the sample axis.
Annealing was carried out at 930 'C for 48 h in a
quartz tube sealed off under vacuum.

III. EXPERIMENTAL DETAILS

The thermal conductivity was measured by
previously described techniques, ' with the following
exceptions: An appara. tus similar to the one in Fig.
1(b) of Ref. 13 was used to measure samples A, B,
and Cl-C4 (all of these were o in. diam before
plastic deformation), i. e. , the samples extended
through the can top into the bath. The remaining
specimens (~ in. diam before plastic deformation)
were mounted in good thermal contact to a pure-
copper post, which in turn extended through the can
top into the bath; this method resulted in lower
temperature differences between the thermometers
at zero heater power. The vacuum space of the
adiabatic can surrounding the specimens was mon-
itored periodically with a Veeco MS-90A leak de-
tector, both above and below the X point, to be sure
that there were no leaks.

The two germanium resistance thermometers
were calibrated against the vapor pressure of the
liquid helium by submerging them (surrounded only
by a radiation shield) in the liquid helium inside a
partially silvered glass Dewar. A bath-height cor-
rection was made to the surface pressure, which
was measured by means of a mercury or Octoil-S
manometer, whose manometer fluid-height differ-
ence was measured with a cathetometer. The vapor
pressure was controlled by means of a Vfalker-type
regulator. ' Vapor pressures were reduced to ab-
solute temperatures T using the 1958 Liquid-
Helium Vapor-Pressure Tables. " Thermometer
current and potential measurements were made
using previously described electronics. '

About 20 sets of resistance R and tempera-
ture T calibration points were thus obtained in
the temperature range 1-4 'K for each thermome-
ter. A least-squares fit of each of these sets was
made to the equation

B D 1

)'„(Rq)=(A C (nR, E (1n))&)
lnR) lnR(

A deviation curve drawn through the points Ts(R&)
—T& plotted against T~(R&), was used to make small
corrections to Ts(R, ) for each thermometer. It
was necessary to smooth relatively large (= 0. 013 'K)
deviations in the temperature range 2. 2-2. 6 'K to
reduce scatter in the K/T vs T data.

' Ol
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FIG. 1. Ratio of total thermal conductivity K to abso-
lute temperature T is plotted against T for a commercially
pure- (99.9%) nickel specimen. Solid line is a straight
line drawn through the experimental data; it intercepts
the axis at I 0/po. Thus, total thermal conductivity is
the sum of the electronic (LOT/po) and a small lattice
(BT ) thermal conductivity. Note that there is no kink.
These results are considered to be an adequate verifi-
cation of the measurement technique.

Figure 1 shows the final results for the nickel
specimen. According to Erdmann and Jahoda, ' the
total thermal conductivity should follow the equation

K = LoT/po+BTo (5)

where BT is the lattice thermal conductivity. As
can be seen from Fig. 1, the data points all lie
close to a line predicted by Eq. (5). The fact that
the present value of B agrees within 10/o with that
of Erdmann and Jahoda gives us confidence in our
procedures. The temperature measurement was
thought to be accurate to less than 0.001 'K judging
from the internal consistency of the data.

Temperature differences with the heater power
on were maintained between 0. 130 and 0. 550 'K
over a distance of 7 cm. The data taken with dif-
ferent heater power settings were self-consistent.
Temperature differences of the order of +0.001 K
with the heater power off were noted, and these were
subtracted algebraically from the power-on temper-
ature differences, which resulted in less scatter.

A 1/o correction was made for the joule heat
generated in the manganin heater leads. No other
corrections were greater than 0. 1%, and were
therefore neglected. The probable error' in total
thermal conductivity was 0. 5/o, the probable error
in lattice conductivity was 2-3%.

The electrical' resistivity of the specimens was
measured between the thermometer clamps so that
the geometry factor was the same for both the ther-
mal and electrical conductivity measurements. The
techniques used were the same as those described
previously by Gueths et al. ,

' and the propable er-
ror of the electrical resistivity was 0. 2/o.

