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One-dimensional molecular correlations in squaric acid as observed by neutron scattering
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The nature of the molecular correlation in squaric acid (H2C&04, 3,4-dihydroxy-3-cyclobutene-

1,2-dione) was investigated with the use of coherent and incoherent neutron scattering over a wide

temperature range. Both types of experiments can be well understood within a model of weakly

coupled one-dimensional Ising chains.

I. INTRODUCTION

Since the publication of the structural studies in 1973
by Semmingsen' about forty papers have appeared on this
unique material. Squaric acid [H2(SQ)j (3,4-dihydroxy-3-
cyclobutene-1, 2-dione, H2C&O4) is at room temperature a
solid consisting of planar squaric C404 ions linked togeth-
er by protons in a layered structure (Fig. 1). Each layer is
electrically polarized due to pmton ordering in the hydro-
gen bonds between neighboring molecules while the layers
are antiferroelectrically stacked along the unique plane
normal direction b. At room tetnperature Hz(SQ) belongs
to the monoclinic space group P2i/m (Czh). ' A phase
transition was discovered at T,=100'C to a tetragonal
space group I4/rn (C~, ) accompanied by a unit cell halv-

ing along b.
The great interest in squaric acid results from its simple

structure combined with its interesting properties. Al-
ready three lengthy reviews have been written on this sin-
gle material to which we refer for extensive references
to various optical, dielectric, ultrasonic, nuclear magnetic
resonance, and specific-heat studies, as well as theoretical
work. The material was expected to serve as an interest-
ing prototype for testing the role of the dimensionality on
the critical behavior, as the early work pointed to an
essentially two-dimensional behavior, with an order-
parameter index P in the vicinity of the value —,. Subse-

quent work has thrown some doubt on this point, since
there may be a slight discontinuity in the order parameter
close to T, .6 However, the anisotmpy of the diffuse neu-
tron scattering together with other evidence shows that
the molecular correlations are indeed anisotropic. As the
present work will show, the correlations, in fact, have a
pronounced one-dimensional character above T, . It is
fairly clear that the protons play an important role in the
phase transition although the strong eff~t of deuteration
on T, might also be explained by a slight change of
geometry. ' Like for other hydrogen-bonded materials
[e.g., KHqPOq (Ref. 9)], several pseudospin models have

been used for H2(SQ) as well as selected vertex models.
Deininghaus' gives a good survey of this point. It is in-
teresting that Schneider and Tornau" and Maier, Miiser,
and Petersson' find on fitting of experimental facts to
spin models that the coupling along certain molecular
chains comes out particularly strong, indicating a one-
dimensional character. In fact ideas along such hnes were
advanced in informal discussions by various groups.

As will be shown in the present work the neutron
scattering data can be well described within the simplest
spin model of all, namely that of weakly coupled Ising
chains. The dynamics is taken into account by introduc-
ing the Glauber model. Our observations of the quasielas-
tic broadening above T, suggest proton jumps rates of the
order of 10' s ' above T, . It is believed that this effect is
due to Ising-type domain-wall movements.

Although most often the Ising pseudospin is identified
with the position of the proton in a hydrogen bond, in
squaric acid it seems that the proton position is strongly

FIG. 1. Structure of squaric acid at room temperature as seen
along the monoclinic b axis. S~all spheres: hydrogen;
intermediate-sized spheres: carbon; large spheres: oxygen. Shad-
ed spheres: at level y =0; open spheres: at level y =—,'. Lattice

constants at 121'C:c =6.143 A, b =5.335 A, and c =6.143 A.

&9S4 The Atnerica»hysical Society



ONE-DIMENSIONAL MOLECULAR CORRELATIONS IN SQUARIC. . .

coupled to the shape of the C404 molecular frame. There-
fore, the pseudospin here should rather be assigned to the
whole molecule. The full molecular shape is then to be
described by two pseudospins o., and o., per molecule, as-
sociated with the horizontal (a) or the vertical (c) direc-
tion.

