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The effect of a localized time-dependent potential on a Fermi gas is discussed. A simple
bosonlike model for the particle-hole excitations is developed. Its use appears justified for
the dissipative part of the response of the Fermi gas to localized time-dependent potentials.
General expressions are obtained for the probability that the Fermi gas remains in the
ground state and for the energy spectrum of excited states. Several illustrative examples
are discussed. We consider the effect of an exponentially switched-on localized potential.
It is shown that the state reached when the potential attains its full strength V is orthogonal
to the ground state of the Fermi gas with the potential V, no matter how slow the switching.
It consists of a spectrum of excited states of the full Hamiltonian with a width proportional
to the switching rate. Other aspects of this failure of adiabaticity such as nonreversibility
and path dependence are investigated. Some possible applications are pointed out. The
potential source may have a finite mass. The effect of its recoil is calculated for the special
case of a suddenly switched-on potential. The probability of finding the Fermi gas in its final
ground state after the perturbation is switched on is found to be P~ = exp[ V lnp/(1 —y )],
where V = Vp,z and is a measure of the coupling of the localized perturbation to the electron
gas. p is the mass ratio m/M. The potential source is initially at rest. The above ex-
pression is critically discussed and corrections to it are calculated. They are found to be
small. The spectrum of excitations produced is also calculated. In conclusion, connec-
tions are pointed out with other particle field problems exhibiting a similar infrared singu-
larity.

I. INTRODUCTION

The problem of a static (fixed in space and sta-
tionary in time) ordinary localized potential in a
Fermi sea has been thoroughly explored for some
time. ' Because of the simplicity of static proper-
ties, attention has been diverted early to the more
puzzling problem of a "magnetic" impurity, over
looking the fact that the dynamic properties of an
ordinary potential exhibit quite singular features. ~

Indeed, knowledge of these dynamic properties
now appears to be a prerequisite for a real under-
standing of the spin fluctuations of a magnetic im-
purity, ' as well as basic for the interpretation of
many experimental data in metals. '4 '

In this paper, we consider the response of a
Fermi gas to a localized time-dependent potential
whose source may have a finite mass. The physi-
cal reason for the anomalous behavior found for
this response stems simply from the localized
character of the perturbation considered and from
the statistical nature of the perturbed particles.
Because of the Pauli principle, each particle is
surrounded by its Fermi hole; when an imbalance
appears at some point of the medium, the particles
all around it move to adjust to the local disturbance.
During this process, they collide strongly against
each other via their Fermi holes. Thus, even a
weak perturbation results in a strong-coupling
problem because of the continued turbulence in-
duced in the Fermi sea.

Mathematically, the root of the anomalies may
be found in the long-time behavior of the propaga-
tor,

G, (t) = (0~ a, (t)a,'(0)
~
0),

where ao~ and ao are the creation and annihilation
operators, respectively, for a localized Wannier
orbital at the origin; the average is taken over the
ground state of the Fermi sea. The propagator
Go(t) contains information on the relaxation time of
the system after an extra particle has been placed
at the origin. Because of the Fermi statistics and
because the added particle is prepared in a local-
ized state, the decay of Go(t) takes the asymptotic
form

G, (t) =1/t~, t (l. 2)

for long times t(erat» 1), where a~is the Fermi en-

ergy. This asymptotic form shows a long scale-
less relaxation for return to equilibrium after a
sudden perturbation. The form (l..2) is trivially
derived for independent fermions; for interacting
fermions, the Landau quasiparticles of low energy
E have a lifetime r = 1/E due to their interaction.
Despite this added feature, the asymptotic depen-
dence is still of the form (l. 2). The reason for
this insensitivity of Go(t) to the interaction among

particles is clearly due to the fact that its long-time
behavior is governed by the spectrum of low-lying
excitations which is not qualitatively affected by
the interaction. For simplicity, we shall hence-

1102



LOCALIZED DYNAMIC PERTURBATIONS IN METALS 1103

forth consider only a gas of noninteracting fermi-
ons; thereby neglecting any effect associated with
the high-frequency response of an electron gas
(plasmons, etc. ).

The anomalies, i.e. , nonlinearities found for the
response to a localized perturbation, do not jeop-
ardize the standard linear-response theory for ex-
tended perturbations. The physical reason is sim-
ple. Suppose, for example, that the surface po-
tential of a metal undergoes some variation. The
electrons will be able to screen this perturbation
in an orderly manner, thereby avoiding prolonged
collisions among themselves. Mathematically, it
is seen that the associated propagator exhibits ex-
ponential decay instead of the power law (1.2).

In Sec. II of this paper, a simple boson model is
developed. The long-time (low-energy) dissipative
response of the Fermi gas to localized dynamic
perturbations is shown to be well described by such
a model. The model is then applied to discuss
several types of problems. In Sec. III, where the
potential source is assumed to be infinitely mas-
sive, the effect of a slowly switched potential on
the Fermi gas is examined; this allows a detailed
discussion of adiabaticity. The effect on the Fer-
mi gas of a potential turned on and then off is also
studied; this is relevant for collision problems
such as the scattering of an atom from a metal sur-
face. In Sec. IV, a thorough discussion of the re-
coil effects due to the finite mass of a suddenly
switched potential is presented; this is of interest
in evaluating the influence of (initial-) final state
interactions in the optical spectra of metals.

II. HAMILTONIAN AND ALTERNATIVE APPROACHES

A. Hamiltonian

The Hamiltonian of a system consisting of the
Fermi gas and a time-dependent potential source
of mass M interacting with it is given by

2

l anal+ ++ V» (f)alai e

(2. 1)

Here e„ is a quasiparticle energy and V». (t) is
the time-dependent single-par ticle potential due to
a source with coordinate B and kinetic energy P /
2M.

The use of Hamiltonian (2. 1) for a charge per-
turbation in an electron gas requires some justifi-
cation. It is assumed that the screening of the
charge due to Coulomb interactions occurs instan-
taneously, so that V»;. (t)= V». (t) and V»~~'(f) have
the same time dependence. Since the response of
the electron gas to charge fluctuations has in fact
a time scale of ~~', clearly our results will not
describe properly the immediate response to po-

The aim is to determine the time evolution of the
initial state l $(to)) (e. g. , the ground state) of the
system under the influence of the time-dependent
perturbation. The state IP(t)) at a time f can be
written as

(2. 2)

The overlap of this with a given state (e. g. , the
initial state) is of interest. This ground-state
overlap is the vacuum amplitude

A = (//)(f )~ U(f, t )~ q(t )) .
The overlap with a state lg,) is

(2. 3)

(2. 4)
where ~g ) is obtained from I g(to)) by the unitary
transformation U . The time-dependent pertur-
bation creates a large number of low-energy par-
ticle-hole pairs. The energy spectrum of these
excitations with respect to the eigenstates of a
Hamiltonian X is

(2. 5)

and thus can be found if [ g(t)) is known. Another
class of effects, typified by threshold phenomena, ~'7

requires knowing the evolution of a singly excited
initial state under the time-dependent perturbation.
We shall not investigate this here.

The time evolution of the initial state will be
found in two ways. In the first (Sec. IIC), the
evolution operator is written as an exponential and
a systematic expansion of the exponent in powers
of V is obtained. Averages of the evolution can be
expressed as an exponential sum of cumulants.
The procedure does not involve any approximation
to the Hamiltonian (2. 1) and is systematic. It is,
however, cumbersome and does not give much

tentials V»'(f) which vary appreciably on that
time scale. We imply further that there are no
long-time (t » ~~~~) transient effects associated
with the screening of the time-dependent potential
by interacting electrons and that all transient ef-
fects arise from the response of the quasiparticles
to the screened time-dependent potential. This is
probably reasonable, for the low-energy electron-
hole excitations responsible for long-time transient
effects are not prominently involved in screening.
Therefore, as discussed in the Introduction, we
shall consider the quasiparticles to be noninter-
acting and the potential to be screened. Finally,
the potential source is taken to have no internal
structure; no "magnetic" effect is considered and
the electron spin is ignored.

