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The Ruderman-Kittel-Kasuya- Yosida (RKKY) exchange mechanism is examined for its
relevance to ferromagnetism in the rare-earth metals. More specifically, the experi-
mental sensitivity of the exchange energy (or Curie temperature) to the interatomic
spacing (applied pressure) of the rare earths is examined in terms of the RKKY interaction.
The form in which the interaction is usually examined, i.e. , with the coupling parameter
4'(r) given by a Dirac 4 function, is unable to provide the observed sensitivity of Curie temper-
ature to interatomic spacing. When this coupling parameter, or exchange interaction, is
calculated with free-ion wave functions for the 4f electrons, instead of the 4-function approxi-
mation, agreementbetween theoryand experiment is still not obtained. In this article, a
modification of the coupling parameter is proposed which effectively takes into account some
contribution of the crystal in determining the wave functions to be associated with the isolated
magnetic moments. The procedure is phenomenological. Both the correct shape of the
Curie-temperature —pressure curve and the sensitivity of the Curie temperature to pressure
are obtained. Also the correct interlayer turn angle of the various elements is obtained. Un-
determined multiplicative parameters appear in the final result which can be adjusted at some
point in order to make the agreement quantitative. The conclusion is that the present modifi-
cation of the RKKY interaction appears to account correctly for the origin of ferromagnetism
in the rare-earth metals.

I. INTRODUCTION

Several experiments have been performed for
the explicit purpose of determining the role of in-
teratomic spacing in the origin of ferromagnetism
in the rare-earth metals. The procedure is to
determine experimentally the effect of pressure on
the Curie temperature. Since the Curie tempera-
ture can be related to the magnetic interaction en-
ergy and the interatomic spacings can be related
to the pressure, one can obtain an experimental
connection between magnetic interaction energy and
interatomic spacing. It is presently accepted that
the Ruderman-Kittel-Kasuya- Yosida (RKKY)~ '
exchange mechanism is responsible for ferromag-
netism in the rare earths. Applications of the
RKKY mechanism so far have fallen short, in a
quantitative fashion, of accounting for the sensitiv-
ity of the Curie temperature to pressure that is
observed experimentally and of explaining quanti-
tatively the variation of the interlayer turn angle
among the rare-earth elements.

It is the purpose of this article to examine the
RKXY mechanism in some detail, first in order to
determine specifically the origin of its shortcom-
ings (as far as the applications are concerned), and
second, to see to what extent corrections can be
made. General familiarity with the theory will be
assumed, and only a brief review will now be given

as a means of providing a source for specific ref-
erences when modifications are made.

II. RKKY INTERACTION

R= —,'Q Z e'+ " ''
& J(k', k) [I„'C&., Cb

+f„c),c,„+I„'(c,'. ,c&, ct., c„-,)], —

where the C„-„CI,„etc., are creation and annihilation
operators. In general,

J'(k', k) = f dsr P~p(r)e(r) P-„(r),
whereas for the nuclear-spin case,

a (r) = Z05(r), .

and hence

(4)

J'(™k',k) =Z~ . (5)

Utilizing Eqs. (2) and (5), one finds the following

Huderman and Kittel accounted for the interac-
tion between two nuclear spins I„and I in terms
of second-order perturbation theory in the follow-
ing manner. The exchange energy H "(R) is given
by

p~g~g p (ks IR I 8 )(k 8 [X ) kg)
s s' ~k

where all symbols have their usual meaning and
R= R —R„ is the internuclear distance. In Eq. (I),
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form for Eq. (1), viz. :

exp[-i(k-k') ~ (R -R„)]
0 E2- E2

& ~ {sI(s I )(s ~ l„) Is& . (6)
S

Replacing the sums in Eq. (6) by integrals and

paying proper attention to the current ranges of
k and K' gives

H "(R)=~2 (l l„) 2 2 d ke '"'"
0

00 ik"5
I 8

d k k2 ki P ~

The final form for Eq. (7) is

H "(R)= [4J24n*k4 /(241)'] (I ~ I„)4)1(2)'2@A), (8)

where

4 (x) = [(x cosx —sinx)/x ] (8)

Kasuya and Yosida' assumed that ferromagne-
tism in the rare earths could be explained by es-
sentially the same type of relationship as that given
in Eq. (8), except that the parameter J2 is re-
placed by an exchange integral as in Eq. (3), in
which some dependence on k and k' is retained.
H (R) in Eq. (8), has been calculated with various
approximations for J(k, k'), replacing Ja.

