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Expressions for the short-range-order parameters for disordered ternary alloys are given
as functions of the system composition and the static two-body configurational potentials of
arbitrary range. These expressions are exact to the order (Z'~/T), where T~ is of the order
of the highest temperature at which the system is expected to have any long-range order. A
procedure for the computation of this temperature T~ is outlined. It is noted that the present
approximation removes an obvious inadequacy of an earlier linear-approximation treatment.

I. INTRODUCTION

Exact formal solutions can be derived for the
short-range-order (SRO) parameters for a disor-
dered ternary alloy, with arbitrary compositions
and nondynamical pair -wise interatomic potentials
of arbitrary range. To do explicit calculations, a
suitable high-temperature expansion scheme can
be devised. In Ref. 1, hereafter denoted as I, the
series expansion for the SRO parameters was trun-
cated at the dominant temperature-dependent term.
Such a linear approximation can be expected to yield
adequate results in the limit of elevated tempera-
tures, i.e. , T» T„where T, is the highest tem-
perature at which the system is capable of showing
any long-range spatial order.

The linear approximati. on discussed in I suffers
from two major inadequacies. First, its accuracy
at intermediate temperatures, i.e. , T, & T& 2T„ is
expected to be poor. Second, . the estimates of T,
obtained within the linear -approximation scheme,
have some unphysical features whenever in the ter-
nary system the concentration of one of the compo-
nents is close to 50%. Moreover, in the limit that
the relative concentration of one of the components
is vanishing, i.e. , when the system becomes a
binary alloy, it has recently been shown that the
predictions of the linear approximation regarding
the dependence of T, upon the concentration are in

3

serious disagreement with experimental observa-
tions on the order-disorder temperature of the cop-
per-gold binary system. In contrast to this mani-
fest failure of the linear approximation, the predic-
tions of the improved cubic approximation are found
tobe in very reasonable agreement with experiment.

To remedy these deficiencies, in the present pa-
per we present a more accurate calculation of the
SRO parameters. In terms of the appropriate high-
temperature series expansion, these results are
exact to the third order in the ratio T, /T. As such,
they are an appropriate generalization of the cor-
responding binary results to the case of ternary
systems.

IfAA+IfBB +Ifcc+IfAB+ffAc ff Bc (2. la)

where

& Q yM, (f~)gkok
f, g

(2. lh)

II. SRO PARAMETERS

In I we described a disordered ternary alloy with
a total of N atoms of which N", N, and N = N -N"

are of types A
p 8

p and Cj respectively. These
atoms are distributed on a regular isotropic rigi6
lattice consisting of N sites. The configurational
inter action is a sum of bvo-body interactions, i. e. ,
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H'"=
2 Z V'"(ij)(o"(o,"+o"(o~), )(4 v

f, 1

V'"(ij) = V"'(ii) = V"'(ji) = V""(jz),

(2. lc)

(2. 1d)

V "(ii)=—V'(ii)=—0, &, v=2, B, C . (2. 1e)

Here the sums over i and j are unrestricted and
extend over all the atoms in the lattice. This is
made possible by the use of the occupation opera-
tors 0& which are defined as

a, =+1 if the ith lattice position is occupied

by an atom of type ~,

otherwise . (2. If)

Transforming to the subspace of spin 1 (in units
such that 8 = 1) by the way of the relations

oA ) [(Sz)2 +Sz]

(xe(= I —(S()2,

c;=-', [(S',)'-S', ]

(2. 2a)

(2.2b)

(2. 2c)

H= ——Z [I((ij)S(S,'+I2(ij)(S';) (S~) +I,(ij)(S() SJ]2

(refer to Appendix C for the details of this trans-
formation), we obtain the following system Hamil-
tonian from (2.1):

It is, therefore, convenient to recast the formal
results derived in I for the spin correlation func-
tions in terms of the occupation-operator repre-
sentation. This is readily done by first inverting
Eq. (2. 2a), i. e. ,

g A C$] Of ~ (Tf (2. 7a)

{Ss)2 cA cc (2. 7b)

{2.8a)

=
& [1-P(3)]o'[ ])- &I{I)o,"I ~ ~ ]), (2. 8b)

where we have used the notation

((){n)={e3s '2'+I) ' n= 1, 3
(n)

(2. 9a)

E' '(g ) = p, —p —Q& [W{gf)o&+2U (gf) o'& ], {2.9b)

E(3)( f)= + +.p [2U "()( f)c"+W(Q)o ], (2. 9c)

U'"(gf) = ,' L2v""(gf) —-[v""(gf)+V""(gf)]}, (2. 9d)

and using these to reexpress Eqs. (3.6), {3.7), and
(3. 15)-{3.18) of I, in terms of the A and C occupa-
tion operators (note that c( =1 —c(" —o(c) . We get

—p ~ S( -p~ (S()',

I,(ij) = 4 [2V" (ij) —V (ij) —V""(ij)],

I,(ij) = V"'(ij)+ V"(ij) —V"(ij)

(2. 3a)

(2. 3b)

W(gf) = U" (gf)+ Uec(gf) U~c(~) (2. 9e)

As discussed in I, above T, the functions (p{1)
and ()(){3) can be expanded in powers of T,/T. The,
appropriate high-temperature expansions are

I{I)=X(o)+ 2 X{n)[PE' '(g) ] ", (2 10a)

--, [V""(ij)+V"(ij)+2V"'(ij)], (2. 3c)