B. Outline
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insight into the physical processes involved.
In the second method (Sec. IID), the particle-

hole excitations are treated as bosons and the
Hamiltonian H of (2. 1) is replaced by a simpler
boson model. The dissipative, low-energy (long-
time) response of the Fermi gas to a localized
perturbation is suitably represented in this model.
The results are quantitatively accurate for weak
potentials. The model is justified and its limita-
tions are pointed out. In some cases, exact solu-
tions can be obtained for arbitrary V, and this is
used to suitably modify or to estimate the accuracy
of the boson-approximation result (Secs. IID and

III E). The cumulant expansion method will also
be used to calculate higher-order corrections
(Sec. IV B). In a simple soluble two-level model,
the validity of the boson approximation can be
discussed in detail (Appendix A).

C. Cumulant Method

We first discuss the cumulant method. In the
interaction representation, the equation of motion
for the evolution operator is

(2. 5)

where U(t„ to)= 1 and

V (t) iHot [P V (t) ai' aI ei(k-k )'R ] e-iHoi
xa'

(2. 7)

U can be expressed as an exponential operator

U=e ' (2. 8)

the equation of motion for E as well as the first
terms of an expansion of E in powers of the poten-
tial can be found in lecture notes of Gross.

Knowing the evolution operator, one can evaluate
various associated quantities; for example, the
amplitude AG that the system remain in its ground
state under the action of the time-dependent per-
turbation is given by (2. 3),

(2. 9)

There exists a well-known cumulant expansion for
such an average,

The cumulants represent an expansion in terms of
irreducible correlations between particle-hole
operators (i. e. , operators of the form etc„). The
expansion is useful if higher-order correlations
are smaller than and/or qualitatively not different
from the lower-order ones. For Ac(t) in (2. 9),
the cumulants up to order V are

cy= —2 V T dT —— VT V
0

(2. iia)

cz= V T dT — V T dT V o do

(2. 11b)
This is the general way to obtain a cumulant ex-
pansion; in specific cases, simpler approaches
can be followed (e. g. , see Sec. IV B).

One can obtain similar cumulant expansions for
other quantities, such as the overlay with another
state, or the spectrum. The procedure is to re-
duce the quantity to the ground-state expectation
value of some operator [this can be done using ex-
pressions (2. 4) and (2. 5)] and then to write this as
a single exponential operator using the Baker-
Hausdorf' method. For the quantities of interest
here, the general picture is as follows: The anom-
alous behavior will be governed by the term of sec-
ond order in V in the cumulant expansion, hence-
forth called second cumulant. This, in turn, can
be obtained through the boson model presented
below.

D. Boson Approximation

We now discuss a simple model in which the
particle-hole excitations of the Fermi gas are
treated as bosons. The model appears to be suit-
able when the perturbation producing particle-hole
excitations is of short range.

The boson approximation consists in replacing
particle-hole operators with boson-creation and
boson-annihilation operators. To be specific, we
replace

a~ a,. by b&,

where the subscripts k& and k& mean that k is out-
side the Fermi sphere and k is inside. The oper-
ator a~+ a~. applied to the ground state creates a
hole k' and a particle k while imparting a momen-
tum k —k to the potential source. The index j
stands for the pair k&, k&. The operators b&~ are
assumed to be bosons in the usual sense, i e. ,

Since

[H„a,' a, ,]= (e, —e,.) a,' a, ,

we choose

where
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The density of such boson excitations of energy
Eis

will be seriously in error.
The commutation relation satisfied by the b&'s is

N(E) =Q b(E —e/) [b/ b/ ] = a». a~ b»„—a„a» b»... ,j « Z Z&
(2. 22)

=~ n„, (l -s,)b(E- e» + e„,).

krak'

(2. 16)

The time-dependent potential can also be written
in terms of the boson operators as

V, (t)=(Z + Z ) V„, (t) e' a-"""a„'a,. , (2. 12)
k&»k& k&, k&'

i.e. , the part which creates and destroys only
particles or only holes. Clearly, this gives nothing
when it acts on the ground state, except for the
diagonal part which provides the first-order energy
shift and can be lumped into HD. Collecting the
two terms (2. 14) and (2. IV), the boson approxima-
tion to the Hamiltonian (2. 1) is

H=Q/ e/blab/+g/[V/(t) b)e' /'"+ V/"(t)b/e ' /'"]

+P /2M, (2. 19)

where q; is the net momentum of the particle j (or

b, b'), i. e. , q/= (k-k'). Equation (2.21) describes
the Hamiltonian of a piezoelectriclike polaron of
mass Iwith a time-dependent coupling to the
boson field.

The main basis for the applicability of the boson
model is the localized short-range character of the
potential perturbation. This means that V» „.(t) is
of order e~/N, so that each particle-hole mode is
infinitesimally excited by the perturbation, i. e. ,

(y(t)
I blab, I 4(t)) V, /E, -I/-N, (2. 20)

in general. Since the b&, b&, etc. , are actually
fermion pair operators, expectation values of their
products are subject to restrictions of the Pauli
principle. For example, the maximum occupation
number

(b/b/)„, & 1. (2. 21)

However, in a formal boson model there is no such
upper limit. This difference in behavior is unlikely
to lead to gross errors if the excited states of the
system are such that the actual occupation number
is -1/N as in the present case. On the other hand,
if the potential is such that a few particle-hole
modes are strongly excited (e. g. , a long-range or
extended perturbation), the boson approximation

V(t) = Z, [V, (t)b,'e' """ + V,*(t)b,e """""]
(2. I"/)

where V/(t) = V»„(t) and V,*(t)= V,,»(t) We .have
omitted in (2. 17) a part of V(t):

where

b&=ak. ak and b&. = a„a ~ .
Z&

Thus, if the indices j and j are all different, we
have

[b/, b/. ]= 0, (2. 23)

i.e. , b; and b~' commute. In the remaining cases
when k=x or k =x or j=j', the excited states for
a short-range perturbation are such that

([b/& b/. ]) b//i+0(1/N). (2. 24)

Equations (2. 23) and (2. 24) define the formal sense
in which the operators b; are bosonlike, i. e. , the
commutator averages have the correct values to
O(1/N). It cannot be concluded from this that our
results are correct to relative order (1/N) since
summing over intermediate states can give an ad-
ditional factor of N. We shall see later [Eqs.
(2. 26) and (2. 27)] that the 1/N contributions do, in

fact, add coherently but in a way which just leads
to a renormalization of the coupling constant.

The lowest-order singular term for (go i U(t, to)
I go) is the ground-state average of an operator of
the form

Q,. J' V/(t)b/(v)dr 1' V,". (o)b/~(o)do. (2. 25)

(1/t)(6 /~&' (2. 26)

where & is the s-wave phase shift at the Fermi
level, and the boson-approximation result is

It is singular due to the large number of the exci-
tations j and their excitation spectrum. The most
singular terms in perturbation theory (in powers
of V) arise from products of such operators. It
is argued that for a short-range perturbation, the
boson model gives reliable answers for the ground-
state average of such many boson products. Thus,
we can expect that the most singular long-time be-
havior in each order of perturbation theory will
be correctly reproduced in the boson model. The
errors due to the approximate commutation rules
and due to the neglect of V, (t) [Eq. (2. 18)] do not
involve more singular terms. They can be esti-
mated by looking at the cumulant expansion (2. 10).

In some special cases (when M = ~), it is pos-
sible to obtain exact solutions. An example is the
suddenly switched-on potential studied by Nozieres
and De Dominicis. The boson model is found to
give the correct form of the long-time behavior.
For instance, the long-time overlap for a zero-
range potential V has the exact value
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(1/t) (2. 27)

(Note that —Vp, is the first term in the Born ex-
pansion of 5/m, so that the boson result is exact
for weak potentials. ) Thus, in this case, using the

boson model and then the correspondence —Vp,- (5/m) would lead to the exact result. For a gen-
erally time-dependent potential, it is not possible
to make such a correspondence. In one such case
where exact results can be found (see Sec. IIIE)
the boson result is obtained for weak potentials,
i. e. , j Vp, 1«1.

The reactive part of the response of the Fermi
gas to the localized perturbation results in an en-
ergy shift which appears as a phase factor in the
vacuum amplitude. For example, in case of a
steady zero-range potential V, the energy shift is

&E= —(1/n') ) &(E)dE,

where

v Vp(E)
())

Here p(E) is the density of states and F(E) is its
Hilbert transform. In the boson approximation,
however, we see that &E= —g& (V, /E, ), which is
the correct second-order contribution to the en-
ergy shift but may be a qualitatively wrong esti-
mate of the actual energy shift. This observation
is true of the reactive response to time-dependent
perturbations as well. The reason for the inad-
equacy of the boson model as regards energy shifts
is the following. The reactive response involves
(virtual) excitations of all energies, and the boson
model is good only for quantities sensitively de-
pendent on low-energy excitations.