Some words of comparison should be spent on other
hydrogen-bonded materials. KH2P04 already mentioned
is truly three dimensional. In this case the proton pseu-
dospin has to be coupled to the lattice motion in order to
explain the observed atomic rearrangement at T, .
CsHzPO4 (Ref. 13) belonging to the potassium dihydrogen
phosphate (KDP) family has a geometry which favors
one-dimensional strings of proton ordering, and in fact
one dimensionality has been observed above T, .

Two much studied layer compounds having superficial
resemblance to squaric acid are Cu(HCOO)2 4HzO (CFT)
(Ref. 14) and SnClz 2H20 (SCD).' In both cases the pro-
ton system is in layers of H20 molecules. Unlike
CsH2PO4 and H2(SQ), where the O-O distance connected
with the H bond is less than 2.55 A, in the water systems
the 0-0 distance is much larger, about 2.8 A. Proton or-
dering is found to behave essentially two dimensionally
with T, in the range of 230 K. Isotope effects are small.
For both compounds pronounced two-dimensional corre-
lations are found above T, (Refs. 14 and 15) and for both
cases a dimer model was utilized in the data fitting rather
than a pseudospin model. The topology of these two ma-
terials differ from that of squaric acid in one essential
respect. Whereas in the latter case chains of correlated
molecules can cross without affecting each other, this is
not possible in the former ones. Consequently CFT and
SCD must be truly two dimensional and would not be ex-
pected to show correlated strings.

In the present paper we report on a detailed study of
squaric acid by means of neutron scattering. Both in-
coherent (Sec. III) and coherent diffuse studies (Sec. IV)
were performed. In Sec. V we give a description of our re-
sults in the frame of a coupled Ising-chain model. Short
reports on parts of this work have already appeared. ' '7

er. The sample holder could be rotated around a horizon-
tal axis with a precision of 0. 1'.

The neutron scattering measurements were performed
on the triple-axis spectrometer SV4 at the reactor DIDO
at Jiilich. The standard setting with pyrolitic graphite
crystals (002 reflection) in the double monochromator and
as analyzer and with a wave vector k; =2.665 A ' of the
incoming neutrons was used. A pyrolitic graphite filter in
the incoming beam removed the (004) and (006) mono-
chromator reflections. The collimation sequence was
120'-120'-45'-45' for the study of the incoherent scattering
and 120'-120'-30'-30' for the investigation of the diffuse
coherent scattering in order to get a better resolution in

the momentum transfer A'Q=A'(k; —kf) (k; and kf are
the wave vector of incoming and scattered neutrons,
respectively). The energy resolution in the first case was
0.24 THz and the Q resolution in the second case was of
the order of 0.05 A

A. Incoherent scattering

While carbon and oxygen scatter neutrons coherently
due to the occurrence of practically only the spinless sin-

gle isotopes ' C and ' 0, hydrogen is a strong incoherent
scatterer as well due to nuclear-spin incoherence. There-
fore the incoherent neutron scattering in H2SQ is only due
to the protons.

In incoherent scattering, phase factors normally are not
present since incoherence derives from self-correlation of
the scattering density. However, when the same proton

may take two positions (a distance d apart), and the jump
rate between these sites is large compared with the proton
spin-relaxation rate, terms containing cos [(Q d)/2] and

sin [(Q d)/2] will occur in the scattering function, ' as is
shown in Appendix A. Usually the nuclear spin-
relaxation rate is much lower than the characteristic rates
observed in neutron scattering (of the order of 10' s ').

For protonated samples, it is necessary to use a flat
sample geometry in order to avoid multiple scattering.
Therefore, several cleaved and oriented crystals of —1

mm thickness covering an area of -2 cm were glued
onto a flat aluminum plate. By using the cleavage plane
and starting from a crystal with well-defined boundary
planes it was possible to keep the orientation of the crys-
tals with respect to each other within 1'. This was tested
experimentally by scanning a broad region around the

(020) and the (400) reflection in Q space with neutrons. In
both cases, only one reflection was found with an effective
mosaic width of less than 1'.