I3(2j) = v"'(3j) —V"(ij) +-. [v"(ij) —V""(ij)]
(2. M)

where

((){3)= F{0)+ Q I'{n)[PE"'(g)]",
n~1

(2. 10b)

&I)) ")=~' {2.4)

The chemical potentials p, and p are computed
from

E(i)(

E(3)( ) E(3)(g) p p

(2. 11a)

(2. 11b)

(gp) = (m "m"- &o,'o'))/m'm", (2. 5)

where m is the relative concentration of the &

atoms. ,

m"=Ii"/I)I = &o,") . (2. 6)

(angular brackets denote theusual thermal average).
As shown in I, the Hamiltonian (2. 3) can be

solved for exact formal solutions of the spin cor-
relationfunctions &S~[ ~ ~ ]), where [ ~ ~ ~ ] refers to
any $' operator not referring to lattice site g.
These correlation functions are related to the SRO
parameters (2 (gp) through their dependence on the
occupation-operator correlation functions, i. e. ,

Here the coefficients X(n) and I'{n) are functions
only of X{0)and V{0),

X(0) = (1 e (" '))

y'{0) (1 + e () (u + P )
)
-(

For example, we have

X(l) = X(0) [1 —X(0)],
X{2)=X(1)[2 —X{0)],
X(3)=X(1)Q- —X{1)], etc.

{2.12a)

(2. 12b)

{2.13a)

(2. 13b)

(2. 13c)

The relationships among the F{n)'s are similar.
Following the procedure used in I, a series ex-

pansion for the correlations &o2o(",) may be calcu-
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~) ~AC(g)
N )f,

(2. 16)

is exactly conserved. This step is central to our
series-inversion procedure which was also follow-
ed in I and in Ref. 2.

Note that Eq. (2. 15) contains singularities
whereas the expansion (2. 14) has no such charac-
ter. This point has been fully discussed in Ref. 2

and, therefore, we shall not belabor it f~rther.
All that needs to be said here is that to the order of
accuracy of Eq. (2. 14), the two equations, i. e. ,
Eqs. (2. 14) and (2. 15), yield identical high-tem-
perature series expansions.

lated. Such a series expansion for the relevant
correlation has the form

(&k &c) —(mkmc[I &Ac(gp )j )
=(1—6~~) [m"m +4~oc(gp)+PC,"c(gp)

+ P'@2 '(gp) + O' C'~ '(gp) ]+o(I/~)',

(2. 14)

with the values of the @", (gp) given in Appendix A.
Of course when A and C are interchanged with B
in Eq. (2. 14), we find the remaining two SRO pa-
rameters.

As for the corresponding case for the binary al-
loy, it is convenient to use a series inversion for
Eq. (2. 14). However, to do this we proceed as in
I, perform an inverse-lattice Fourier transforma-
tion and then, as in Ref. 2, carry out the series in-
version in such a manner that all the E dependence
occurs in the denominator.

In this manner we finally obtain

D(AC)
1+p@" (k)+ p'@ (k)+ p 4 (R)

(2. 15)
where the values of 4'& o(%) are given in Appendix
B.

In Eq. (2. 15) the coefficient D(AC) is determined
such that the sum rule

,00t5
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FIG. 2. Same as Fig. 1, except 42 (k) vs k.

III. DISCUSSIONS AND COMMENTS

The improved solutions for the SRO parameters
given in Eq. (2. 15) differ from the earlier linear
approximation of I in that it contains the additional
temperature-dependent terms involving +z (%) and

(%), whose presence also renormalizes the co-
efficient D(AC) through the sum rule given in (2. 16).
The limiting case of binary composition, i.e. ,
where the relative concentration of one of the three
components is vanishingly small, has already been
studied in detail in Ref. 2. There it was noted that
the presence of these terms caused a renormaliza-
tion in the magnitudes of the SRO parameter and the
transition temperature by several percent. The
more important consequence of these terms, how-
ever, was that they led to a basically different de-
pendence of the transition temperature upon the sys-
tem composition and upon the range of interparticle
potential than had been predicted by the linear the-
ory. It is therefore reasonable to anticipate that
the inclusion of the additional P and P terms in the
expressions (2. 15) and (2. 16) will also affect sig-
nificant improvements in the corresponding linear
theory results for the ternary systems given in I.

To remark on the interesting question of how the
improved solution affects the dependence of the
transition temperature upon the interparticle poten-
tials for those compositions where the concentra-

.Ol-

'f(K)
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.0002-

'f(K) 0-
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—.0004-
FIG. 1. Plots of C~ {k) vs k for the (100), (110), and

(111)principal directions and m =m =m, where
y=1. 0 and a=1.2 (y=U /U, e=U /U ). Simple
cubic nearest-neighbor interactions have been used.
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FIG. 3. Same as Fig. 1, except 4+3~{k) vs k.
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TABLE I. Relative importance of the additional
terms +2 (k) and @3 (k) with respect to the linear
result + f (k) shown as a function of k and of the param-
eter t = T,/Z' (k&Z', = 6U ). The cubic approximation
result G (P, k) is defined via Eq. (3. 1), e.g. ,

+ pGAc(t k)
—1 + t [@Ac(kj + tyAc(k) + t2yAc(k)] . Here

we have taken the equicomposition case of m+= m~ = mc
with p U~/UAc l. 2, p UBc/UAc 1 0,

principal direction is (100).