In order to ensure that no inhomogeneities of
the impurity or dislocation distributions of the spec-
imens affected the measurements, a jig was con-
structed which allowed the thermometer mounts to
be removed and replaced at definite fixed positions
on the specimens. This maintained a separation of
7. 00+0.02 cm between the thermometer clamps,
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with the warm thermometer 4. 06 cm from the
heater end of the specimen. Thermometer mounts
were made from No. 20 B 5, S gauge pure-copper
wire which was held pressed against the sample by
means of small screws.

IV. THEORY OF LATTICE THERMAL RESISTIVITY

Theory of Phonon-Electron Thermal Resistivity

A calculation of the lattice thermal resistivity
due to scattering of phonons by electrons was made
by Makinson in 1938,

W, T =1/B, (6)

The temperature dependence has been experimental-
ly verified for a large number of different alloys,
but Makinson's estimate of the constant B„was too
high. Klemens ' used a value of the phonon-electron
interaction energy estimated from low-temperature
ideal electronic thermal conductivity data to calcu-
late

B„=720 cm 'K /W

for pure copper. This was in good agreement with
the experimental results. This theory does not
predict a concentration dependence of W„which has
been experimentally observed in most alloys.

Makinson's calculation depends on assuming
that the adiabatic principle holds for the conduction
electrons and then applying second-order time-de-
pendent perturbation theory to calculate the phonon
mean free path. However, a criterion for the valid-
ity of this approach (see Sec. 5. 12, Ref. 6) may be

the dislocation densities estimated from Eq. (8)
with densities derived from experimental stored-
energy measurements' and electron-microscopic
counts. ' Vfith this empirical correction we have

C=0. 75x10 cm 'K /W

Equation (8) was derived under the assumption
that the dilatation 4 changes the frequency of a
phonon of fixed wave vector, so that

p(1 —ya) (9)

where 0 is the original frequency. The coefficient
y is the Grueneisen constant. However, impurities
interact with dislocations and the impurity distribu-
tion c can be changed from its average value c0 by
the strain field of the dislocation. A difference in
atomic mass between the host and impurity atoms
can also produce a change in &0 which is proportion-
al to P(c —cp), where

P = (m —m')/2M, (10)

(d = (op[1 —yA + P(c —cp) —ny(c —cp) ] (12)

and where M and M' are the atomic masses of the
host and impurity, respectively. ' If the atomic
volume v of the impurity is different from the atomic
volume of the host v0 there will be a dilatation

o.' = (v —vp)/vp

about an impurity, and a corresponding change
—yn(c —cp) in +p. Thus, if these two effects are
added to Eq. (9),

qA, &1 (7)
Cottrell gives

where q and A, are the phonon wave number and the
electron mean free path, respectively. For copper
plus 10 at. %%upaluminum, qA, = 1at 4' K, an d the
product grows smaller with decreasing temperature.

Pippard" derived an expression for the phonon
mean free path for phonon-electron scattering which
did not depend on the validity of Eq. (7). Lindenfeld
and Pennebaker used the pippard expression to
calculate the thermal conductivity for phonon-elec-
tron scattering, which showed that W„~7.' ", where
n is a function of temperature. At low temperatures
and relatively high residual resistivities n = 1, while
at high temperatures n &2.

c=c e0

where k~ and T, are the Boltzmann constant and the
annealing temperature at which the distribution was
last at equilibrium, respectively. Cottrell shows
that the elastic interaction energy Ul of an impurity
in the strain field of a dislocation is

UI ——nv 0Bb,

where B is the bulk modulus. For Uz/kaT, & 1, one
can approximate

c =cp(1 —Uz/kaT, ) =cp(1+ nv pBA/ka T, ) . (13)

Since W~~~ ((o —mp), one can write it in the form

Theory of Dislocation Thermal Resistivity W~„T =CN~(y+y')P (14)

Klemens calculated the dislocation lattice
thermal resistivity W«. His result was

WgqT = Cy N„ (8)

where Eq. (13) has been substituted into Eq. (12),
and

r'= (&vpB/ka T, )-cp(or - P) .