Elliott stated that this exchange interaction
J (k, k) between a conduction electron and a 4f
electron is similar to the atomic 6s-4f and also
5d-4f exchange integrals. We note that when a
conduction electron is in the vicinity of a rare-
earth ion, this free electron looks like one of the
6s or Sd electrons to the rare-earth ion (which it
has lost to the conduction band). Elliott also as-
serts that J(k', k) probably will not depend strongly
on k or k'.

c+
van der Braak and Caspers' ca,lculated J(k', k)

by using 4f wave functions given by Freeman and
Watson" and with free-electron wave functions for
the conduction electron. The exchange integral

(R) of Eq. (1) or (8) is very insensitive, in this
approximation, to interatomic spacing (contrary
to experiment).

Milstein and Robinson' improved the calculation
of J(k', k) by using a 6s-electron wave function
(rather than a plane wave as had been used by van
der Braak and Caspers). Again the source of both
the 4f and 6s wave functions was Freeman and
Watson. " Again, the H "(R) so calculated is quite
insensitive to interatomic spacing.

III. SPECIAL MODIFICATION

We now make a special modification of the pro-
cedure of calculation which has been used up to
now. We do not assume that J(k', k) is independent

of both k' and k. In order to see the qualitative
effects of k' and k, we choose a special form for
J(k', k) to go into Eq. (2). The bases of the choice
are twofold: (a) J(k', k) must be amenable to
analysis so that closed-form results can be ob-
tained, and (b) it must have some relationship to
reality (physics), We now proceed with the con-
struction of a J(k', k) satisfying these two objec-
tives.

To extend the result for the nuclear-spin case
that we obtained by following a procedure similar
to that of Kittel to the indirect exchange coupling
of magnetic iona in the rare-earth metals [Eq.
(8)], we use the exchange interaction instead of
the contact hyperfine interaction. We can start
with the Heisenberg Hamiltonian,

X= —2J]~ S] ~ S~ (io)

and proceed as we did with the hyperfine interac-
tion Hamiltonian and obtain

H = -—Q Z Z e"" " '" J(k, k ')
e n

gX[I„'C2e, C@+I„Cf.4C2, +f„*(Cf., C2, —Cfi, C2, )],

where q=k- k . We see that the exchange-scatter-

where N is the total number of magnetic lattice
points in a unit volume and J(k', k) is the exchange
integral between a conduction electron and the f-
core spin of the magnetic ion. It has been tradi-
tional to assume the exchange coupling to be a
function only of q = Ik' —k I, i.e. , to set J(k', k)
= J(q), yielding a J which is effectively the Fourier
transform of some quantity. " The exchange inte-
gral may be written

J(k', k)= fJ +exp[-2(k —k') R„]p-„,*(r, )

0 4f (r2)s 0 R(r2)44f (rl )d +1d r2/+12

and it does not depend on the lattice position R„.
The bare Coulomb interaction gives an infinitely

large interaction between plane waves in the limit
of vanishing momentum transfer (k -k' 0). This
implies an extremely strong long-range interac-
tion. Since the exchange interaction in the rare
earths is a short-range interaction, strong shield-
ing, within an atomic volume, of the conduction
electron-local moment interaction can be assumed.
A simplification which depends on this electron-
electron screening for justification results from
approximating the Coulomb interaction e2/4;2 by
the 5 function —C5(x, —4'2). " " Therefore, re-
placing the Coulomb interaction by this isotropieally
screened interaction, we get

J(q)=&e" "'""Je"'Iq4f(r)l'd'&
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ing matrix elements reduce to magnetic form fac-
to rs for short -range interactions . The constants
in front of the integral in Eq. (13) cancel with
those in Eq. (11), leaving

(q}= J e""Iy4s(r) II' d'r (14}

It is possible to expand the 4f wave functions as

y4~(r) =R4~ Z FP (e, y),

= 4v J
"

~
rR,&(r)

~

«(sinqr/qr) dr

(4v/q) J
"r'F(r) sinqrdr,

where F(r) has the form Ce s". Continuing, we get

J(q) - cq '.
This expression introduces an integral with eigh-
teenth- order poles into the second- order inter-
action. We can use the computer to evaluate the
remaining integral s, or w e can try an approxi ma-
ting technique, since we are only interested in ex-

aminingg

the general feasibility of inc luding the
atomic dimensions of the 4f wave functions.