The Hamiltonian (2. 1) can be reduced to the Ham-
iltonian of an electron gas with one (radial) dimen-
sion if M = ~ and V is of zero range" (s-wave scat-
tering). Tomonaga~2 has shown that the low-lying
excitations of such a (one-dimensional electron-
gas) system are approximate bosons. The To-
monaga boson-creation operator is

applicable) in this problem, appears just as an
unnecessary intermediate step in the calculation.

To conclude this section, we observe that the
model Hamiltonian (2. 19) is of intrinsic interest
as example of a particle interacting with a boson
field. In many systems, the low-lying excitations
are bosonlike (e. g. , phonons, magnons) and their
interaction with a time-dependent perturbation can
be represented by a similar Hamiltonian.

III. GENERAL TIME DEPENDENCE AND ADIABATICITY

A. Outline

In this section, the potential source is assumed
not to recoil on exciting a particle-hole pair, i. e. ,
it is taken to be infinitely massive. Using the ap-
proximation introduced in Sec. II, we discuss in
detail the cases of a potential turned on from t = —~
to t = 0 and of a potential turned on and switched off
between t = —~ and t =+ ~. The results are used to
elucidate the nature of the response of the Fermi
gas to time-dependent perturbations. The response
to a localized perturbation appears to be never
adiabatic in the strict usual sense. This failure is
due to the comparatively high density of low-lying
excitations and is discussed in some detail. Tem-
perature effects are finally mentioned; a formula
for the nonadiabatic part of the temperature-depen-
dent evolution operator is presented.

B. Density of Excitations

We first discuss the density of particle-hole ex-
citations, the low-energy behavior of which plays a
crucial role in the effects considered here. This
density p(v) is given by

p((.()=Q &(() —(d, )= Zn, , ( -In&)5((—d e,+e,.). (3. 1)
k, k

The potential VJ is here assumed for simplicity to
be of zero range and thus couples equally to all ex-
citations. The dependence on the range of the po-
tential is most simply taken into account by rede-
fining p((d) as

V p((d)= Z
~

V»
~

n;(1 —n, )&(((—e, + &,.). (3. 2)

b,'= (I/v'q)2, a]a, „ (2. 23)
k, k'

where k and k —q are radial quantum numbers. It
is thus a coherent superposition of particle-hole
operators. In this case, the Hamiltonian can be
rewritten in terms of Tomonaga boson operators
and the physical effects of a time-dependent po-
tential can be calculated. This might be a formal-
ly more satisfactory way of obtaining the boson
model, but it is restricted to the special case of
I= ~ and zero range. Moreover, the physical
reasons (discussed above) for the applicability of
the boson model are not brought out. In fact, the
Tomonaga, linear superposition, when used (where

The nonzero range of the potential will have the ef-
fect of greatly reducing this p(~) beyond an energy
-(h /2ma'), where a is the range of the potential.
The band structure of the metal also provides a
cutoff of the order of electronic energy. A crude
way of considering these effects is to use an upper
cutoff ~,(-e~). We shall do so where necessary.
The characteristic features of our results depend
on the density of low-energy (v«&z) excitations and
thus are not qualitatively affected by such approxi-
mations for the high-energy region.

The density p((d) of particle-hole excitations is
easily calculated from the explicit form (3. 1) to be
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- s/a
p(())= —,p, &z; (2+ ~7~)(1+«) —(2 —9)(1—«) —« ln, /2 if «& 11 8 - 1/2 1/8 2 1+(I+«)

F 1+ (1 —«)'"

= ) (/, 'g (2 + .)(( ~ ) —' » „'s )
p 1+ (1+(d) if 9&1, (3.3)

where p, is the density of states at the Fermi en-
ergy and i~ is the dimensionless excitation energy
in units of &F. A numerical calculation shows that

p(«)=&~ p'. (~ (3.4)

quite closely. This is exact for 9«1 and is higher
than the true value only by 5/& at (J= 0. s. For «
» 1, (3.4) greatly overestimates the density of
particle-hole excitations; from (3.3) we see that

p(«)= ~ p', e~(~'/'. (s. s)

We shall use the form (3.4) for p(r~) throughout
this section. The upper cutoff v, removes any
artificial ultraviolet divergences that may result
from this usage.

C. Solution

In the case M = ~, the boson model (2. 19) is ex-
actly soluble. The solution is derived here and
general expressions are found for some quantities
of physical interest. In the interaction represen-
tation, the equation of motion for the evolution op-
erator is

, ' ' =+[V()te" '/b'+V, "(t)e-"/'h, ]U(t, t,).. sU(t t

(s. s)

The form of this clearly suggests that U is an ex-
ponential operator with exponent linear in b~ and
b. We therefore make the ansatz

U(t, to) = exp[t Z/ 0/(t, to)]

x exp(- Q, [f (t, t )I) —f*(t, t )b ]},(3.7)

where p/(t, to) and f/(t, to) are c numbers, and sub-
stitute in (3.S) to find equations for them. They
are solved to give

y, (t, t,)= j,'dt'J' dt" V, (t')V, (t")sinz, (t' t")-
(s. s)

and

f/(t, t, )=t J,
'

V, (t')e"/'dt'. (3. 9)

The reactive response to the time-dependent per-
turbation is represented by the phase factor
g/Q/(t, to). This describes the energy shift in the
ground state. The integrated displacement be-
tween to and t of each oscillator j is given by

f;(t, to) and is a measure of thedegree of excitation
of that mode.

The spectral distribution of the state l(l)(t)} is
given by (2. 5), i. e. , by

S, («) =—lt e'"'
2wJ ~

3C= U3 HOU3 .t

This can be written compactly as

(s. ii)

s, ( )=—f "'((((,))A'(~)A)(((, ))dv, (3. (2)

with

/1= UxU(t, t()) and /I (w)= e'"0'/i e '"0'. (3. 13)

One important particular case is the case K=Ho;
then the spectrum is

s, (. )=—I( e'"'exp Zc,. (v'))dv',

where

(s. 14)

(s. is)

and f/(t, to) is defined in (3.9).
The probability for the perturbation leaving the

Fermi gas in its ground state is given by the 5(«)
part of the spectrum and is therefore

poc(t) = exp[+, c, (T = )] = exp[ —Z; l f;(t, t()) l
'],
(3. 16)

since as r -~, the exponential sum in g/c/(r)
rapidly oscillates to zero. Several sum rules can
be derived for the spectrum from the form (3.14)
for S, («). Clearly, we have

j Sq ((d ) d(() = 1 .
This just expresses conservation of probability.
The moments are useful in discussing the energy
spread of excitations. The first two are seen to be

&«}= t Z, c;(o),
(«') = («)' —Z, c, (o) .

(s. is)
(s. 19)

D. Switching On

Consider a localized potential which is switched
on exponentially, i.e. ,

x(((/(t )I U'(t, to)U'""o'U. U(t, t.)l )t)(to)) dt, (3 Io)

where the spectrum is with respect to the eigen-
values of K, itself related to Ho by the unitary
transf ormation
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V„,(f)= V„.e"', 7) &0. (3. 2o)

At t= —~, the Fermi gas is assumed to be in its
unperturbed ground state. One would like to know
how the state at t= 0, when the localized potential
attains its full strength V». , is related to the true
ground state in the presence of the potential V». .

In the boson approximation of Sec. IID, the state
at i=0 is

For a system with finite volume 0, there is a low-
energy cutoff coming from the fact that a given mode
cannot accommodate more than one excitation (see,
e. g. , Appendix A),

V/(0 ~ V/((() +o.V), V=A '.
Therefore, we obtain

(3.29)

lq„)=U„(o, — )Iy, &,

where from (3. 7) to (3. 9), we see that

U„(0, — )=exp 2ig 3 z
I V]l &~

g
)7(eg+ 0 )

(3. 21) which is the Anderson result' with the proper coef-
ficient (for small phase shift). In the overlap
l&(„I())0&I, the effective cutoff is the maximum of

two competing cutoffs, one related to the volume,
the other related to the switching time:

l&e leo& I
=em«'»maxlfl '

&I) ~ (3.3o)
V, g V;

g exp —Q '. b&
— '. b,f

~
—g'g &~+ zg

(3.22)

ln (3. 22), V&
= V». and a& = e~ —e~, . As mentioned

above, one is interested in the relation of I g,,) to
the eigenstates of the full Hamiltonian

H=HO+ Z Vq), a), a~ =H()+ Z (Vg bg + V~ b~),
(tfk'

(3. 23)

Thus, in the limit of infinite volume, no matter how
small 'g is (0-~ first, then )I- 0), the switched
state never reaches the true ground state of the
final Hamiltonian

(3.31)

The spectrum of excitations with respect to the
final ground state is formally given by

+C)O

(3.32a)

i. e. , the Hamiltonian with the localized potential
V». = VJ present. This can be obtained from Eq.
(2. 4). We need to know the canonical transforma-
tion relating H to H0. In the independent boson ap-
proximation, we easily see that

with

H= U„(HO+ EE) U„, (3. 24)

U„=exp[1~ (Vq b) —
Vq bq)/cj] .