where y and N„are the Grueneisen constant and
the dislocation density, respectively. The constant
C was calculated theoretically. ' It has to be in-
creased by a factor of 6 if it is to be brought into
agreement with experimental work which correlated

Thus the impurity atmospheres lead to enhanced
scattering if y' is positive, and this enhancement
depends on T„ the temperature at which the atmos-
pheres obtained equilibrium. This makes it pos-
sible to change the dislocation resistivity by anneal-
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FIG. 2. According to the theory of Ackerman and
Klemens the quantity (W~&T /Nz) is a linear function
of co. W~z, T, N&, and co are lattice dislocation thermal
resistivity, absolute temperature, dislocation density,
and atomic fraction of impurity, respectively. The three
points are the experimental copper-aluminum data of
Charsley et al. (Ref. 2). Solid straight line is drawn
through the data points, and its slope and intercept are
used to calculate the atomic volume of aluminum in
copper.

ered the time variation of W«.

W«T~=CN~(y+y'(T, 2)[1 —(1 —T,a/T„)e 'o~'o])~

(16)
where t, is the annealing time, T,& is the annealing
temperature at which the impurity distribution is
at equilibrium at t, = 0, and T,a is the fixed annealing
temperature for t, &0. Also, we have

1/so=9(6m')'~ (T/6) D(T„)/a

where T, e, a', and D(T~) are the measuring tem-
perature, the Debye temperature, the atomic vol-
ume, and the diffusion constant at T,z for the im-
purity in the host, respectively.

Charsley et a/. have experimentally measured
W«T /N~ as a function of aluminum concentration
in copper. This dependence is not inconsistent ivith
the above model. Equation (14) may be rewritten
in the form

ing.
These changes are, of course, not instantaneous,

but are controlled by diffusion. Klemens4 consid-

(W«T /N~)'~ =P+Qc 0

where

(16)

Sample history, residual resistivity, and annealing data.

Sample
number

C1
C2
C3
C4

E1
E2

g4
g5
g6
EV

F1
F2
F3
F4
F5

G1
G2
G3
G4
G5
G6

Po

(p~cm)

7. 995

7.461

V. 468
V. 450
7.463
V. 404

7.350

V. 586
7.475
7.498
7. 542
V. 456
7.453
7.441

V. 567
7.536
7.536
7.498
7.498

7.644
7. 625
7. 612
7.601
7.553
7.576

0.544

T
(K)

293 +60

1193&50

300 +20
373 61
693 +50
713 + 50

1205 +5

300+40
422 +5
552 + 13
673 +8
797 + 17
920+ 6

1202 +5

360+6
564+ 6
565+8
567+9
570+12

344+ 9
670 + 15
661+9
660 +6
732+6

1308+20

1200+20

Time in oven
(h)

12
48
20
48

48

12
48
48
48
48
48
48

48
0. 5
1, 5

48
97

48
0, 5
1.5

48
48
48

Sample history

As received from Materials Research Corporation (MRC).

MRC material was measured after anneal at left.

MRC material was annealed
1123+70 K for 28 h, then
given 9.5% torsional strain at
293 'K. It was reannealed (see
left) before each set of measurements.

MRC material was measured after anneal at left.

MRC material was annealed at
1205+5 K for 48 h, then
given 9.33% tensile strain at
77'K; maximum stress, 28. 5
kg/mm~; strain rate, 0. 0093
sec '. Was reannealed (see
left) before each set of measurements.

MRC material was annealed at
1202+5 K for 48 h, then given
8.13% tensile strain at 77'K;
maximum stress, 29 kg/mm;strain
rate, 0. 0081 sec '. Was reannealed (see
left) before each set of measurements.

MRC material was annealed
1202 +5'K for 48 h, then given
9.26% tensile strain at 77 K;
maximum stress, 25. 1 kg/mm; strain
rate, 0. 004 sec . Was reannealed (see left)
before each set of measurements.