Our procedure is to choose a function for J(q)
that can be integrated and then to use Fouri er-
transf or m theory to find the cor r espond ing func-
tion that represents the 4f wave function. The
chosen function must satisfy our two stated objec-
tives. From Eg. (14), we observe that Z(q) and

$4&(r) I are Fourier-transform pairs. From
here on, we denote this approximate I $4&(r) I by
F(r). Thus, after postulating a trial function Z(q)
we can take its Fourier transform to find F(r), or
vice versa.

Our procedure is a significant departure from
the usual discussions in the following way . In-
stead of using the fre e- ion wave functions like
those computed by Freeman and Watson, we pro-
pose to use wave functions of the form

44f « y f g) Z„a„(B„(P,r)Q(qo, r) +iG(p, qo, r), (ig)

where R4I(r) is the radial wave function and Y", (8, q')
are spherical harmonics (Kaplan and Lyons' and
later Spec ht have made ca1cu1ations on the gen-
eral form of the nonisotropic terms of the interac-
tion). Freeman and Watson" have made Hartree-
Fock cal cu1ations for a free ion to obtain the radial
wave functions. The 4f function for Gd'«was given
in the form

rR~(r) = Z, C,r 'e ""
$ =1

If we substitute this expression for the 4f wave
function into Eq. (14) and evaluate the integral,
we get

J(q) = 2v J ~ p, z (r)
~

«r dr J ' e""'" sinS d8

where the Q „(qo, r) are functions depending only on
properties of the fre e -ion functions and the

„(p, r) depend only on properties of the lattice.
G(p, qo, r) depends on the properties of both the lat-
tice and the free- ion function. There are several
possib 1e formal proc edures whereby the functions
and coefficients a„can be calculated. In this pres-
ent arti c1e, w e do not attempt to select the "best
possible" $4I &,~,«» but rather to utilize simple
functions which wQ1 yield closed form results.

W'e choose as our trial function

J'(q) geA I e col (2O)

X Cgt psC~ (22a)

(ks
(
gi, $' ")= g' e"' "'"-~(q)&s

I
s I

lg

x C),Q g,
with Z(q) as given in E, (20). The summations ex-
tend over all values of and k, so if we change R

to -f and k' to - k' in the summations, we get

5 & - -'
(4 ~ 5 ~) (23)

Since e '"= (e '«')*, this change has the effect of
adding the complex-conjugate terms (c.c. ) to the
right-hand side of Eq. (21). Using Eq. (23) and

performing a similar analysis as was done earlier,
we obtain

m '
ff"$)=,I„ t.) „ I

'.-" "d'~

IJ(k, k')I e' ' d k'g)«+ c c (24)

Since k ' - k = q and the Jacobian is 1, we can
change variables from k, k ' to k, q:

H "(R)= —.
' (s. s ) t

~
&(q) I e""d'q

and notice the boundary conditions; as p -0, we
have 4 equa1 to a constant, independent of k and
k as often assumed; and as p -~, we have Z

equal to sero. Pour ier- transf or m theory te11s us
that p and qo in Z(q) are related to the width and

shape of the 4f wave function.
Now we can use this Z(q) to calculate the second-

order interaction of the magnetic iona . Starting
with Eq. (1), one finds

pg( & grpgg g (k s IX Ik s )(k s 13C 1k s)
k' s s' E~- Ea

(2i )
we have

(k's'~x~ks)= Q' e' ""«J(q)(s'~ I I
~
s)

s s'



L. B. ROBINSON AND L. N. FERGUSON, JR.

(2s)

H"(It)= )N„S' -- —,
,

e'~'"I Z(q)I'd'q

~(a' a2)«2f gdk„,~ 0 —(0 + q + 2qk, ) 0

X
„0 dkg+ c.c.

where

1T s s
( )~) 8 "I&(q)

I f(q) d'q+ c.c.
(26)

d'k
2 2 +C. C.

f
No physical significance can be attached to the
negative values of k or q in Eq. (25), but it is a
mathematical convenience to express the results
in terms of paths which are symmetrical about the
origin, as exponential rather than trigonometric
functions that appear in the integrand. ' The fact
that the limits on the integrals appear as they do
can be seen by changing k to —k and q to —q in
the integrands.