From (3.10), (3.9) and (3. 22), we see that

S„(~)= (I/2)) ) f e'"' exp[1& c&'(r)]dr,

where

(3. aS)

(3. 2s)

Cg 7= 0

0

1 1)'p(u) ~ — s ) &~.

(3. 27c)

The overlap (3. 27b) can be written as

I&@.l @.& I'= l&e. l @.& I'/I&&, I to& I' (3. aS)

c,"(r)=(e "~'-()I)'1(l'( —, —, ,) . ().2'h)1 1
+'g

In particular, the overlap of the state lg„& with the
ground state l g„& of the Hamiltonian H (3.23) is
given by

l&q. lq, &
I' =exp[7'& c~" (7 =-)], (3. 27b)

where

B(r) = V
~

(e '"' —1) ——
z 2 dko .

M +9
0

(3. 32b)

It is difficult to evaluate the integral B(r) exactly.
We therefore make an approximation to it. In the
integrand, the exponential e '"' oscillates rapidly
for larges values of ~. The effect of this (together
with the decrease of the multiplying function as
I/(() for &o» '))) is to greatly reduce the contribution
of the exponential in the region &u & 1/r. We assume
a sharp cutoff at ~=1/r. Further, for m &1/r, we
approximate e '"'

by unity. In this approximation,
we find

p c
B(r) = —V —— 2, d(d = ——V'ln(1+g~r )

M (d +g

(3. 33)

for 'g«w, . However, this B(r) does not have the
right analytic properties which are that it should be
analytic and bounded in the lower half-plane (lhp) as
a, function of complex 7; and purely real on the
imaginary line in the lhp. These result from the
fact that the excitation energies are positive. The
simplest modification of (3. 33) consistent with these
requirements is

B(r) = —V In(1+igr) .
This clearly has also the same functional form as
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I2.5- l

IO.O

spectrum with q seen above in (3. 35). The first
moment calculated from (3. 35) differs only by a

1factor —,v from (3. 37). The logarithmic dependence
on ro, in (3.38) shows, however, that the approxi-
mation (3. 34) is not correct at energies &o g ~,.

C)

Q 7.5

2.5

0.5
I

O. IO

(u IN UNITS OF eF

I

O. I5 0.20

FIG. 1. Spectrum of particle-hole excitations, the
localized perturbation V being switched on exponentiall
at a rate &=O. l az. The spectrum is of the eigenstates
of the Hamiltonian with V. The ground state is at zero
energy. For comparison, the spectrum of the unperturbed
Hamiltonian is also plotted. Here V =0.25.

E. Switching On and Off

VJ(t) = V&[e"s'8(- t)+ e &'8(t)].

In the boson approximation, the state at t = ~ is

ly„&=H„„(,--)ly, &,

(s. s9)

where

(oo —oo) = s~~12
p

We next consider the case of a localized potential
which is turned on and then is turned off. Thus,
there is no localized potential initially (t = —~) and

also finally (t=+ ~). Initially, the system is in the
Fermi ground state. One would like to know

whether it finally returns to the ground state. We
shall see that the probability that it does so is al-
ways less than unity. The remainder goes into
excited states whose spectrum is discussed for a
special case.

Consider for concreteness a potential turned on
exponentially at a rate p, and turned off at a rate
~2~ 1~ e' ~

(3. 33) for long and short times r. The spectrum
calculated using the form (3.34) for B(r) is

V ~l1

xexp -iQ . ' + . ' 5J+H. c, . (3 4o)
iE')+ gg if' —'g2

3.(~) = -a —e
1 1 ~ co

I'(V )
(s. 35)

(3. 37)

and that

((o'& —((u)'= V'rP In((o, /q) . (s. s8)

The mean excitation energy thus decreases linearly
with g. This is in accord with the scaling of the

2I (V ) is a I' function. The spectrum is plotted in
Fig. 1 for V =0. 25. The power-law divergence
for small & has exactly the same form as that of
the excitation spectrum (with respect to the ground
state of Ho) of the ground state of H=HO+ V. The
latter spectrum is given by '"

1 1
(s. s6)

C

%'e see that the slow switching has introduced an
exponential cutoff at energies (d & 'g in the spectrum
(3.35) as compared to (3.36); this is balanced by an
enhanced strength of the divergent part at low en-
ergies to preserve the sum rule (3.17).

The sum rules (3. 18) and (3. 19) can be used to
obtain results about the spectrum independent of the
approximation (3.34) for B(v). We find that

(&u& = —,
' v V~'g

The overlap of this with the original ground state
is given by the probability

I"a = exp( -& I f~ I'1

= exp —V2 ~ 2
I.n (s.41)

It is a function only of the ratio (g, /'1)z), i.e. , it
does not depend on the absolute switching rate
(since the high-energy cutoff has been taken to be
infinite; see below). As a function of this ratio,
it has a maximum for (g, /g2)= 1, i. e. , the sym-
metric case, and its value there is

8-2F (3.42)

As a function of ('g, /g~), the overlap decreases
monotonically and symmetrically around this value.
The probability Poo is thus always less than unity.

For the symmetric case, the probability (3.42)
is seen to be independent of ~). From the expres-
sion (S. 16) for the ground-state overlap and Eq.
(S.9), we see that if the time-dependent potential
can be written as V(gt), the ground-state overlap
is independent of q (to a relative accuracy of g/~,
in the exponent). The reason for this result is the
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((u) = —,
'

a V'(g, + g, ), (3.43a)

use of a linear spectrum for particle-hole excita-
tions and the constant coupling of the potential to
them.

The excitation spectrum is difficult to calculate
explicitly, at least for the nonsymmetric case.
However, it can be shown to begin linearly for
small v. From the sum rules (3.18) and (3. 19),
it is seen that

G (tt )=(T[Q„„(t)Q;a,.(t')])
has the form

(3.48)

(s. 49)G'(tt')= p, /t(t-t')
for time intervals (t —t )» p, and in using this in

the kernel of (3.47). This "asymptotic approxi-
mation" is equivalent to assuming that the density
of particle-hole excitations is given by Eq. (3.4)
without a cutoff. The integral equation can be sol-
ved following Muskhelishvili. '4'" We find G(tt)
and thence AG using the expression

(s. 4sb)

The excitations have an average energy of the
same size as the switching rate times the coupling
of the excitations to the localized potential. This
is in conformity with the result (3. 37) for the mean
energy. For the symmetric case, (3.43) becomes

ho= exp[ —i J dg J't V(tt)G(tt')dt].
1

The expression obtained for P& is

P0 C(T&,7. )@=e 1

where

(3.50)

(s. 51)

(&u) = mv'ri,

((o') —(a))' = 2 V'ri' In —"-

n

(3.44a)

(3. 44b)

C(rt, T, )= dt dt P g- V(t) g

Tg

V (t) —V (t ) 1+ a Va(t)
For illustrative purposes, we mention the re-

sults for a different path, namely, the Gaussian

V (t)= V [e ~t 1~ g( —t)+ e ~t2o t~2 ~ g(t)]

(s. 45)

The probability of returning to the ground state is
in this case

(s.46)

for ~, »1 if the switching is symmetric. In con-
tradistinction to exponential switching, the prob-
ability P~ is minimum instead of maximum in the
symmetric case.