t k 4 {k) G" (t, k) ty Ac(k) t2+ Ac(k)

0. 95 0
0. 95 —,'~
0. 95
0. 75 0
0. 75
0. 75
0. 50 0
0. 50 217r

0. 50 7r

0. 25 0
0. 25 qm

0. 25

-0.103 704
-0. 069 126
-0.034 568
-0. 103 704
-0. 069 136
-0. 034 568
-0. 103704
-0. 069 136
-0. 034 568
-0. 103 704
-0.069 136
-0. 034 568

-0.104 605
-0. 069 742
-0. 034 873
-0. 104 488
-0. 069 662
-0. 034 832
-0. 104 287
-0.069 526
-0. 034 764
-0. 104 026
-0. 069 351
-0. 034 676

-0. 001 338
-0. 000 892
-0. 000 446
-0. 001 056
-0.000 704
-0. 000 352
-0.000 704
-0. 000 470
-0. 000 235
-0. 000 352
-0. 000 235
-0. 000 117

0. 000437
0. 000 286
0. 000 141
0. 000 272
0. 000 178
0. 000 088
0. 000 121
0. 000 080
0. 000 039
0. 000 030
0. 000 020
0. 000 010

TABLE II. Same as Table I except the principal
direction is (110).

@At (k) GAc(t k) t@Ac(k) t+Ac{k)

0. 95
0. 95
0. 95
0. 75
0.75
0 F75

0. 50
0. 50
0. 50
0. 25
0. 25
0. 25

0 -0. 103 704
2m -0.034 568

0. 034 568
0 -0. 103704
g7r -0. 034568

0. 034 568
0 -0. 103 704
-~-7r -0. 034 568
7r 0. 034 568
0 -0.103704
-,'-~ -0. 034568

0. 034 568

-0. 104 605
-0. 034 873
0. 034 877

-0. 104 488
-0. 034 832
0. 034 835

-0. 104 287
-0. 034 764
0. 034 765

-0. 104 026
-0. 034 676
0.034 676

-0. 001 338
-0.000446
0. 000446

-0. 001 056
-0. 000 352
0. 000 352

-0. 000 704
-0. 000 235
0. 000 235

-0. 000 352
-0. 000 117
0. 000 117

0. 000437
0. 000 141

-0. 000 136
0. 000272
0. 000 088

-0. 000 085
0. 000 121
0. 000 039

-0. 000 038
0. 000 030
0. 000 010

-0.000 009

tion of one of the components is close to 50%%up, we
first note that for such a case the linear approxi-
mation of I leads to a particularly unphysical pre-
diction, namely, that for the case when n. " is 2

and the interparticle potentials are such that
(ksT, ) is the highest of the three temperatures
(ksT,), then the transition temperature is entirely
independent of the strength of the interparticle po-
tential U" . In the improved approximation of the
present paper, this unphysical feature of the linear
approximation is removed and a nontrivial depen-
dence of the transition temperature (ksTc)" on U"
ls found.

However, in contrast to the behavior of the crit-
ical temperature, the predictions of the present
theory regarding the behavior of the SRO parame-.
ters and their inverse Fourier transforms, e. g. ,
&" (%), are not substantially different from those

TABLE III. Same as Table I
direction is (1

+"~{k) G"~{t,k)

0, 95 0 -0. 103 704 -0. 104 605
0. 95 27r 0. 000 000 0. 000 000
0. 95 7i 0. 103 704 0. 104 646
0. 75 0 -0. 103704 -0. 104 488
0. 75 27I 0. 000 000 0. 000 000
0. 75 7r 0. 103704 0. 104 514
0. 50 0 -0. 103704 -0. 104 287
0. 50 —

7I 0. 000 000 0. 000 000
0.50 7r 0. 103 704 0. 104 299
0. 25 0 -0.103 704 -0. 104 026
0. 25 2~ 0. 000 000 0. 000 000
0. 25 7r 0.103704 0. 104 029

except the
11).

gy AC(J )

principal

t2+ Ac(k)

0. 000437
0. 000 000

-0. 000 395
0. 000272
0. 000 000

-0. 000 246
0. 000 121
0 ~ 000 000

-0. 000 110
0. 000 030
0. 000 000

-0. 000 027

-0. 001 338
0. 000 000
0. 001 338

-0. 001 056
0. 000 000
0. 001 056

-0. 000 704
0. 000 000
0. 000704

-0. 000 352
0. 000 000
0. 000352

TABLE IV. Values of the SRO parameters &""(k), p, g
=A, B, C, for the linear (L) and cubic (c) cases. The
equicomposition case, m = m = m = &, has been used,
~=U»/U~c=1. 2, ~=U~~/U" =1.0, an, / =-,' (k~T,
=6P ~). Computations are along the (100) principal

direction for simple cubic nearest-neighbor interactions.