We integrate first over k space, holding q con-
stant. The k integration is most easily done in
cylindrical coordinates, with the ~ axis parallel
«q. We have

This integral can be evaluated in terms of ele-
mentary functions by straightforward quadrature,
but this procedure is somewhat tedious. However,
this integration can be greatly simplified by an
application of contour integration suggested by
Van Vleck. ' The integral is only infinitesimally
changed if we deform the path to go infinitesimally
above a cut along the axis extending from q= —2k&

to q= 2k& in the complex q plane. If Eq. (30) had
no absolute value signs, the integral would then
be zero. This we can observe by completing the
contour with an infinite semicircle in the upper-half
of the complex q plane; the resulting contour en-
closes no singularities since with the slightly de-
formed path the branch points of the logarithm are
avoided, and there is no contribution from the
infinite arc since qf(q) vanishes like 1/q for large
Iql. Thus, subtracting the integral with the ab-
solute value sign removed from the argument of
the logarithm in the integral as it stands yields the
integral in Eq. (31). Then the imaginary part of
the logarithm is mi for the part of the path just
above the cut. ' That is,

q+ 2k~ q+ 2k'
ln —— = ln — + mi

q —2k' q —2k'

Thus, we arrive at the relation

H "(5)= —(2v'/ZR) s„s.[m'A'/(2v)']

(27)

k dA k'dA

Changing the variable of integration in the first
integral to 2qk, +q, we obtain

f(q) = i
kdx ~ kdk

=1„,.2 2q~, 2qu. +q'

Equation (29) becomes

f(q)= —+ —(k~--, q ) ln
1 2, 2 q+ 2k'

2q ~ ' q-2k,

(29)

(30)

After spherical coordinates are introduced and
the angular integrations performed, Eq. (26) be-
comes

H"(R) = —(2v'/iR) s„.s [m~/(2v)']

x J qe""f(q)Ae " 'o'dq+ c.c.

f() ' ':; da, .
2kgq+ q

Evaluating f(q) is facilitated by breaking it up into
two integrals,

dq e'&~e-28 I q q0 I k2 1f-
a CO

q+ 2k' q+ 2k'
ln —2k

n —2ky q —
y

=-(v'/iR)s„. s [m A' (/2)v']

t' 2k@

x e "edqe ""'0 (a~ ——,'q')(- vi)+ c. c.

(32)
Breaking up the integral into f" and f, ~, we may
remove the absolute value signs from the integrand
and the integration is performed. The coefficient
of s„s may be regarded as an effective exchange
interaction, i. e. , —29(R),

y(R)=-[v'm'A'/2R(2v)'][ f" e""e""o"
J 2A,'y

x (0,' ——,
' q') d q

+ f "~e""e ' '0'(k& ——,'q )dq]+c. c. (33)"'0

performing the indicated integrations in Eq. (33)
yields
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—[e '/2R(R+ i2P)'] [q,(R+ i2P) cosq, (R+ i2P) —sinq, (R+ i2P)]

+ [e 0/2R(R —i2P) ] [2kp(R —i2P) cos2k&(R —i2P) —sin2kp (R —i2P)]

[e /2R(R ~ i2P) ][2k!(R~ 32P)cos2kr(R ~ 322) —sin223(R ~ 2'2P)]) ~ c.c.

it is convenient to break the first part of the equation up into its real and imaginary terms. Then when we
add this to its complex conjugate, we obtain a real expression. We know that for a Hermitian Hamiltonian,
the energy must be real. Using the relation