The ground state probability Poo can be calculated
directly for a generally time-dependent potential. '4

The method used is due originally to Nozieres and
De Dominicis who investigated the case of a sud-
denly turned-on potential. They found that the
Dyson equation for the one electron propagator
G(tt ) was a singular integral equation. The
ground-state overlap is simply related to the equal
time limit of this propagator. In our case, the
Dyson equation is

G(tt') = G'(tt') -g p,

X J ~ P(1/t —t )V(t )G(t t )dt, (3.47)

where the potential g V(t ) is turned on at &; and is
turned off at &&. The band of electronic states is
assumed to be symmetric with respect to the Fer-
mi energy. The chief approximation made in
(3.47) is to assume that the free propagator

(s. 52)

If the time scale of the potential is determined by

a single parameter g, and the times ~;, ~& are
+ ~, respectively, it is clear from (3. 52) that the
ground-state probability is independent of ri. We

have seen above that this is true in the boson mo-
del also for g« ~,. Here the cutoff ~, = ~, so that
the (spurious) scaling is found for all rt.

For weak potentials such that V(t)p, « I, the
logarithmic term in the integrand can be expanded
in powers of V. Retention of only the first term
leads to the boson result (3.16). It is difficult to
calculate (3. 52) in general. For the symmetric
special case of (3.39), it can be shown that the

ground-state probability goes as e " ""'"~ if
V2»1. Thus, for strong potentials the overlap
slowly goes to zero.

F. Adiabaticity

%'e now examine the implications of the above
results for the nature of the response of the Fermi
gas to a localized time-dependent perturbation:

(a) We first briefly summarize the established
ideas of adiabaticity as used in many-body theory
for interacting Fermi systems. ' The system is
initially (t= —~) in the ground state of the Hamil-
tonian H0. To the actual interaction Hamiltonian

H» a factor e"' is added. This means that the
interaction is turned on exponentially and attains
its actual strength at t= 0. By means of a diagram-
matic analysis, mainly utilizing the fact that the
"correlation time" of a diagram is -I/ez, it is
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shown that the state at t = 0 is

~g„)= U„(0, —~)~g, ) (S. 5Sa) and

a=ziV v,1 ~ 2 (s. 5vb)

where

=U„(0, —~)~g, )e «"' "', (3. 53b)
b= —4V ln z (3.57c)

U„,(0, — )= (e/a)+ b+0(a) (3. 53c) =-—,V lnQ.j. 2 (s. 5vd)

.daE= E()+i-
dg

(s. 55)

where Eo is the unperturbed ground-state energy
and g is a factor multiplying the interaction H, .
The eigenstate of H thus reached is taken to be its
ground state. This is the adiabatic assumption.
Then the Gell-Mann-Low theorem (3.55) gives the
ground-state energy shif t.

Other important notions for the adiabatic hypo-
thesis are those of reversibility and uniqueness.
Consider the perturbation H, decreased progres-
sively from t= 0 to t=+ ~ as e "'. The state
U„(+ «, —«) I $0) differs from the original ground
state by only a phase factor e '~":

U„(+ «, —~)
~

)l)0 ) = e" "~ q, ) . (s. 55)

This is "proved" in perturbation theory again, if
the intermediate state energies are always posi-
tive. Thus, the adiabatic switching of the pertur-
bation is reversible, i.e. , no transitions to ex-
cited states occur in the course of this process.
This reversibility also implies uniqueness, i.e. ,
the state of time t = 0 does not depend on the pre-
cise way the interaction is turned on, in the slow
or g 0 limit.

(b) We now compare the results for a localized
perturbation with those mentioned above. The
equations corresponding to (3. 53) are (S. 21) and

(S. 22). From this we see that

l p ) = exp — exp —e2e'. pt)'g
g

f ) —j'g

is a c number and U„r, (0, —«) is an operator. The
terms a (purely imaginary) and 5 are extensive
quantities proportional to the volume 0 of the sys-
tem. One is interested in the state obtained when
the perturbation is switched on very slowly, i.e. ,
the limit g -0. This limit is not well defined for
(3.53c) because of the factor a/g. A state free
of this factor is

~q„)„=e'U„,(0, — )~q, ). (s. 54)

It is shown that lim~ f„)„asq-0 is an eigenstate
of H and its energy is

a is independent of volume, as the energy shift,
since the perturbation is localized. However, the
normalization coefficient b is anomalous, being pro-
portional to lnQ. This is the infrared catastrophe
first noted by Anderson. ' The overlap of the nor-
malized state

l
t)&. =exp(-Z '. pl & ', p) l p, ) (x. xx)

&g —&n
'

g ~, + sg

with the true ground state

lp. &=e~(-) ' ' ' ") I po& (3.59)

G. Temperature Effects

(a) The notions of adiabaticity and reversibility
are clearly tied to entropy considerations. The
slow switching of a localized potential in a Fermi
sea involves two kinds of entropy change:

(i) a reversible entropy change ES, which is the
static entropy difference between the final and initial
states and cannot be calculated in the boson approx-
imation:

v d6(E)
AS' —hyT

&
hy=—

has been calculated in Sec. IIID and found to be
zero (S. 31) for a potential slowly switched on in an

infinite volume.
Thus the state attained is orthogonal to the true

ground state rather than being identical with it.
Prom Sec. III D we know that lg„) consists of excited
states of H with a spectrum given by (3.35). Now,
the spread of the excitations itself shrinks as g- 0,
so lg„) consists of very low-lying excited states
(over an energy range q) in such a way that the con-
clusions of the Gell-Mann-Low theorem for the en-
ergy shift remain valid. From the results for the
switched-on and switched-off potential (Sec. III E),
we see that reversibility and uniqueness do not hold.
When the interaction is slowly turned off, the sys-
tem does not return entirely to its original ground
state; excited states are produced with a certain
probability. We have also seen that this probability
is path dependent. The standard "adiabatic hypothe-
sis" is not confirmed.

where

xexp() ' e)lpe& (S.5Va) (ii) an irreversible entropy change due to the cre-
ation of real particle-hole excitations and which can
be estimated (for T«e), ) as
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as, = &&o&/T .
For an exponential switching Ve"' between -~ and
0, &~& is given by (3.37), i.e. ,

(s.eo)

Thus, the value of the irreversible entropy produc-
tion is shown to depend on the ratio of the switching
rate to the temperature.

(b) The finite-temperature generalization of the
formulas of the preceding sections is easily obtained
in the boson model; for temperatures low enough,
the density of excitations can be assumed to remain
unaffected. The averages over the ground state are
replaced by thermodynamic averages. In a formula
like (3. 15), the temperature effect is obtained
through the replacement

e ' ' —1 ~ (cosEt —1)(l+2n) isinE—t, (3.61)

& U(p) &
="""=&,

~( ) psf
(p)

BP

W'e see thRt I. contains an energy shift part and an
entropy part. Along the same lines of reasoning as
in Sec. IID, we expect that the energy shift of the
fermion problem will not be correctly described by
the boson model but that the nonadiabatic part will
be adequately described by summing the boson en-
tropy change over the appropriate density of states.

The recipe to obtain the nonadiabatic (NA) contri-.
bution for a given path V(P') is therefore to calcu-
late

L(p, h)= f, dp'f, dp" V(p')V(p")

x [(1+n)e"~""+~e"~""]; (S. 6Sa)

n = 1/(e~ —1)

is the Bose distribution function.
In particular, the 6-function weight or overlap

Po in formula (3.16) becomes

I",=exp(- Z, if, i') ~ exp[-Z, (2n, +1)if, i'],

(3. 62)

as intuitively expected, with stimulated emission
and absorption adding to spontaneous emission.

The effect of temperature in the various spectra
considered above is not expected to be very spec-
tacular for T «&~. One essentially mill get a
smearing out of the singular part of the syectra.

(c) In the functional-integral method for dilute
magnetic alloys, ' use is made of the temyerature-
evolution operator U(P) which obeys the differential
equation

BU
= —V(P) U(P), V(P) = e'"«(P) 8 '"o .

For constant V(P) = V, U(P) gives the thermody-
namic quantities in the presence of the potential V
at temperature P ', through the thermal average
Z/Zo = (U(P) &. However in the functional integral
technique, knowledge of U(P) for arbitrary paths
V(P) is required.

In the boson model, the thermal average (U(P))
for one boson mode of enexgy E is easily obtained

&U(p)&=em[J, V(p')e"'dp'J, V(p")" 'dp"

+ J' V(p'). "'dp'J'V(p") "dp"].
Now, for constant V, we know that ( U(P) ) may be
written as

(s. esb)

and finally integrate over the appropriate density of
states to find

(U(p))„„=e~[fbi(Z)Z(p, Z)dZ]. (3. 63c)

Compared to the formula which can be obtained di-
rectly via, Muskhelishvili technique, formula (3.63)
has the drRwbRck of being VRlid only fox' small V
but it has the advantage of allowing one to incjude
recoil effects through the density of states; it may
also have computational advantages for given paths
through the Qexibility in the order of integrations
over temperature Rnd energy va.x'iRbles.