(„Ac(k) ~Ac (k) ~BQ(k) Q,Bc(k) ~AB (k) c AB {k)

0 1.0734
$n' 1.0721
$w 1.0684
$w l. 0626

l. 0554
$w 1.0475

1.0397
$w l. 0328
$7r 1.0274
$w 1.0240

1.0228

I.0740
1.0727
1.0689
l. 0630
1.0558
1.0478
1.0400
1.0330
1.0276
1.0241
1.0229

1.0734
1.0721
1.0684
1.0626
1.0554
1.0475
1.0397
1.0328
1.0274
1.0240
l. 0228

1.0740
1.0727
1.0689
1.0630
1.0558
1.0478
1.0400
1.0330
l. 0276
1.0241
1.0229

1.1078
l. 1058
l. 1001
I.0913
1.0805
1.0687
1.0572
1.0471
1.0391
1.0341
1.0324

1.1077
l. 1057
1.1001
1.0913
1.0805
1.0688
1.0573
1.0471
1 ~ 0392
1.0342
1.0324

of the linear case. It is, nevertheless, interesting
to examine the relative importance of the additional
terms which have been introduced into Eqs. (2. 15)
and (2. 16). Such a comparison would bear upon the
convergence properties of the series-inversion
procedure used here.

To get a feel for the variation of the tempera-
ture-independent parameters +, (%), @," (%), and

(%), these parameters have been plotted in Fig.
1-3. These curves have been plotted for the equi-
concentration case m"=m =m and assuming U
=Us =8 U"s. Note that the dominant term g," (%),
has a minimum at k= (0, 0, 0) where the SRQ pa-
rameter o.'" (%) achieves its maximum value. Also
if @2"c(k) and +~zc(%) are assumed to be equal to
zero, one retrieves the linear-approximation re-
sults of I. Similar plots can also be presented for
n"s(Q) and o. (%), but for brevity we do not include
them here.

For a convenient comparison of the magnitudes
of the two new terms, involving +z" (fc) and +~ c(%),
in the denominator of Eq. (2. 15) with the old term
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TABLE V. Same as Table IV except y= 1.5.
n~~k)

TABLE VI. Same as Table IV except
direction is (111).

the principal

0 l. 0596 1.0583
$w 1.0586 1.0574
$w 1.0556 1.0545
$w 1.0509 l. 0502

1.0451 1.0447
$w 1.0388 1.0386
$w 1.0325 1.0325
$w 1.0269 1.0270

$w 1.0225 1.0227
$w 1.0197 1.0200

l.0187 1.0190

l. 1473
l. 1445
l. 1364
l. 1240
1.1088
l. 0924
l. 0765
l. 0626
l. 0518
l. 0449
l. 0426

l. 1454
l. 1427
l. 1349
1.1228
l. 1080
1.0920
1.0763
1.0626
1.0519
1.0451
1.0428

l. 0932
l. 0915
l. 0867
l. 0792
l. 0699
l. 0598
1.0499
l. 0411
l. 0342
l. 0299
l. 0284

1.0928
1.0911
1.0863
l. 0789
1.0697
1.0597
l. 0499
1.0411
1 ~ 0343
l. 0299
l. 0285

0 l.0734
$w l. 0695
$w 1.0584
ft w 1.0415
$w l. 0210
$w 0.9992
$w 0. 9783
Qw 0. 9602
$w 0. 9463

0. 9376
0.9346

1.0740
l. 0700
1.0588
1.0418
1.0212
0.9992
0. 9781
0. 9599
0. 9459
0.9371
0. 9341

l. 0734
1.0695
l. 0584
l. 0415
1.0210
0.9992
0.9783
0. 9602
0.0463
0.9376
0.9346

l. 0740
1.0700
l. 0588
l. 0418
1.0212
0. 9992
0. 9781
0. 9599
0. 9459
0. 9371
0.9341

1.1078
I.1019
1.0851
1.0599
1, 0298
0. 9984
0. 9688
0. 9436
0.9134
0. 9126
0. 9086

1.107
1 ~ 1018
l. 0851
1.0600
l. 0299
0. 9984
0.9688
0. 9434
0.9242
0. 9123
0.9083

involving only +", (k) that was obtained within the
linear approximation, we have included Tables
I-III. These tables give a description of the rel-
ative importance of the new and the old terms
as a function of the system temperature. Here we
have used the notation,

1+P~,"'E)+P'9."'(&)+P'~", '5) = 1+PG-"'(P, k) .
{2.1)

Of course as the system temperature becomes
large, the new terms become increasingly unim-
portant and then the results of the linear theory
become accurate.

It should be emphasized here that while a study
of Tables I-III convinces one of the rapid conver-
gence of the high-temperature series expansions,
the effects of the inclusion of the additional terms
involving +z (%) and +3 (fr) in Eq. (2. 15) are non-
trivial. The most important consequence of these
additional terms, of course, is a change in the
position of the singularity, which results in the
changed behavior of the transition temperature as
a function of the interparticle potentials and the
system concentration. The less important conse-
quence is a change in the magnitude of the SRQ pa-
rameters as compared with the corresponding re-
sults of the linear approximation (see Tables lV-
Vl).

It should be noted that although, for convenience,

the numerical results of this paper have only been
worked out for the simple case of separating ter-
naries with only nearest-neighbor interactions, the
formal analysis presented here is equally appli-
cable to ordering alloys as well as to the case of
larger-range potentials. Indeed, it is hoped that
in a future publica. tion a detailed computation of the
transition temperature and SRQ parameters, mak-
ing use of relatively realistic potentials and com-
positions, will be given.

The conclusions of this paper may be briefly re-
capitulated by saying (a) that while the linear ap-
proxirnation of I can be expected to be valid only
at elevated temperatures where 7» T„ the ex-
pressions for the SRG parameters presented here
should be adequate even in the region of intermedi-
ate temperatures T & T, and (b) moreover, the
obviously unphysical feature of the linear approxi-
mation, regarding the dependence of the transition
temperature upon the system composition when one
of the concentrations is close to 50%, is eliminated
in this improved approximation.