(x+ iy) cos(x+ iy) —sin(x+ iy) = x cosx coshy+ y sinx sinhy —sinx coshy

+ i(y cosx coshy —x sinx sinhy —cosx sinhy)

and performing quite a bit of relatively simple algebra, we can obtain our final expression

m ~A' 4P cosq, R (qo —4k&)
2"v', R(R'+4P')

e ' —e ' (R' —12Rp )(q Rc'osq Rcosh2qp+ Sq p sinqR isnh2 2 2—sine Rcosh2qp))

2

2

~

~

~

q

00

I

I~

~

2

~

~

~

~

0

0
~

3

2 3

2
01

~

0
~

~

4
~
~

~
~ 0

~

4I

I

0
6

I

I

0
~

0

I

p

2A R + 12R P +48R P + 64P

e "—e ' (SReP —233')(Sq 2 cosq~R coshkq l3 —qsR sinq R sinh2qep —cosq R sinhkq P))

~

~

~

~

2R R + 12R'P + 48R P'+ 64P'
~ ~

e + e ' (Re —12R(! )(2krR cos2klRcosh4keP+ 4krll sinkkrR sinh4kll3 —sin2klR cosh4k, l3))
2R R +12R'P'+48R P'+64P'

~ ~

~

e "+e ' (6R2P —8P')(4k&P cos2k&R cosh4k~P —2k+ sin2k&R sinh4k&P —cos 2kIR sinh 4k& P
2R R +12R'P 48R P' 64P'

We note that this function exhibits the proper
behavior at the boundaries, i. e. , as P -0,
g(R) @(2k'), and as P-~, 8(R)-9.

In our earlier discussion about the origin of J(q),
we said that the Fourier transform of Z(q) must
represent the 4f radial wave function. Therefore,
we must now find the Fourier transform of J(q),
which is F(r). F(r) is defined as

Op

——,e qo) e '(psinqr- rcosqr) dq

—,
' es's e e'(p sinqr+ r cosqr)dq)

Cp

qsp sinqor p(2 cosq~r —e-s'o)
v'r(p'+ 2) ' H(p'+ r')' (88)

F(r) = (27r) ' j e "' 'Ae s ' 'o d'q (26)

+ J
"

e "'e s '-'0' d'q]
'o

= [A2v/(233j ][e '0 J '0 es'q dq J, e """du

+ es'o j e sqq dq J, e """du]

=(A/2s'r) [e s'0 j"qe ' isnqsdqr

+ e"0 J qe-"sinqrdq]
~o

We then obtain as F(r) the following expression:

R(r)=[d/r(ke ee)e ](q,psinq, r

The absolute value signs force us to break the in-
tegral up into two regions such that q- qo is al-
ways positive, i. e. ,

F(r) = [A/(2m)'] [ j,"e '~ '
e '"0 '& d'q

which is the form required by Eq. (19). The main

aspect of what has been accomplished by this tech

nique is that additional properties of the material,
i.e. , P, have been introduced into the wave func
tions representing the magnetic moments of the

ions. In the past, free-ion wave functions have

been used to represent the magnetic moments.
This present procedure effectively modifies the free-
ion wave functions in a phenomenological way.
Studies are under way for the accomplishment of this
modification in a more direct and mechanistic way.

The next step in this treatment is to ascertain
appropriate values for A, qo, and P. There are
several ways to pick the values such that these
parameters let the Fourier transform of the test
function Z(q) accurately represent the 4f radial
wave function. It is proper to compare rsF(r) with

IrR«(r) I since they both represent electron den-
sity distributions. One way would be to fit the
first and second moments of the 4f wave functions
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to the first and second moments of r~F(r) and ob-
tain two analytic equations which coul. d be solved
for P and qo. This moment-fitting procedure would
yield equations

r= J,"rl «4gl'«/ J,
"

I
rR4~I'«

= J
"r'F(r) dr/ J

"r E(r) dr (39)

(r'} = J,"r'l«rl'«/J, 1«4~I'«

= J r'F(r)dr/J "r3F(r)dr . (40)

Of course, the 4f radial wave functions are nor-
malized over all space, so the denominators in the
left-hand sides of Eqs. (39) and (40) are unity. The
requirement that the E(r} function be normalized
would yield the third parameter A, once P and q,
are found. Since