Nickel single crystal was measured after anneal at left.
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Sample
number

A

Lo'»0

,'3. 073 3.090 0.0350

'3. 277 3.455 0.325 3.221 0.416 2. 58

Cl
C2
C3
C4

'3 272
3.281
3.276
'3. 302

3.507
3.371
3.413

0.013
0.094
0.201
0.217

3, 165
3.120
3.011
3.412

0.225
0.249
0.333
0.320

2. 29
2.49
2.72
2. 62

3.327 3.562 0.343 3.228 0.432 2. 63

TABLE II. Thermal conductivity constRIlts —results
of the least-squares fits,

I

T(OK)

I

4

FIG. 7. Ratio of experimental total thermal con-
ductivity & to absolute temperature T is plotted against
2' for specimens 61—66. Horizontal arrows indicate
the rRtlo Lrp/Pp where L p and Pp are the ideal Lorenz
number and the residual resistivity, respectively. Solid
straight lines tllrougli tile dRtR w'ere fit by the nlethod of
least squares. There is a change in slope at the tempera-
ture indicated by the small vertical arrows. Annealing
temperature and time in oven are indicated on the graph.

El

E5
+6
E7

Fl
F2
F3
F4
F5

3.223
3.271
3.261
3.242
3.279
3.281
3.286

3.231
3.244
3.244
3.261
3.261

3.256
3.368
3.323
3.270
3.395
3.389
3.420

3.292
3.286
3.298
3.337
3.291

0.147
0.142
0.168
0.200
0.337
0.343
0.344

0.160
0.180
0.174
0.171
0.194

2.994
3.103
3.044
2. 980
3.202
3.200
3.221

3.017
2.989
3.001
3.041
3.038

0.247
0. 250
0. 267
0.308
0.414
0.420
0.419

0.268
0.292
0.290
0.291
0.290

2. 62
2.47
2. 58
2.68
2. 50
2.47
2. 63

2. 54
2.65
2. 57
2.49
2. 65

2.0-
I ' I ~ I

each sample designation identifies the specimen
(there were eight) and the number identifies the
state of deformation or recovery of the specimen.
The C and E series mere a study of the variation of
recovery of the conductivity with annealing temper-

Gl
G2
G3
G4
G5
G6

3.199
3.207
3.212
3.217
3.237
3 ~ 227

3, 266
3.242
3.22S
3.262
3.187
3.342

0.133
0.169
0.179
0, 170
0.322
0.333

3 005
2.998
2.968
2.960
3.017
3.0Sl

0.235
0.264
0.278
0.286
0.381
0.430

2 57
2.57
2. 64
2. 61
2.91
2, 61

'Units of 10 W cm ' K"2.
"Units of 10 W cm"' 'K-
CThere was no kink in the data of sample &, and thus

these constants are to be used from 1 to 4 K.

0.5-

0.2-
T-2.IO

I . I } ~l

2 3 4
T (K}

FIG. 8. Lattice thermal resistivity W~ ( equal to
1/E~, where E~ is the lattice thermal conductivity) of
sample D, a well-annealed specimen whose lattice con-
ductivity is limited only by scattering of phonons by
electrons, plotted against absolute temperature T. This
is a log-log plot. There is a change in the temperature
dependence of W~ at about T= 2.6 'K, the temperature
of the change in slope of E/T (Fig. 4). This effect is
thought to be associated with small electron mean free
path in copper plus 10 at. % aluminum.

ature, and the I' and G series mere a study of re-
covery with time. Sample 0 is the single-crystal
nickel specimen, used for control.

In Figs. 3-'I K/T is plotted against T, where
E is the total thermal conductivity, and T is the
absolute temperature. The horizontal arrows show
the ratio Ls/ps, which is K,/T [see Eq. (2)]. The
residual electrical resistivity po mas taken to be the
measured total resistivity at 4. 2 'K and is listed in
Table I. Electrical resistivity mas also measured
at 1.1 'K, and a slight increase of less than 0. 15%
mas noted in most cases. This mas attributed to a
small amount of iron which mas added in the swag-
ing. The data were linear, but there was change in
slope for all specimens except A at a temperature
Tx (listed in Table II) indicated by the small vertical
arroms. Thus a least-squares fit to the data. mas
made in tmo line segments