ACKNOW LEDGMENTS

%'e wish to thank Professor Leonard Muldawer
and Professor Henri Amar for their interest in this
work and for helpful discussions. Also thanks are
due the Temple University Computer Center for
use of their CDC6400.

APPENMX A

The expressions for Co (gp), 4", (gp), 4 w (gp), and Qo(gp) in Eq. {2.14) are given as follows (the cor-
responding expressions for u" (gp) and n (gp) are found by interchanging A B C; note that W(gp) also
undergoes a change):

oo~(jp)=- —5 ~Im" m +ll~m(m ) 2 [m" w(gf) —(1—m~)RU Qf)] I'" le) +p (m ) m
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x Z [2m" U" (gf) —(1 —m ) W{gf)] r""{gf)

+O'Z [(m")~m /(I —mU)j (m" m [Rm" II" (gf) —(I —m ) Rggf)][U""(gf)

x [2U"n{gf) (I —2m") —m ~ W{gf)] —m ~
W(gf) 1 "~(gf))- (m ~)~ [2V ~(gf) (1 —m ~) — "

W(g f)]

x{r" (gf) [W(gf)(l —2m ) —2m"U" {gf)j 2m-" U" (gf)r""(gf))

—r"
(g f){r"~{gf)[m~(l —2m") 2U" (gf) —(m~) W(gf)]- (m~)2W(gf) r (gf))

+-,'(m' —m") (m"(1 —2m") [2 U"'{gf)]'r""(gf)+m'(1 —2m') W(gf)'r"'(gf)

—2m"m W(g f) 2U" (gf) [I'""(gf)+r"~(gf)]-1"~(gf) {(1-m")(1—2m")

g[RU" (gf)] m(1 ——RmU)W(gf)~ —Rm (I —Rm")W(gf)RU (gf)j)) —[m"m (I —m )/(I —m")]((m )~

x[2U" (gf)(1 —m")-m W(gf)j{r""(gf)[m 2U (gf) —(1 —2m")W(gf)]+m 2U~~(gf)r"~{gf))

+m"m [2m~V {gf)—(1 —m")W{gf)]{r" (gf)[(1 —2m )2U {gf)—m"W(gf)] —m"W{gf)r""{gf))

—-,'(m m){m—"(1—2m")W(gf) r""(gf)+m (1 —2m )[2U (gf)] I"" (gf) —2m"m W(gf)2U~ (gf)

x [I'""(gf)+I" (gf)]})—[m"(m ) /(1 —m")] I' (gf)(I'""(gf)[W(gf)m"(1 —2m") —2m"m U (gf)]

—2m"m U {gf)r" {gf)——,'(m —m ){(1—m")(1 —2m")W(gf) —m (1—2m )[2U (gf)j

—2m'(I —2m")W{gf)2U"(gy))) + p'Z {(m')'m'r""{gf,)[W{gf,){I—m') —2m" U"{gf,)][m'W{fg,)
J fifa

—(1 —m")2U" (fjf )]+(m"m ) I'" (gf )[W{gf )(1—m ) —2m"U" (gf )][2m U (fjf,) —(1 —m")W{fj,)]
+ (m"m )'r""(gf,)[W{gf,) "m(I -m —)2U {gf,)][W(fg,)(I —m ) —2m" U" (f/2)]

+m" (m~)'U" lfg)[ "m Wlg)f—(I —m')RU U(gf ) j[(I —m')RU '(fA) —m "W(fA)] j
I

C,
A(. (~~) 2 crAc@p)

(Al)

4"'(gy)-=[ " '(1- ')/(1- ")](r""(gP)[ "(1-2 ")w{gp)-2 " 'U"(gP)] —2 " 'U"(gp)r"'(gP)

——'(m~ —m~) {(1—m")(1 —2m")W(gP)2 —m~(l —2m )[2V (gP)j —2m (1 —2m")W(gP)2U (gP)})

[(m"pm'/(I m')]([m'(1 2m") 2U"gp) (m')'W—{gp)jr"'{gp) —(m')'W{gp)r"{gp)

+ —,
'

(m —m") {(1—m") (1 —2m") [2U" (gp)]2 —m (1 —2m') W(gp)~ —2m'(I —2m") W(g p) 2U" {gp)})

+m" m Zy{m" r""(pf)[2m" U" (gf) —(1 —m ) W(gf)] +m r" {pf)[m" W(gf) —(1 —m )2U {gf)]), (A3)

4" (RU)=ZI[(m")m /(I —m )] m m[RU" (gf)m"" —(I —m )W(gf)][U""()f)[(l—I ")RU" (gf) —m W(gf)[

-m W(gf) I ~{pf))—(m )'[2U (gf)(l —m ) —m" W(gf)]{I'" (pf)[W(gf)(1 —2m ) —m" 2U" (gf)]

-m" 2U"'{gf) r""(pf)}-m r"'{pf){r"'(gf)[2U" (gf)(1 —2m") —m W(gf)] —m' W(gf) I'c (gf))