E(r) = (2v) ~ JAe 0 e '~'d'q (41)

and its inverse is

Ac '" = Jc"'E(r)d'r, (42)

letting q= 0 gives

Ae'" = JF(r) d'r

The requirement that E(r) be normalized thus yields

(43)
These techniques could give us analytic expres'anions
which would yield exact values for A, P, and qo.
However, these techniques are not satisfactory
because the 4f radial wave functions are normalized
over all space, but F(r) has no meaning outside of
the 4j shell, and since it is oscillatory, fitting its
moments to the moments of 1rR4~11~ would yield
spurious results. And A would have to be found
from the requirement that F(r} is normalized only
out to the radial extent of the 4f wave function.

Because of these limitations in the analytic tech-
nique, another method of finding P, qo, and A, would
be to select empirically the parameter values that
give a, good fit between the two curves.

m*A2 4pcosqoR
(

q 4k2}
2 n' R(R +4P )

(44)

C, = (m*A'/95k, v')(q', —4k,') (4&)

allows us to write Eq. (45) in the following con-
venient form:

T~ g cosqoR
(g —1)~j(j + 1)C, „PR[1+(R/2P )~t (47)

The experimental variations of the Curie tem-
perature with interatomic spacing (pressure) can
be correlated with parameters of the materials in
several ways, two of which will now be discussed.
In the first case, d/2 &rcan be used as the mate-
rials parameter where d is the average interatom-
ic distance and r& is the radius of the 4j electron
orbital. Such an interaction curve was proposed
by Milstein in his M. S. thesis and reported in
Ref. 1. This curve is repeated here as our Fig. 1.
In the second case, the c/a ratio of the hexagonal
crystal can be used as the materials parameter,
with which variations of the t".uric temperature are
correlated. Such an interaction curve was proposed
by Milstein in his Ph. D. thesis and reported in
Refs. 4 and 5. Since both parameters d /'2x& and

c/a give essentially the same type of correlation
with T„ it would appear that there exists some re-
lationship between the parameters themselves.

Qf course, we have already mentioned that when P
-0, the only surviving terms in 8(R) are the parts
of the third term that equal 4(2k&R), the familiar
Ruderman-Kittel function.

The expression for the paramagnetic Curie tem-
perature in terms of Eq. (44) is

m*A 3 z 4P cosqoR
k, T, =( l)J(j,1), ,

*
,
'

(q, 4k )—z R(R , 4P )

(45)
Since the molecular field theory does not distinguish
between T, and T~, this equation will be used to
represent both. Setting

IV. CONCLUSIONS 2.8 Tb

Now we can analyze the exchange interzction en-
ergy. Vfe will use our expression for the exchange
interaction energy Eq. (35) to investigate two per-
tinent aspects of the problem. The first Ispect of
this problem that we consider is the dependence of
the magnetic transition temperature upon interatom-
ic distance, The second is the dependence of inter-
layer turn angle upon properties of the crystal; this
interlayer turn angle is formed by magnetic mo-
ments in successive atomic planes.

For simplicity we now use the first term approxi-
mation in investigating the first aspect

2.6
bC

24

2.2

2.0

l.e
5.9 4.0 4, I 42 43 4.4 4.5 4,6

D&2R

FIG. 1. Exchange-interaction curve for the ferro-
magnetic rare-earth metals (Ref. 1).
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In the case of the first type of interaction curve,
no theoretical justification exists in the RKKY
theory for the role of the d/2x& parameter. In the
case of the second type of interaction curve, the
Ruderman-Kittel function 4 (2kzB) can be written as
a unique function of (c/u), viz. , C(c/a). As part of
the present study, this function was evaluated for
several values of c/a; however, the sensitivity of
the Curie temperature to c/a, as determined ex-
perimentally, does not show up in the calculation.
With this new modification made in this present
article, the RKKY theory can show the sensitivity
to a (d/S'&)-like parameter that is obtained experi-
mentally. We now proceed to make the proper iden-
tification of the parameters in Eq. (38) with prop-
erties of materials.