A&+B&T T & TE

T
A&+B&T T & T~

The constants A&, B&, A&, and 8& for each sample
are listed in Table II. This "kink" in the K/T vs
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FIG. 9. Quantities E~e, T, and po are the lattice con-

ductivity limited only by scattering of phonons by elec-
trons, absolute temperature, and residual resistivity,
respectively. Solid and dashed curves are the theoreti-
cal and empirical curves of Lindenfeld and Pennebaker
(Ref. 23). Solid curve connecting open circles is the
experimental lattice conductivity data of sample D, the
well-annealed specimen in which dislocation scattering
was negligible. This has a curvature which is qualitative-
ly the same as that of the theory.

T data is thought to be an effect in the lattice ther-
mal conductivity K~ because there was no variation
of the electrical resistivity in the temperature

OI II ~ I I

I 2 3 4
T (oK)

& I a I . I I 0
I 2 3 4

T (oK)

FIG. 11. Log-log plot of the dislocation lattice thermal
resistivity Wz& against the absolute temperature T for
specimens E1-E4. The temperature dependence of W~z

is very close to T", as theory predicts. Specimen El
was plastically deformed 9% at 77 'K and annealed at
300 'K for 12 h. Samples E2, E3, and E4 were annealed
at 422, 552, and 673 'K, respectively, for 48 h at each
temperature. The dislocation thermal resistivity is
slightly greater than the phonon-electron thermal resis-
tivity (Fig. 8). The solid lines are constrained to a T 2

temperature dependence.

l00

4P

h
4l

LL

50

o 4oK

+5 K

2 oK

range 1-4 K which could produce such a large
variation in the electronic conductivity [ see Eq.
(2)j. The kink will be discussed in more detail be-
low.

Lattice Thermal Conductivity

4l

0
CP
Ol
K

300 400 500 600
T() (OK)

a/',

I
I
I

I

I

I

700 800

FIG. 10. Recovery t~ of lattice thermal conductivity
of 9-10% plastically deformed specimens, plotted against
annealing temperature T,. Recovery is measured with

respect to the state of the deformed specimens at 300 'K.
All annealing times are longer than 12 h (essentially in-
finit, e annealing time). Points (0), (+), and (&&) refer to
the three different lattice conductivity measuring tempera-
tures 4, 3, and 2 'K, respectively. Up to 700 'K the re-
covery is small; in this region it is thought that the rise
of lattice conductivity is due to the rearrangement of im-
purities, not decrease of dislocation density. Between
700 and 800 'K the lattice conductivity recovers completely
as a result of recrystallization. The recrystallization
temperature is 725 'K.

The lattice thermal conductivity E'~ was found
from Eq. (3). In these specimens in this tempera-
ture range only electrons and dislocations scatter
phonons significantly. Thus, Eq. (4) becomes

1/Kg =—W~ = W + W~~ (20)

In the well-annealed specimens 8, D, E5, E6, EV,
and G6 the dislocation density was low and W«was
negligible. These specimens all had lattice thermal
conductivities which were within 3/o of each other,
and a kink in a plot of K,/T vs T. In a specimen
which was plastically deformed about 9%, W«was
slightly more than one-half of W~. Sample D was
taken to be the standard well-annealed specimen,
and since 8'««W„in this case, we have

W,- (W~)D = (1/K~)D

where the D subscript refers to sample D. This
thermal resistivity was not simply proportional to
T as predicted by Eq. (6). This is shown in Fig.
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Recovery of Eg

The recovery of E~ with annealing temperature
(all annealing times were greater than 12 h, essen-
tially infinite time) is shown in Fig. 10. The re-
covery is

(K,)r- (K,)»' (K,).-(K,). '

40

30

—I@I

Q

20

10

y' /
)MT o.0~K

o~TO.5~K

T.4.O K

I 2 3 4

(10 +K)
Tg

FIG. 12. Quantities W«and T~ are dislocation lattice
thermal resistivity and the annealing temperature, re-
spectively. The four data points at each of the six measur-
ing temperatures are for samples E1-E4. Error bars
are indicated. According to the theory of Ackerman and
Klemens (Ref. 5), a plot of R«against 1/T~ is linear.
The data do have such a linear variation. Solid lines are
least-squares fits to the data.