+ —,'(m —m")(m"(1 —2m")[2U" (gf)] I'""{pf)+m (1 —2m~)W(gf) I'" (pf) —2m" m W(gf)2U" (gf)

x [I'" {Pf) + 1""
(Pf)] —r" (Pf) {(1—m")(1 —2m ) [2U" (gf) ]2 —m~ (1 —2m ) W(gf)2
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—2m (1 —2m") W(gf) 2U" (gf))) —[m" m /(1 —m")] (m")'(1 —m ) [2U" (gf)(l —m") -m W(gf)]

x (r""(pf) [2m U (gf) —(1 —2m") W(gf)]+2m U (gf)r" {pf)}+m"m (1 —m~)

x [2m U (gf) —(1 m"-) W(gf)](r" (pf) [2U {gf)(l —2m ) —m" W(gf)] —m" W(gf) r""{pf)j+m I' {pf)

x (1""(gf)[m"(1 —2m ) W(gf) —2m m U (gf)j —2m m V (gf)r" (gf)]

——', (m —m ) (m"(1 —m )(1 —2m") W(gf) r""{pf)+m (1 —m ) {I—2m ) [2U' (gf)] r" {pf)

—2m"m (1 —m ) W(gf) 2U (gf) [r""{pf)+r"(pf)]+m r (pf)f(1 —m")

x (1 —2m") W(gf)' —m~(1 —2m~) [2U ~(gf)]' —2m~ {1—2m") W(gf) 2U (gf)))

+Q (m") m [W(gp)(1-m ) —2m" U" (gp)]fm" I'""(gf)[2U" (gf)(1 —m")-m W(gf)]

+m r" (gf) [W(gf)(l —m ) —2m~ U ~(gf)]] +m"(m )'[2U (gp)(l —m ) —m" W{gp)](m" r""(gf)

x[(1—m ) W(gf) —2m U" (gf)]+m r (gf) [(I —m ) 2U (gf)-m" W(gf)]]

+ " „, '([(I-m") W(gp) - 2m' U" (gp)] fm" (I -m") W(gf)'+m'(1 - m')

x[2U (gf)j —2m"m W(gf) 2U (gf)]) —[m (m") /2(l —m ) j [(1 —m ) —6m"m ]

x ([(1—m") 2U"'(gp) —m W(gp)] (m" (I - m") [2U"'(gf)]'+ m (1 —m') W(gf)' —2m"m

—2m"m W(gf) 2U {gf))(m" I'""(gP) —(m —m ) [2m U (gP) —(1 —m") W{gP)j]

(m"(I —m") [2U" (gf)] +m {1—m ) W(gf) —2m m W(gf) 2U" (gf)j.

fm r" (gp)+(m —m") [m W{gp) —(1 —m")2V" (gp)]]- r""(gp)

x ((m")' r""(gf) W(gf)+ 2m"m' I "'(gf) U"(gf) —-', (m'- m') (m" (1 —m") W(gf)'+ m'(1 —m') [2U"(gf)]'

—2m m W(gf) 2U (gf)j)+ [m"m'/(1 —m')]' r"'{gP)(m"m' r "~{gf)

x2U"'(gf)+ (m')'W(gf)r" (gf)+ —,
' {m —m")(m" (1 —m") [2U" {gf)]'+m {1—m )W(gf)'

-2m"m W(gf)2U" (gf)))+[m"m /(1 —m")j (m"[(1-m")2U" (gf)+ (1 —m )W(gf)]

x fr""(gf)[m"(I —m") W(gp) —2m"m V (gp)]+ r""(gp) [m" (I —m") W(gf) —2m"m V (gf)]j

—m [(1-m")W(gf)+ 2(1 —m )U (gf)][r""(gP)[(m") W(gf) —m" (1 —m )2U ~(gf)j

—r" (gf)[W(gP)m"(1 —m") —2m"m U (gP)]j-(m —m ) ([m"(1—m")2U" (gf)+m"(1 —m ) W(gf)j

X [(1—m") W(gf) —2m V (gf)] —m [(1—m") W(gf)+ (1 —m )2V (gf)]
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x [m"W(gf) —(1 —m )2U (gf)])[(1—m") W(gp) —2m U (gp)]) —[(m") m /(1 —m ) ]

x (m"[(1 —m ) W(gf)+2mAm U" (gf)](rA (gf)[m (1 —m")2U" (gp) —(m ) W(gp)]+ I' (gp)

x [m (1 —m")2U" (gf) —(m ) W'(gf)])- m [(1—m ) 2U (gf) +m"m W(gf)]

(rA (gp)[2m"m U" (gf) —m (1 —m )W(gf)] —I' .(gf)[m (1 —m")2U" (gp) —(m ) W(gp)]}

+ (m —m") [(1 —m")2U" (gP) —m W(gP)]

x ([(I—m )'W(gf)+2m"m U" (gf)][m"(1 —m")2U" (gf) —m"m W(gf)] —m [(1 —m ) 2U (gf)

+ mAmcW(gf)][2m"m U" (gf)-m (1 —m ) W(gf)])) + Q ((mA)'mcrAA(Pf2)
J ff,

x [(1—m )W(gA) —2m" U" (gfg)] [m W(fgfg) —(1 —m")2U" (fifa)]+ (m"m ) r""(pfg)

x [m"W(gf~) —(1 —m )2U (gf&)][(1—m )W(f&fz) -2m"U" (f,f2)

+ (m"m )~r" (Pfa)[(1 —m )W(gf, ) —2m"U" (gf,)][2m U (f~f~) —(1 —m") W(f, f2)]

+ m" (m ) r" (Pfz)[m" W(gf, ) —(1 —m )2U (gf&)][(1 —m ) 2U (f&f2) —m" W(f, fz)))