The aluminum plate with the crystals was mounted into
a cryostat. By using liquid nitrogen as a coolant, tempera-
tures down to 90 K were attainable. Without the coolant,
temperatures between room temperature and 450 K could
be reached. The temperature was regulated and measured
using two platinum resistors attached to the sample hold-

The incoherent data were taken at a few arbitrary
chosen points of the reciprocal space well removed from
regions of Bragg scattering or appreciable coherent diffuse
scattering. The spectrometer was scanned at constant-Q
setting around energy transfer zero, normally in the range
—1 to + 1 THz. Data were taken for two different crys-

tal settings, corresponding to scattering vector Q normal
to (Qz) and almost parallel (Q~~) to the molecular plane.
If the proton motion is confined to the molecular plane,
inelasticity should occur only for the latter case, due to
the sin [(Q.d)/2] term (see Appendix A), which vanishes
for the former case.

In fact as seen from Fig. 2 appreciable inelastic
broadening at elevated temperatures is observed only for
the Q~~ case. This is a very important result, because it
shows that the proton jumping out of the planes is not sig-
nificant as compared to in-plane jumping. We believe this
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the lower continuous line in Fig. 2.
In order to calculate the one-phonon scattering back-

ground (ii) it is necessary to make a nontrivial assumption
namely that the motion of the proton with the lattice pho-
nons can be considered separately from its jumps between
the two sites of the hydrogen bond. In that case one can
use the approximation'

S;„,(Q, v) = f dv'Sf„, (Q, v)S,'„';(Q,v —v'),

where S~„,(g,v) is the part of the scattering law due to
proton jumps only and S';„",(Q, v) is the part which is due
to the phonons. The latter can be treated within a phonon
expansion

S,'„",(Q, v)=e ' '~'[&(v)+f, (Q,v)+ ] .

In the low-frequency regime, where the slopes of the
dispersion curves are still determined by the elastic con-
stants, the phonons are simple acoustic waves with uni-
form motions of the different atoms in the unit cell. For
}'tv&&kT (v is the phonon frequency) the quadratic in-

crease in the phonon density of states is compensated by
the thermal factor kT/hv and a factor 1/v in the in-
coherent one-phonon scattering formula. Under these

conditions ft (Q, v) is frequency independent. It can
be determined by a suitable average over all phonon
wave-vector directions, namely

3 ( )f)(Q)=, f dQ g8~2 C3
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is due to a proton motion between two positions of the hy-
drogen bond.

C. Background correction

The measured intensities had to be corrected for two
background contributions: (i) instrumental background
and (ii) one-phonon scattering. The instrumental back-
ground (i) was measured separately using an empty sample
holder. It turned out to be essentially constant indepen-
dent on energy transfer and temperature. It is shown by

FIG. 2. Incoherent data (a) Qz scan at (0,3.42,0) at 374 K. (b)

Qj scan at (0,3.42,0) at 418 K. (c) Q~~ scan at (3.91, —0.42,0) at
374 K. (d) Q~~ scan at (3.91, —0.42, 0) at 418 K. Phonon back-
ground correction is shown on shaded regions (estimated error
10%, see Sec. IIIC). o represent experiment, the line denotes

calculations, denotes data (experiment and calculation) which
are scaled down by a factor of 10,~ denotes resolution.

Q denotes the phonon wave-vector direction, e„denotes
the polarization vector of the phonon, C„ is the sound
velocity (i.e., the slope of the corresponding acoustic
branch), and p is the density.