8. There is a change in the temperature dependence
of W~ at about 2. 6 'K. In Fig. 9 the lattice ther-
mal conductivity of specimen D is compared to the
theory of Lindenfeld and Pennebaker. Although
quantitative agreement is not exact, specimen D has

, the same general curvature at about the same place
as the theoretical and empirical curve. Thus, it is
thought that the kink which was so evident in the
K/T vs T graphs was an effect in the phonon-elec-
tron lattice thermal resistivity. There is another
piece of information which supports this conclusion:
Sample A was heavily cold worked, having been
swaged from a 1 in. to a 8 in. diam without anneal-
ing. Its K/T vs T graph had no kink (Fig. 3), and

K/T-I o/po+BT

In this case we have %'„«S'«cf- T

The lattice dislocation thermal resistivity
was obtained by combining Eqs. (20) and (21):

where F refers to one of the deformed specimens
which has attained equilibrium at temperature T,.
The resistivity 8'« found in this way is plotted in
Fig. 11. Its temperature dependence is very close
to T

Equation (14) can be rewritten as

(w„)'~'=I+M/T, ,

I =(CN,)'"y/T,
M -=(CN, )'~'(I/T) (yn'- n p) covoB/k~

M/I = (1/y)(yn —n& )co"oB/ks

(22)

(23)

(24)

(25)

lf the theoretical prediction Eq. (22) is consistent
with the experimental data, a plot of (W«)' vs
1/T, should be linear. In Fig. 12 it can be seen
that this is approximately true. T/&e ratio of the
slope M to the intercept I is quite constant, as it
should be according to Eq. (25). Its average value
is (M/I), „=183+ 5 'K (the error is the standard
deviation). As in Sec. IV, Eq. (25) is a quadratic
equation in & and its positive solution is &=0.23
(the negative solution is —0. 07). Thus the present
dependence on annealing temperature is in good
agreement with the values of & found from the data
of Charsley et al. which "-bowed the variation of
dislocation resistivity with concentration (n = 0. 24)
and the x-ray data (n=0. 20), as discussed in Sec.IV.

According to Eqs. (23) and (24), the slope and

intercept should be proportional to T '. Figure 13
shows that the data do have this temperature depen-
dence. Furthermore, from Eq. (14) the dislocation
density can be estimated to be N „=6 ~ 10 cm

where X, F, and D refer to deformed-, partially
annealed- and fully annealed- (sample D) state lat-
tice conductivities. At 300 'K we have x~= 0. There
is a slow recovery up to 700 'K which is caused by
a variation of the impurity distribution around a
dislocation, and then between 700 and 800 'K there
is a rapid recovery of the lattice conductivity to the
fully annealed state. Above 800 'K there is less
than 2%%uo variation. The recrystallization tempera-
ture, defined as that annealing temperature at which
recovery was 50%%uo complete, is 725 'K. A metallo-
graphic study of the alloy supported these conclu-
sions. The plastically deformed specimens had
large fractured grains (0.08 mm) which did not
change in physical appearance after more than 48 h

of anneal at 300 and 673 'K, but which changed into
smaller more perfect grains (0.04 mm) after anneal
at 773 'K.

Lattice Dislocation Thermal Resistivity
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of the 565 K anneal, the dependence of To on T is
even reversed. The failure of the theory may be a
result of the assuxnption of a unique diffusion con-
stant; since deformation produces excess vacancies,
the diffusivity may depend on the history of the
specimen. However, considering the large experi-
mental error it is difficult to draw any firm conclu-
sions.
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FIG. ~3. D ta points (a) log„(M), and (b) log»(I),
plotted against log&p (T), where M is the slope and I is
the intercept of lines drawn through the W«vs &/T~ data,
T is the measuring temperature, and T~ is the annealing
temperature. According to the Ackerman and Klemens
theory (Ref. 5), M and I should have a T ~ temperature
dependence. The solid lines are constrained to have a T
temperature dependence; the data all lie close to these
lines.