+Z [m"m /(1 —m )](m"m (1 —2m")[2m"U" (gf)r""(Pf)+m W(gf)I'" (Pf)]
f

[2m"U" (gp) —(1 —m ) W(gp)]+m" (mc)2(2m U (gf)[rAA(py)+r"'(py)]

+ m W(gf)[I'" (pf)+ I' (pf)]}[2U (gp)(1 —m ) —m" W(gp)]+ m" (m ) [(I —2m")2U""(gp)I"" (pf)

—m W(gp)[1 (pf)+ I' (pf)])[m"W(gf) —(1-m )2U (gf)]+ m (m")

x l(1 —2m") 2VA'(gp) r""(pf) —m' W(gp) [r""(pf)+ I'"'(pf)]}[2m" V"'(gf) —(1 —m') W(gf)]

+ (m —m")[(m") (1 —2m")2U" (gP)2U" (gf)I'""(Pf) —m" (m ) W(gP)W(gf) (I'" (Pf)+1 (Pf)]

—m (m") W(gp)2U" (gf)[r""(pf)+ I'" (pf)] + m"m (1 —2m")2U" (gp)w(gf)r" (pf)))

—[m (1 —m )/(1 —m")]((m") (1 —2m")[m"W(gf)I'""(Pf)+2m U (gf)I'" (Pf)]

x [ 'W(gP) —(1 - ")2V"'(gP))+ ( ")' '( "W(gf)

x [r""(pf)+r" (pf)]+2m'V' (gf) [r" (pf)+r '(pf)])

x[(1 m") W(gP) —2m U (g—P)]+(m") [m W(gf) —(1 n ")2U" Q—f)]. fw(gP) I'""(Pf)(1—2m")

—2m' V"(gp) [r""(pf) + r"'(pf)] )+ (m")'m' (W(gp) r"'(pf)(l —2m") —2m'r~" (gp)

x [r"'(pf) + r"(pf)])[2m'U" (gf) - (1-m A) W(gy)] - (m' -m') [(m")'(I - 2m") W(gp) W(gf) r""(pf)

-m "(m')'2V"(gP)2V"(gf) [r"'(Pf)+ r"(Pf)] m(m")'2U (-gP)w(gf)[r"A(Pf)

A2 .C
y

C 2 6 A B
+ rAc(pf)] A c(1 2m A)w(gp)2V Bc)rAc(py))) ( ) [( m ) m m ]

x ((I —m )[6m "(1—m") —1][2U" (gp)] +3W(gp) 2U" (gp)ypyc(6mAmc+ 2m ~ —I)

—3W(gP)[2U" (gP)] m [6m "(1—n ")—1] —W(gP)~m [6m (1 —m ) —1])
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[(1 -m")' -em'm'] (W(gp)'(1- m")[em "(1-n;") - 1]+ 3W(g p)[2U"{gp)]'6(l-m )

x m (em "m. +2m. ' —1) —3W(gp)'2U (gp)m [em "(1-m") —1] —[2U"(qp)]'m' [em'(1 -m') —1]}

m ~m'Z ""{gp)JW(gp)'[en "(1-m ")-1]+ 2n '(1-4m")

x W{gp)2U" (gp) +m'(1 - 2m')[2U" (gP)]'}+m "m' r"'(gP) (2m'(1- 2m") W(gP)2U" {gP)

(1 —4m )[2U"{gp)]'} -'(m' ')(r""{gp)fw{gp) [em (1 —m ) —1] m (1 —2m )[2U (gp)]

+2m (1 —4 .")W(gp)2U (gp)}+r" (gp)fm (1 —4m )[2U {gp)] +2m (1 —2m")W(gp)2U {gp)}

+ W(g p)'n, "(1—m") [en "(1—m") —1] —[2U"(gp)]'(m')' [em'(1 —m') —1] + &W(gp) [2U"(gp)]'(m')'

x (em "m'+ 2m' -1)—2W(g p)'2U" (gp)(m')'[Sm "(1-m") —1]) —[(m "m')'/(1-m")] (Z ""{gp)m"

x[w{gP)2U" (gP)[em "(1—m")-1]+2U" (gP)2U (gP) m (1 -4m")+W(gP) m (1 —4m")+m (1 —2m ) W(gP)2U~~

x (qP)}+m "Z"'(gp)(m'{1- 2m"j2U"{gP)2U"LgP)+m'(1-2n ') W(gP)'+m'(1-4m') W(gP)2V" (gp) }

——'(m -m )(W(gp) 2U" (g'p)(1-m ) [em (1-m ) —1]+2U" {gp) [2U (gp)] m (em "m +2m —1)

—W(gp)2U" (gp)2U (gp) 2m [6m"(1 -m") -1] —W(gp)'m [6m "(1-m") —1]

—W{gp) [2U"(gp)]'m'[6n '(1 —m') —1]+W{gp)'2U" (gp) 2m'(em "m'+ 2m' —1)})

+[m m /{1 -n')] m m' r"'(gp) gem"(1-m") -1][2U"'(gp)]'+2m'(1 4m")W(-gp)2U"'{gp)