IV. RECOIL EFFECTS

A. Solution

=+.&00 I g & & g I 4 & e "",
where i g & is an eigenstate of the Hamiltonian

In this section, we investigate the effect of the
recoil of the potential source on the transient phe-
nomena discussed above. The general effect of the
recoil is to mute the infrared divergence, though
strong final-state interaction effects are still pres-
ent. For simplicity, we confine ourselves to the
case of a suddenly switched-on potential. This de-
scribes the situation in a photoemission experi-
ment, for example. '

We mant to compare the ground state of the Ham-
iltonian without the potential to the eigenstates with
the potential present or to obtain the behavior of the
state after the sudden switching. Fox instance, we
have

& toll(t) & =& Ale ""'"'Ito&
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Ho+ V with energy F.„. The long-time value of (4.1)
is

with
~ g„) being the ground state of Ho+ V. The ex-

cited-state contributions drop out because of the
oscillatory factor [for p(u&) = &u, n ~ 1]. In parti-
cular, one is interested in finding the ground state
of the final Hamiltonian

2

This is the Hamiltonian of an assembly of displaced
oscillators except for the middle term. K is the
eigenvalue of the total momentum which is a con-
stant of the motion; from now on in this section,
we shall take K=O, which corresponds to a source
potential initially at rest (the case K4 0 is dis-
cussed in Sec. III C). Then, a displacement is so
chosen as to minimize the ground-state energy.
The canonical transformation which does this is

Uq = exp[+) fy{bj —bj)], (4. 5a.)

V,
(e +q'/2M)

'

The Hamiltonian (4. 4) then becomess

(4. 5b)

0 ++1

1 2

EG +Zs
g ng + Zgy ng2M

+ Z (q, q). )(b~b~, f)f). +c.c. +2b)b). f)fg*)

+ Z (qg qg. )(bg

blab).

fq, +b). b~) b) fq, ) . (4. 6)

(4. 3)

This is a basic problem in polaron theory' and the
there exist several approximations depending on
the coupling strength. The simplest way of esti-
mating the latter is to equate it with the number of
virtual bosons present in the ground state. A sim-
ple perturbation theoretic estimate of the latter is

j. IU, )' -, lny—u=p&b~b)& =Z q, 2
———V

(&, + q, /2m) 1 —y

where y= m/M. This is of order unity, so that we
are in a regime where the intermediate coupling
approximation is suitable. One first transforms
the system through a unitary operator U, to the rest
frame of the potential source so that (4. 3) becomes

H=peqnq+(K —Z j)n)) /2M+/(V)b~+ V* b)) .

(4. 4)

On neglecting the effect of X, (intermediate-coupling
approximation), the ground state of Xo is seen to
be the vacuum, so that

(4. 7)

Z)=a~ —e~. + (k —k') /2M . (4. 9)

Thus, the density of particle-hole excitations is
now given by

(f—k')'
pu(R) 4 na (1 —na) 5 R fa +fr

k, k'
k

Comparing p„(tu) and p(&) (3.1), w'e see that there
is an additional positive definite term in the excita-
tion energy. The size of this increases with the
square of the exchanged momentum and is of order
y~~. Thus, for total excitation energies less than

y&~, this recoil-energy term restricts the volume
of k, k' space available for particle-hole excitations.
This wi11 reduce the density of the states charac-
teristically for & + y&F. In terms of the density of
particle-hole excitations p(c, q) of energy & and
momentum j (imaginary part af the I indhard func-
tion), we have

p(~) =~.p(~, a),
P~(&) =2, P(& —(q'/2M), cl) .

The expression for p(&u) is given in (3.3); p„(ur) is
easily calculated too and has different analytic
forms for &v& 4'Y and» 4y, where e.=&a/e~,' for
y«1, it simply becomes

p,(~) = p'„~, &/6~, ~ 4r (4. 10a)

=p', a~(&u —2y), 4y& 9«u, .
The density of low-energy particle-hole excitations
behaves like rather than +, i.e. , it is depleted
due to recoil.

We now examine the effect of this reduction in the
density of states. Consider the case of a potential
suddenly switched on at t =0. The probability that
the Fermi gas remains in the ground state at a
subsequent time t is

(4. 10b)

/0 (f) -C(t)

This is identical with the ground-state wave func-
tion of an independent boson model. The correla-
tions between bosons are contained in the nondi-
agonal term 3C, of (4. 6). In the present case, they
give rise to small corrections to the ground-state
overlap starting in order U and independent of
y (i. e. , not of order Iny).

The independent boson Hamiltonian which has the
ground state (4. 7) and the same low excited states
as o is

H=Zg HJ b~ bq+Z) (V) b)+ V) b~), (4. 6)

with an energy of the boson j given by
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where

C(t) = 2V 2 (1 —cosset) .2 P~(~

For long times t, the oscillatory cosine term in the
integrand contributes negligibly to C(t), so that

+~c

C( )=C=2V', d~.
(d

0

Using the form (4. 10) which is valid for y«1 and
&& &, , we see that B(7)= —V ln(y i/8-e~r), a~7/y»1 . (4. iS)

PG = 1 —V' (lny)/y'

and is identical with (4. 12) in that limit. Thus, the
independent boson result (4. 12) for the overlap is
exact in the two limits y«1 and y»1, and interpo-
lates smoothly between these two limits. There-
fore, it is probably a reliable estimate throughout.

We now discuss the energy spectrum of excited
states. For the density of states p„(&) given by
(4. 10), the quantity B(7') (3.32a) is calculated to be

with

p e-v ln((u~/4Y) (4y/~ )v

C= 2V'h(~, /4y) ~d P,'(f=-)=P'„

(4. 11)
S(~) =Pc V2/8ye~ for ~«4y. (4. i4)

The resulting spectrum S(&) has the following fea-
tures. There is a 6-function peak at ~= 0; this has
been discussed above. The excitation spectrum
starts with a constant nonzero value for small &:

The ground-state probability is nonzero because of
the finiteness of the mass M. The result (4. 11)
means that when recoil of the potential source is
considered, the ground states of the Fermi gas
with and without the potential have a nonzero over-
lap. This overlap goes to zero as M- ~, which is
the result found by Anderson. ' The difference is
directly due to the change in the density of low-en-
ergy excitations; in the former case p~(&o)nv while
in the latter p(&u) «u thus leading to an infrared di-
vergence.

The result (4. 11) is valid only for z«1 because
the form (4. 10) has been used for the density of ex-
citations. The exact expression for p„(~) yields
on integration the overlap

This is in contrast to the power-law singularity of
the spectrum for small energies when I=~. It
also differs from the usual phonon sideband spec-
trum where the strength goes to zero as the excita-
tion energy - 0. The spectral intensity smoothly
passes over into that for the recoilless case (Fig.
2). The reduction in the inelastic strength over the
infinite-mass case occurs mainly for & & 4y; the
fact that the low-energy reduction is found to be
equal to the restored elastic peak weight and the ex-
istence of the sum rule (3.17) for the total area con-
firm that result.

The features of the spectrum for the class of ef-
fective density of states

v'(E) p(E) = z
P~= exp V (4. i2) are sketched in Appendix B.

This agrees with (4. 11) in the limit of small y. We
notice that here P~ does not depend on the cutoff
„ this is because the density of high-energy ex-
citations goes actually as ~'~ [see (3.1)] rather
than ~, the value used in the approximate result
(4. 10). This lower density obviates the need for a
cutoff. The result can be rephrased by saying that
there is no ultraviolet divergence. Typically, P~
= 0.5; for example, with y=0. 1 and V =0.25, P~
is 0. 56. The overlap is thus substantial.

The overlap progressively increases from near
zero for y «1 to unity for y» 1. The latter is un-
derstandable since for very small I the potential
source behaves as a highly mobile free particle only
weakly coupled to the Fermi gas which is therefore
excited very little.