W~~ QftIq(y+ y') /—-T,

T,~ —T„183

If the theory is consistent with the data, a plot
of ln I" against t„ the anneal time, should be a
straight line through the origin. In Fig. 15 it can
be seen that the data are not linear, neither (a) for
T,2= 565 'K nor (1) for T,a 665 K. Furthermore, -—

the Ta measuring temperature dependence of I/ro
(the slope) is not obeyed [see Eq. (1V)]. In the case

In Fig. 14 the recovery

(If',)„-(K,)x
(If'g) s —(Kg) x

is plotted against the annealing time; the subscripts
X, Ã, and Z refer to the states at zero, intermedi-
ate, and infinife anneaal times at a fixed anneal tem-
perature. Figure 14 shows the isothermal recovery
with anneal time for two temperatures: (a) 565 K,
and (b) 665 'K. It can be seen that the recovery
is more than 65% complete after the first half-hour
of anneal. However, the experimental error is
large. In (a) the error bars cover the entire ordi-
nate, and in part (b) the error is indicated.

In order to compare the data to the time-depen-'
dent theory, Eq. (16) was rewritten in the. form

F (W„/W„„)'"=s-"~"0,

I+00 e g ~ ~ ~ I g ~ % ~ ~

—40 "
C7

0 ~ I a ~ ~ k l

,5 I

F Series

Tat ~ 360oK, Tag -"565~K

T = &5~K (Measuring Temperature)
I ~ ~ a I ~ I I ~ 1 ~ I
5 IO 50 IOO

&I aurs&

(a)

LOO ~ I ~ ~ ~ 0 I
I0

0' I ~ t a ~ I

.5 I

6 Series
Ta, 344 K,
T ~ 3.5~K

~ ~ I ~ 0 ~ ~ I

5 IO

fa (hours)

Tag ~665 OK

50 IOO

FIGHT 14 y Quantity fg plotted against log~p (ta), where fg is
defined as

fg = t:%g)r —%g)x]~@g)z—@g)xj'

t~ is the annealing time and subscripts X, I, and Z refer
to the state of zero anneal time at annealing temperatuxe
T,q (infinite anneal time at T,q), the state of finite anneal
time at; T 2, and the state of infinite anneal time at T,2

(longer than 12 h), respectively. In (a) we have T~&=360 K
and T~2= 565 'K; the error bars cover the entire ordinate.
In (b) we have T~2=665 'K; error bars are indicated. The
measuring temperature T is 3.5 K in both cases.

VI. SUMMARY

The lattice conductivity of copper p)us 10 at %
aluminum which had been plastically deformed g%
in tension after anneal at 930 'C for 48 h was found
to recover slowly between 300 and 700 K (48 h at
each temperature), and then rapidly return to its
fully annealed value between 700 and 800 K. The
rapid variation was caused by recrystallization,
and the recrystallization temperature was found to
be 725 K.

A change in slope of a line through the K,/T vs
T data of well-annealed and 9-10/0 plastically de-
formed specimens was found. This was thought to
arise from an effect in the phonon-electron lattice
thermal resistivity which was associated with the
smallness of the electron mean free path relative
to the phonon wavelength in this impure alloy [see
the discussion of Eq. (7)]. The theory of Lindenfeld
and Pennebaker, which employed the Pippard
formula for phonon mean free path for scattering
of phonons by electrons, explained the kink qualita-
tively if not quantitatively. In the realm of short
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FIG. 15. If Klemens's theory (Bef. 4) is consistent
with the experimental data, a plot of log~o (E) {Eis defined
in the text} against the annealing time t would be a straight
line passing through the point log~o (E) = 0, t~ = 0. The data
do not lie on a straight line through the origin. The slope
of the lines drawn through the data and constrained to pass
through the origin is 1/~0, where To is the annealing re-
laxation time. Theoretically, 1/7'0 is proportional to T .
In case (a) we have T~&—-160'K and T,2=565 'K, the
annealing temperatures at t, =0 and i, &0, respectively;
1/7'0 is roughly proportional to T between 2.5 and 4 'K,
but not between 1.5 and 2. 5 'K (the 1.5 'K point is not
shown). In case (b) we have T~&=344 'K and T~2=665 'K;
1/&0 is not proportional to T2 between 2.5 and 4 'K.
However, the experimental error (see Fig. 14) is so large
that no definite conclusions can be drawn.

electron mean free paths the usual theory for
phonon-electron lattice thermal resistivity, which
predicts a T ' temperature dependence, is thought
not to hold.