+m (1-2m )W(gp) }+m"m r (gp)[2m (1 —2m")W(gp). 2U" (gp)+m (I. —4m )W{gp) ]+—'(m -m")

x (r" (gp) ([em (1 —m") —I] [2U" (gp)] +m (1 —2m )W(gp)~ +2m (1 —4m")W(gp)2U ~(gp) }
+Z {gp)[m (1 4n ) W—(gp) +2m (1 —2m")W(gp)2U (gp)]+[2U {gp)] m"(1-m")[Sm"(1 —m") —1]

—W{gp)' m"m'[Sm'(1-m') 1]+SW{gp)'-2U (g)pm' (Sm"m'+2m'-1)

—2W{gp) [2U"'(gp)]'Hm'[em "(1-m")—1]) + (m")'m'(m' r"'{gp)(W(gp)'m'(1 -4 ")

+ W(gp)2U" (gp)[6m "(1-m")—1]+W(gp)2U (gp)m (1 —2n ~) +2U (gp) 2U (gp)m (1-4m") }

+m r (gp){W(gp) m (1-2 )+m (1 2m")2U—" (gp)2U (gp)+m (1 —4m )W(gp)2U (gp)}

+-,'(m'-m") [W{gp)'m'(em"m'+2m' -1)+W(gp) [2U"'(gp)]'(1-m") [Sm"(1 -m") —1]

—2m' [em "(1-m") —1] W{gp)'2U (gp) —2U" (gp) [2U"'(gp)]'m'[em "(1— ")—1j

—W(gg)~RU (gg)m [6m (1 —m ) —1]+Rm (6m"m +Rm -1)W(gg)RU" (gg)RU (gg)))I (A4)
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(gP)=—U (gy)(2m "n +m )+ U" (gP)m (2m" —1)+U (gp)m (2n —1),

&""(gP)-=U" (gP)2m (m" —1)+U" (gP)2m (n "—1)+U (gP)2m rR,

I' (gP)-=U (gP)2m (m —1)+U (gP) 2m "(m —1)+ U" (gp)2n "m

(A6)

(A6)

(AV)

APPENDIX B

The values of 4, (k) can be expressed in terms of
the Fourier transforms of the C;(gp), i.e. ,

e,(gp) = ~ Z C, (k)e'"' (Bl)
k

the three-level system would be that of spin one
(2S+ 1 = 3). Using the null operator,

(S'; —1)S; (S';+ 1) = 0, (Cl)

we can assign occupation operators to each spin
state, i.e. ,

These relationships are

e, (k) = (1/m "m') 4,"'(k),

(B2)

(B3)

o", - aS;(S;+1),

o; - b(S'; —l)(S;+1),

o',. - cs', (S', -1) .

(C2a)

(C2b)

(C2c)

4'" (k) =(1/m "n. ')'[m "m'4," (k)+ +," (k)'],
(B4)

The normalization constants a, b, and c are de-
termined from the properties of the 0";, i.e. ,

4," (k) =(1/m "m )'[(m "m )'&," (k)

+2m "m At" (k)C&s (k)+4t (k) ] . (B5)

APPENDIX C

The appropriate spin subspace in which to treat

o', o,' =0 .(i &. j),
o',.o",. =0 (&&v),

)t0' ~ v ~ = 0' ~

Z

from which E(l. (2. 2) follows.

(C3a)

(C3b)

(C3c)
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3Note that in order to obtain the two-point correlation

function (ozo& ) to the given accuracy [see Eq. (2. 14)],
we need to know five-point correlations of the type
(gf" . . . Oy~) correct to the order (1/T), four-point

correlations (o&& . . . of4) to the order (1/T), three-
point correlations (cr&~fo)t&of~&3) to the order (1/T), and
two-point correlations of the form (of" o')/) to the order

3(1/T), and of course, the functions X(0) and F(0) cor-
rect to the order (1/T) . (Note there that while the
various locations, f; are all to be different, the corres-
ponding lambda's A. ; are arbitrary. ) The expressions
for these correlations are very lengthy and are given in
G. B. Taggart, Ph. D. dissertation, Temple University,
1970 (unpublished). The only reason for writing out these
correlation functions somewhere in the literature is
that if the SRO parameters were to be calculated to the
next order, i. e. , O(1/T)4, these expressions would
again be needed with one additional order of accuracy.

4For a discussion of the procedure to be followed for
the calculation of the transition temperature from the

knowledge of &~"(k), refer to I and to Ref. 2. The im-
portant point to note here is that in contradiction to the
impression created by I, this procedure leads to only
one result for the transition temperature. For the
present purposes this transition temperature is defined
to be that temperature at which the system would be
expected to first show any long-range order as the
system temperature is reduced from T= ~. In this
connection it should be noted that the predictions of I
and of this work regarding the type of long-range order
that first sets in are to be understood as follows: For
given composition and interparticle potentials, if say
(k+T,)"", is the largest of the three results (kgT~)~",
where A. , v=A, B, C, then the binary long-range order
that first sets in would be of the variety P'v'. Note also
that this interpretation does not exclude the situation in
which the ternary ordering itself separates the dis-
ordered and the ordered phases. For this case all the
three expressions for (k~T,)~" would, of course, be the
same. Note also that the present work makes no pre-
dictions regarding the structure of the ordering below
the temperature (k+T,)"'" at which some binary ordering
X'v' first appears. It could be that at lower tempera-
tures some other binary ordering, or even some type of
ternary ordering, would be more stable. Moreover,
the stability of these orderings would also depend upon
the existence of higher-body potentials and also, of
course, upon the dynamics, which has been completely
ignored in the present discussion.