For interpretation of the role of interatomic
spacing in the exchange interaction, we can now

identify P, a characteristic length, as a parameter
that reflects the spatial extension of the 4f wave
function. When P=0, we have the 5-function ap-
proximation, but as P increases from zero the
spatial characteristics of the 4f wave functions are
introduced. The symbol B in Eq. (4V) has already
been identified with d, the average interatomic
spacing. With a given value for q, the left-hand
side of Eq. (4V) can be calculated for each of the
rare-earth metals by summing the expression on
the right-hand side. IIere we will include only nearest
neighbor interactions, as a first-order approxima-
tion. The number of near neighbors is 12, so we
can write

cosqpR
12C,(g- I)'q(q+I) Pent[I+(R/2P)']

'

We note that C, is a parameter which is also a
property of the rare-earth metals as can be seen
from Eq. (46). The resulting interaction curve
(calculated) is given in Fig. 2 for the values P
=0. 8 a.u. , q0=8. 2m a.u. ', and 2=1.5. It is inter-
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FIG. 2. Exchange-interaction curve for the ferromag-
netic rare-earth metals (based on trial functions used
herein).

estzng to compare xt with the experimental curve
given in Fig. 1. Qualitative agreement is obtained
between theory and experiment, especially as far
as the sensitivity to interatomic spacing is con-
cerned. That the relative values of the ordinates
in Pig. 1 are not the same as those in Fig. 2 pre-
sents no major problem in that C„ in Eq. (4V),
varies from substance to substance.

The second pertinent aspect which we consider
is the variation of the interlayer turn angle $0 from
one rare-earth element to the other. In passing
through the periodic table this angle increases
from 0 for Gd to 50 for Ho (at the Neel tempera-
ture). In the Heisenberg approximation the exchange
energy between localized magnetic moments is
written a,s

-Z 8 (Rgg)s( ~ s, ,
&eS

which, for the helical-screw structure, is propor-
tional to the Fourier transform of 8 (R,&), viz. ,

A(Q) =Z)8(ftu) s* '
(49)

The product Q R,&
is equal to the turn angle be-

bveen moments at lattice sites i and j.
If g(R,&) is taken to be the RKKY interaction

[P= 0 in Eq. (85)], then 8(Q) is a maximum (or the
exchange energy is a minimum) for an interlayer
turn angle of about 52'. This RKKY interaction
accounts for the existence of the helical structure,
but not for the variations in turn angle among the
elements.

We now examine the exchange interaction of Eq.
(35) to determine whether it can account for the
variation of $0 among the elements. As in the
interpretation of pressure effects, discussed above,
the parameter P is associated with the spatial dis-
tribution of the 4f electrons; the manner in which

this association is formally made is discussed be-
low. For /=0 the 4f electrons are highly localized
(i. e. , a 5 function) at the nucleus; as P departs
from zero, the spatial distribution of the 4f elec-
trons, described by E(x), spreads out. Since a
small, nonzero value of P "perturbs" the 6 function,
(R,&) can be considered as a perturbed Ruderman
Kittel interaction for small values of P. Among
the rare-earth elements which possess helical or-
dering, the element Ho has the most localized 4f
electrons; we therefore associate the 5-function
approximation with this element (i. e. , P is set equal
to zero for Ho). The values of P for the other ele-
ments are determined in terms of the "spreading
out of the 4f electrons" relative to the element Ho.
A natural definition of P for the other elements is
then simply

u-=(& R,'&)"'- ((f~,'(H. )&)"',
where (R&~& is the average value of r' with respect
to the radial part of the 4f wave function as deter-
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mined for the free ions by Freeman and Watson";
(R&(Ho)) is that value for the particular element
holmium. ln Fig. 3, the curve labeled QD (expt)
shows the variation of the turn angle among the
elements versus the quantity ((R&))'~' —((R& (Ho))'~'.
For the element Gd and for Gd-Dy alloys with
greater th. an 5(f)I) Dy, the turn angle is zero; the
value of P for the 50-50 Gd-Dy alloy is taken as
the average between P of Gd and Dy.