We shall see later (Sec. IVB) that for y«1, the
correction (due to correlations, etc. ) to the inde-
pendent boson result for P~ is small. For y»1,
we can calculate the overlap from the exact Hamil-
tonian (2. 1), treating the interaction V as perturba-
tion. To the first nonvanishing order in t/, this is

~ 0.8

cD

~ 06

0.2

0.2 04 06
ENERGY IN UNITS OF eF

0,8

FIG. 2. Spectrum of particle-hole excitations after
the sudden switching of a localized potential V. The
potential source has a mass M. The general form of
the spectrum is shown for 7(=m/M) =O. l and 0.05.
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FIG. 3. Second-order diagram
for I'(t}. The dotted line represents
the potential source (of initial and
final momentum K= 0}. The solid
lines show a particle and a hole.

+
0 t

Q. Dlscusslon

The effect of a suddenly switched-on potential of
mass M ean be discussed without making an approx-
imation for the fermion Hamiltonian (2. 1). This
ean be done either as a systematic expansion out-
lined in Sec. IIC or more directly as follows. 9 One
is interested in the average

t = = 0

P

t

(t) —(U(t)) (eIHot 8-I (Ho+v )t) (4. 15)
This ean be formally rewritten as an exponent:

P

Aa(t)=exp[-i J I'(t')dt']=e "',

&(t) =(V(t) U(t))o/(ft(t)) .

(4. 16)

{4.17)

FIG. 5. Fourth-order diagrams for Z'(t}. The contri-
bution of class b can be condensed into the two "corre-
lation diagrams shown at the end.

WW W

t 0

P WW 1~WP W W

0

FIG. 4. The third-order diagrams for 1 (t}.

One can thus obtain a power series (in V) expansion
fo»(t) and thence for the exponent 8(t). The sec-
ond-order term in V leads to an expression for go(t)
which is identical with the independent boson result
(4. 12). The second-order term in I"(t) is repre-
sented by the diagram of Fig. 3.

The third-order term in I"(t) can be represented
by the two time-ordered diagrams of Fig. 4. The
corresponding 8'"(t) as t- ~ is seen to be the higher
(Vs) Born term in the expansion of (5/v) in powers
of V for a zero-range potential.

In the fourth order, I'(t) is given by the time-or-
dered diagrams of Fig. 5. The terms for the limit-
ing exponent 8' '(~) can be classified into two groups.
The first (class a) consists of fourth-order Born
corrections to (5/v)2 similar to the third-order cor-
rection mentioned above. [These fourth-order Born
corrections have energy denominators E, —&~.

+(k —k )~/2M occurring instead of (c~ —e„.) as is
usual for scattering from a rigid potential. ] The
second class (class b) would vanish except for the
momentum correlation between successive partiele-
hole pairs. Its contribution can be calculated by as-
signing a correlation energy phase factor to the full

lny
I@=exp 3

m I —y
(4. 18)

Q. Nonzero Momentum

%e now consider the case when the potential
source has initially a nonzero momentum K. Some
qualitatively new features appear because the initial
state is an excited state of the noninteracting sys-
tem. The source can (through the coupling to the
Fermi gas) make real transitions to other states
K' by creating particle-hole pairs of the right en-
ergy and momentum. Thus, instead of the 6-func-
tion line at ~ = 0 which one has for K= 0, one finds
here a peak. The width of this peak is the inverse
relaxation time for the source having an initial mo-
mentum R. The spectrum of excitations extends
down to &= —8„=—K'/2M (for R& 2kF) on the low-
energy side, and has a genera1, resemblance to the
R= 0 inelastic spectrum (with a shift Er) on the
high-energy side. Thus, it has the form shown in
Fig. 6. %e discuss below some of its essential

thick line in the second part of class b diagrams
(Fig. 5). It corresponds exactly to the fourth-order
corrections in the polaron model (Sec. IVA), i.e. ,
it is of order V4. [This term vanishes identically
for y=O, i.e. , in the limit lim, „ lim, 08(t). ] It
is thus small compared to the leading term V 1ny

and will be neglected. On the basis of the Born-
expansion behavior of the remaining terms up to
order V4, one can rewrite (4. 12) as
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features, namely, the thresholdbehavior at = -EI„
the width and strength of the elastic peak at ~ = 0.

The density of particle-hole excitations of energy
, including the effect of source recoil is given by

pw(~ @=~ ~a fa+ 6(~-&a+ +~a Er +Er) ~

16 V~ 1 5 2 apyE~S(~) = ———x'", x=
15 Ep )' ' E~

(4.21)

This is valid for x «1; an upper limit is x= (y/ V3)2~5,

around which perturbation theory breaks down.
As mentioned before, the potential source can

make real transitions to other states R'. The tran-
sition probability in second-order perturbation the-
ox'y ls

r =2wV'p„(0, K) {4.22a)

=(2~/16) y V'e, (Z/k, )', Z'&a„y&1. (4.22b)

The Er behavior is a well-known consequence of
Fermi statistics. The transition probability is seen

This vanishes for ~ & -E„(K&2k'). The lower
limit corx'esponds to the source coming to xest
(i.e. , losing its energy E„), the momentum being
taken up by R particle-hole pair of zex'o-excltRtlon
energy. The behRvior of the inelastic spectrum
near the threshold depends on p„(~,R} for &u & -E„.
This is calculated from (4. 19) to be

1 A'g +Eg
pm(»K}= p. ,&r —,6 Sic15@ E

In the threshold region, the inelastic spectxum can
be cRlculRted by tx'eRtlng V Rs R pel'tux'bRtlon be-
cause there the excitation energy is not vanishingly
small, i.e. , l ( = E~. In the lowest nonvanishing
order, the threshold spectrum is found to be

to be generally much smaller than the energy E„
of the source, so that the elastic peak is narrow and
well defined (see, for example, Fig. 6).

For the case K= 0, the independent boson model
was used to calculate the inelastic spectx"um in detail.
its use here leads to a qualitative error on the low-
energy side. The reason is Rs follows: As we saw
in (4.19), the excitation spectrum extends down to
&= -E„. If these excitations are considered boson-
like and many boson processes are treated by con-
sidering them to be independent, we will obtain [on
using a formula of the type (3.14)] an inelastic spec-
trum extending down to ~= —~. But we know (4. 20)
that the true spectx'uxn starts from &= —E~. On the
high-energy side, however, it is likely that the
spectrum is reliably obtained from the model.

A quantity of dlx'ect physical interest ls the elastic
peak. One would Hke to compare its strength to
that of the 6 function obtained for K= 0. To calculate
it, we proceed as follows. The vacuum amplitude
has the form (for long times}

(V(t, 0)) = e~"'= exp(- u+ n. +x/f+ ~ ~ .), (4.23)

where A. has the value —,F (4. 22). For long times,
~/f and succeeding terms may be omitted. The
elastic peak is then seen to be a Lorentzian of
strength e~. We calculate 6 in the independent boson
model. Its defect pointed out on the previous para-
graph concerns the low inelastic energy spectrum
which is determined by x/t and succeeding terms
in (4.23). Thus, we expect the b, calculated below
to be as reliable as the result (4. 12) or (4. 18) for
K=0.

In the boson model, we have

B(t) = V', " --, p„(» K)d~ . (4.24)

-~r

For long times„B(t) is easily shown to be

V =0,25

y =O. l

K = 0.7 kF

Eg= 0.05 eF

B(t) = - ,'rf+ n. + o(1/t), - {4.26)

The imaginary part of 6 gives rise to an asymmetric
contribution in addition to the I.orentzian, but this
is very small. The xeal part turns out to be

0.05 O, IO

ENERGY IN UNITS OF eF

O. I5
(4.27)

FIG. 6. Elastic peak and spectrum of particle-hole
excitations after the sudden s&tching of a localized
potential V. The potential source of mass 10m has an
initial momentum X=0.7k~. The intexaction @2=0.25.

Thus, for K= 0, we recover the strength (4. 12) of
the elastic 6 peak, whereas except for quite small
K& ykz the area, under the I orentzian tends to ex-
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ceed the strength of the 6 peak for K=0. The dif-
ference is, however, small.

The substantial final-state interaction found here
after taking into account the effect of hole recoil
may be relevant to the common occurrence of in-
direct (k-nonconserving or inelastic) transitions in
photoemission.