The small recovery of E~ between 300 and 700 'K
(see Fig. 10) was explained by a redistribution ot'

impurities around a dislocation which resulted in a
decrease of phonon scattering. The variation of the
dislocation lattice thermal resistivity with annealing

temperature was well explained by recent theories
of Klemens, and Ackerman and Klemens. ' It was
possible to estimate the fractional atomic size dif-
ference 0' between the aluminum and copper to be
& =0. 23. Using the same theory and the experi-
mentaL work of Charsley et al. on the concentration
dependence of dislocation lattice thermal resistivity
per dislocation, it was possible to estimate that
& = 0. 24. The experimental x-ray data on, the
change of lattice spacing with the addition of the
aluminum to copper yielded & =0. 20. These inde-
pendent measurements are in good agreement.

The recent theory of Klemens for the variation
of the dislocation lattice thermal resistivity with
annealing time at fixed annealing temperature was
not consistent with the data; however, the experi-
mental error was large.

Thus, although the kinetics of the impurity re-
distribution around the edge dislocation is not under-
stood, something can be said about the spatial dis-
tribution. Around an edge dislocation there are
regions of compression and expansion of the lattice.
The aluminum atoms, which are larger than the
copper atoms, will fit more easily i.nto the expanded
regions, and since the elastic strain decreases as
the distance from the dislocation core increases,
the deviation of the impurity concentration from its
homogeneous value will be greatest in the region of
the core. As the annealing temperature is increased,
the impurities diffuse around the dislocation from
the expanded to the compressed regions and the
dislocation scattering decreases.
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A mathematical procedure is presented for applying the Born stability criteria to the deter-
mination of the mechanical stability of cubic crystals in the presence of applied forces and de-
formations. The general procedure presented is suitable for use in conjunction with an elec-
tronic computer and is independent of the specific model of interatomic interactions which may
be used in numerical calculations. In the present study, specific calculations are performed
for a body-centered-cubic (bcc) crystal lattice with an uniaxial force applied perpendicular
to a face of a unit cell. The atoms in the crystal are assumed to interact via the two-body
Morse interatomic-potential function determined by Girifalco and Weizer [Phys. Rev. 114,
687 (1959)] for bcc iron. Two ranges of stability, a bcc phase and a body-centered-tetragonal
(bct) phase, were found to exist. The bct phase has a theoretical strength of 0. 9&10 dyn/
cm with a corresponding theoretical strain of about 7%. These values are fairly close to
the values of 1.3 &&10'~ dyn/cm tensile strength and about 5% strain experimentally observed
for iron whiskers.

I. INTRODUCTION

Necessary conditions for the thermodynamic
stability of a crystal lattice are that the crystal be
mechanically stable with respect to arbitrary
(small) homogeneous deformations. These condi-
tions are often referred to as the "Born stability
criteria" after Born' who derived mathematical
expressions for these stability requirements for
cubic lattices of the Bravais type on the assumption
of central forces of a very general type. Misra
applied the Born stability criteria to the study of
mechanical stability of cubic crystals with inverse-
power-law interactions between atoms, and more

recently the present author used these criteria to
study the stability of cubic crystals with Morse-
potential interatomic interactions. These studies
were for unstressed (and hence undeformed) crys-
tal lattices.

The present paper is concerned with applying the
Born stability criteria, to the study of mechanical
stability of cubic crystals which are deformed
homogeneously under the application of external
forces. This study is of interest because the values
of stress and strain at which the crystal becomes
mechanically unstable, in terms of the Born cri-
teria, represent the "theoretical strength" of the
crystal. The failure of a real material under the