In order to compare theory with experiment, we
identify (t)0 with the angle which maximizes the
Fourier transform of g(R;&), Eq. (49), where g(R;&)
is the complete exchange interaction given by Eq.
(35). Calculations were made of 8(())) by evaluating
the lattice summations of Eq. (49) in real space
with the aid of an electronic computer; over 800
lattice sites were included in the summations.
While nearest-neighbor interactions alone were con-
sidered in the discussion of pressure effects, this
approach is inadequate for studying the turn-angle
behavior since nearest-neighbor interactions alone
do not yield a helical structure.

Figure 4 shows the behavior of 8(Q) as a function
of turn angle P for three values of P(q() = 1.1)„Ta-
ble I shows the variation of 8(0), Q(), and the maxi-
mum value of 8(())) (which occurs at P = $0) as a
function of P for q0=1. 1. It is seen that for this
value of qs, as P increases, the equilibrium value
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FIG. 4. Variation of &9 (Q) as a function of interlayer
turn angle $ for q=l. l and P=0, 0.03, and 0.05. The
minimum in exchange energy and corresponding maxi-
mum in g(Q) occurs at ft) =fit)0, for p=0, 0.03, and 0.05,
respectively, Qo —-52', 38', and 0'.
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~—EXPERIMENTAL VALUES Of TURN ANGLE

~o FOR RARE EARTH METALS

&—CALCULATED VALUES OF*, qu
= ).) a.u. ~

0—CALCULATED VALUES OF P, q =1.0a.u, ' of turn angle decreases from 52' at p=0 to 0' at
p= 0. 042. The theoretical dependence of ps upon
p is shown in Fig. 3 for two values of qs, viz. ,
qo= 1.0 and 1.1. The quantity qo is treated as an
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FIG. 3. Comparison between experimental and
theoretical values of interlayer turn angle.

0.12

P
(a.u. )

0
0.01
0.02
0.03
0.04
0.042
0.045
0.05
0.055
0.06
0.08
0.10
0.12
0.20
0.30

p(o) ~
(a.u. -4)

—3.1419
—3.2917
—3.4443
—3.5997
—3.7579
—3.7898
—3.8380
—3.9189
—4.0005
—4.0828
—4.4195
—4.7682
—5.1294
—6.7093
—9.0355

Max. value of
8(Q) A

(a.u. -')
—3.3851
—3.4590
—3.5425
—3.6388
—3.7583
—3.7898
—3.8380
—3.9189
—4.0005
—4.0828
—4.4195
—4.7682
—5.1294
—6.7093
—9.0355

40
(deg)

52
50
46
38
16
0
0
0
0
0
0
0
0
0
0

TABLE I. Properties of g(Q) calculated as a function
of P (qo= l.1 and & = 2 z ~ 10 /~*A. )
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adjustable parameter. There is excellent quantita-
tive agreement between theory and experiment for
the case of qa= l. l. It is noted that P was arbitrar-
ily set equal to zero for the element Ho; this refer-
ence could easily be shifted in which case the theo-
retical and experimental curves would essentially
coincide.

Our general conclusion is that the RKKY theory
seems to provide the basic mechanism for the
origin of ferromagnetism in the rare metals. Us-
ing the exchange energy J'$', k) in Eq. (3) as a
parameter is satisfactory when applied to the
nuclear-spin interaction, but is like the perfect-
gas approximation when applied to the rare earths
in that the interesting phenomena are not described.
Our contribution has been like that of the van der
Waals gas approximation, in that the interesting
phenomena are given; also like the van der Waals
approximation, it is phenomenological, yet has its

foundation in theory.
Perhaps it might be desirable to interchange the

Fourier-transform pairs given in Eqs. (13), (20),
and (36) by writing Eq. (38) as an approximation
to the 4f distribution first, assign the proper P's,
etc. , and then to calculate the J'(k, k) from it. We
do not assert that the function used in Eq. (20) is
the only way (or even the best way) that the ex-
change-coupling parameter can be modified. We
do show that a very simple function, which can
yield analytical results in essentially closed forms,
can at the same time provide a semiquantitative
explanation of experimental results.

We note that Evenson and Liu2~ have used a some-
what similar J(q) in discussing a different prob-
lem. They were interested in the generalized
susceptibility of the ferromagnetic rare-earth
metals. In this connection, they used J2(q) =J'(0)
x expt- (q/q, )'j.
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