V. CONCLUSION

The boson model considered above provides prob-
ably the simplest (soluble) example of a particular
class of strong-coupling problems, namely, in-
frared divergences. Although the interaction con-
tains a small coupling constant, here V, it turns
out that in a perturbation expansion the real coupling
constant is V lnE, which may be arbitrarily large
for small energies. The consequent breakdown of
perturbation methods is in fact a signature of in-
frared divergence problems. Consideration of
source recoil changes the coupling constant to $'

in&, which is not small but is of order unity.
The main application here has been to the problem

of a time-dependent localized charge perturbation
in a metal. This problem is relevant for the inter-
pretation of several types of experimental effects.
Some examples, such as x-ray photoemission spec-
tra of metals and atom or ion scattering from met-
als have already been mentioned. The motion
(slowing down) of an ion in a metal or in He may
also show strong-coupling effects. The response
of an electron gas to a local Einstein oscillator, in-
cluding corrections to the Born-Oppenheimer ap-
proximation, will be described in a laterpublica-
tion.

A more complicated but obviously germane prob-
lem is the study of a time-dependent localized spin
perturbation in a metal. This has been done in re-
lation to the Kondo effect by Anderson and Yuval
and by Hamann. &

' In several phenomena involving
hyperfine interactions, sudden spin flips occur.
One expects transients or after effects due to these.
Examples are the Mossbauer effect, perturbed
angular correlations, and ion implantation experi-
ments. "

As made clear by Hopfield, ' infrared divergences
are likely to occur whenever the coupling constant
V(E) and the density of excitations N(E) are such
that V (E)N(E) = E for small energy E. Besides
the examples listed by Hopfield, it is likely that
(ferromagnetic) magnons and surface phonons may
also provide singular satellite spectra in some
situations. As before, the observability will de-
pend on the size of the natural cutoffs.

Outside the realm of solid-state theory, it is easy
to see that the scalar fixed-source meson-nucleon
model exhibits 2 the same singularities (besides uv
divergences) with a natural cutoff provided by the
nonzero meson mass. Finally, a few words should

be said about the famous infrared divergence of
quantum electrodynamics (qed). ' In that case, the
historical effort has been to show that in each order
of perturbation theory, addition of virtual and real
singular contributions gives a well-behaved sum.
Their cancellation is obvious in our model, as it is
built into the sum rule. The weight of the elastic
peak plus the area of the satellite spectrum must
add to unity. The infrared divergence of qed man-
ifests itself in a bremsstrahlung experiment which
is the equivalent of a sudden switching situation in
our model. The slow-switching anomalies have
apparently received little attention, probably for
lack of experimental impetus.

APPENDIX A

The effects considered in this paper can be viewed
as transitions induced in a Fermi system by a per-
turbation which couples the levels pairwise. The
simplest example of this class of systems has two
levels and the problem is described by the Hamil-
tonian

H= 2E(cgcg —c2 cp)+ V(t)c)c2+ V (t)c2c~ . (Al)

The perturbation V(t) causes transitions between
the levels 1 and 2 which have energies +-,'E, respec-
tively. Though ihe Hamiltonian in its general time-
dependent form has not been solved exactly, special
forms have been widely studied in connection with
problems of magnetic resonance, molecular predis-
sociation, atomic collision, interband tunneling in
solids, etc.

TABLE I. Strength of & line and sideband for various
densities of states (Appendix B).

Strength of
6 line Sideband for ~ 0

-V'/&0-i)
fy

IV 2

V2

—V2 ~ exp —~V'—
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a=5 0=2 ground-state amplitude. Thus, the two steps of
Born exponentiation and boson approximation tend
to cancel errors. Furthermore, by introducing a
cutoff for the energy denominator, i. e. , replacing

V'/E'- V'/(E'+nV'), o. =1 (A8)

Ia=y

FIG. 7. Excitation spectrum for various effective
density-of-states functions.

the boson result (A7) can be improved in the limit
V/E»1 without affecting the other one V/E«1.
The boson result (A7) with the renormalization (A8)
is, in fact, a very good approximation to (As).
The same features are also obtained for the S-ma-
trix elements (Ojca U(+~, —~)c2t

j 0) in an on-off
passage, where the exact formula has been sur-
mised by Rosen and Zener.

Let us consider here the special case V (t) = V in
which the Hamiltonian can be exactly diagonalized
and compare the results obtained in various approx-
imations. When V is time independent, the Hamil-
tonian II is diagonalized by the unitary operator

APPENDIX B

Here we discuss how the form of the spectrum
(3. 14) depends on the density of low-lying excita-
tions. The spectrum S(&u) is given by

Uf = exp[- —,
' tan '(2V/E)(cg ca —cacg)] (A2) S((u) = — dt e""

2r
Born approximation for the exponent of the unitary
operator would lead to

Uqa = exp[- (V/E)(c,'c, c', c,)] —. (A3)

Changing from Fermi to Bose variables in U&~ leads
to

e-ftE
xp ~ ~@ pefc E

We assume an effective density of states

U, = exp[- (V/E)(bt —b)] . (A4) V' p.«(E) = V'(E)p(E) = V'p.', e~(E/&, )' (» 0)

(0 j c2 Uz, c2t
j 0) = cos [-,' tan '(2 V/E)],

(Oj c2 Ufac2 j 0) cos(V/E),

(Oj U„j O) = exp(- —,
' V'/E ') .

(As)

(A6)

(A7)

We see that for V/E «1, all forms agree. For
large V/E, the exponentiated Born approximation
(A6) is qualitatively wrong, leading to an amplitude
oscillating in sign. The corresponding boson ap-
proximation (A7) is somewhat better with a positive

The various expressions for U can be compared
through their expectation values in the ground state,
i. e. , the state 2. This is Ac = (0)c2U&ca ) 0) for
Fermi operator forms, and AG = (0[ U, ~ 0) for Bose
operator form

for small energies. Thus, large n means a low
density of excitations and vice versa. The spec-
trum quite generally may consist of a 6-function
line at zero energy and a positive-energy sideband.
Actually, the presence of the 5 line and the shape
of the sideband sensitively reflect the exponent n.
As n decreases, the sideband progressively con-
sumes the 5 line and swallows it at a = 1 where the
infrared divergence sets in. The characteristic
features are listed in Table I and are exemplified
in Fig. 7.

The case a = 3 is familiar from phonon sidebands
(with dilatational coupling '): o. = 2 is found for a re-
coiling localized perturbation considered in this
paper; the limit of infinite mass corresponds to
@=1.
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Lattice 'Ihermal Conductivity of Plastically Deformed Copper plus 10 Atomic Percent
Aluminum Specimens in the Temperature Range 1—O'K*
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(Received 5 June 1970)

The total thermal and electrical conductivities of seven polycrystalline rods of copper plus
10 at. % aluminum, which were in a total of 25 different states of recovery from plastic de-
formation at 77 K, and one commercially pure nickel single crystal were measured in the
liquid-helium temperature range. The low-temperature lattice thermal conductivity of a speci-
men which had been plastically deformed 9% recovered slowly as it was annealed between 300
and 700 'K, and then rapidly recovered to its prestrain magnitude after being annealed between
700 and 800 'K. The recrystallization temperature was 725 K. Metallographic grain-size
studies supported these conclusions. An application of the theory of Klemens and Ackerman
and Klemens to the variation of the dislocation lattice thermal resistivity with annealing tem-
perature (below 700 'K) due to impurity atmospheres made it possible to determine the frac-
tional atomic-volume difference 0. between the aluminum and copper atoms to be 0.23. When
the same theory was compared with variation of the dislocation lattice thermal resistivity
with aluminum concentration found by Charsley, Salter, and Leaver, it was found that & =0.24.
From the experimental x-ray data, 0. is 0.20. A later theory of Klemens which treated the
variation of dislocation resistivity with annealing time at fixed annealing temperature was
found to be inconsistent with the data of this work, but the experimental error was large. The
theory contained the assumption that a unique diffusion constant could be defined for the de-
formed alloys, but this may not have been true, since plastic deformation generates excess
vacancies. An anomalous departure of the phonon-electron lattice thermal resistivity from
a T"2 temperature dependence was thought to be an effect associated with the small electron
mean free paths in these alloys. The theory of Lindenfeld and Pennebaker qualitatively ex-
plained the anomaly.

I. INTRODUCTION

The lattice conductivity of a metal is sensitive
to defects in the crystal structure. The different
types of defect give rise to lattice thermal resis-
tivities which have their own characteristic tem-

perature dependences. Plastic def ormation gener-
ates dislocations; these produce a lattice thermal
resistivity which is proportional to T . Charsley
et al. found that the thermal resistivity per dislo-
cation had a concentration dependence in copper-
aluminum alloys which, could not be explained by the