We evaluated f~(Q) numerically using the elastic con-
stants given by Rehwald and Vonlanthen. ' The elastic
constant C~3 which had not been measured by the authors
was set equal to zero. A variation of C» within reason-
able limits ( —10 (Cts (10 GPa) did not change the re-
sults by more than 10%%uo. At T =374 K and with Q =4
A ', we get f~(Q)=1.8X10 THz ' for Q in the a-c
phase and f~(Q)=5.9X10 THz ' for Q perpendicular
to the plane. For our energy resolution [full width at half
maximum (FWHM) equal to 0.24 THz] this yields a ratio
of 0.46)&10 and 1.5)&10, respectively, between elas-
tic peak intensity and inelastic one-phonon intensity (at
least in a pure phonon picture).

The frequency-independent acoustic-phonon scattering
gives rise to a second background term

&,",'(Q) =F, ft(Q) .

The Debye-%aller factor was omitted in order to take the
multiphonon scattering (at least crudely) into account.
The normalization factor F„,~ was determined from the
integrated elastic intensity I;„,at room temperature, where
the protons are assumed to move only by taking part in
the lattice motion. Then



29 ONE-DIMENSIONAL MOLECULAR CORRELATIONS IN SQUARIC. . . 999

S~„,(g, v) =5(v) TABLE I. Results of fitting of incoherent data for one set of
g[[ scans.

and
—2W(Q)

Iint =e +norm

J(
(K)

a
(THZ)

Here the oxygen Debye-Wailer factor from the structure
determination was used in order to stick to the lattice
part of the hydrogen motion.

The phonon background calculated in this way is shown
as the shaded region in Fig. 2. Note that this contribution
is about a factor of 3 larger for the out-of-plane scans,
where it accounts for practically the whole observed in-
elastic intensity. This is in quantitative agreement with
the anisotropy of the carbon and oxygen Debye-Wailer
factors. For the in-plane scans, on the other hand, the
correction leaves a distinct quasielastic contribution which
increases with increasing temperature and remains visible
until well below T, . In the following this quasielastic con-
tribution will be evaluated in terms of proton jumps be-
tween two positions of the hydrogen bond. It should be
kept in mind, however, that the validity of the quantita-
tive conclusions depends on the separability of phonon
and jumps motions.

D. Results and data fitting

The Qz data show a modest peak-height reduction and
practically no width variation with increasing tempera-
ture. For this case the background variation is fully ac-
counted for by the variation of the phonon contribution.

The Q~~ data, however, behave differently. Also here
the elastic peak height is reduced by increased tempera-
ture. In addition a fairly clear broadening is seen near the
base of the elastic peak, and furthermore, the wings grow
much faster than the estimated phonon background. In
fact the peaks may be decomposed into an elastic central
peak superimposed on a broader Lorentzian-type contribu-
tion, whose typical width is about jI THz above T, . In our
interpretation this frequency corresponds to the time scale
of proton jumps, as discussed in Sec. V C.

As discussed in more detail in Sec. V we found it ap-
propriate to interpret the data in terms of a weakly cou-
pled Ising-chain model, with dynamics included by the
Glauber model. The time-dependent self-correlation func-
tion (oJ(0)oj(t)) and its Fourier transform, the in-
coherent scattering function, 6 (v) for this model is given
in Appendix C.

This scattering function was folded with the Gaussian
instrumental resolution function and then a least-squares
fitting to the Q~~ data was performed at each temperature.
The free parameters J&, a, and C from the fitting to the
data are shown in Table I. J& is identified with the Ising-
chain coupling constant, cz is the Glauber jump rate pa-
rameter, and C is a parameter taking the neighboring
chain coupling into account. As it turns out J& and u are
somewhat correlated in the fitting. At the final stage J~
was held fixed at S50 K. As it is seen from Table II, the
a values are still not very accurately determined; the two
data sets give quite different values. Therefore, only the
order of magnitude of a could be determined. The a
values for T( T, are rather unreliable also because of the
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low level of the inelastic contribution and therefore we do
not put any significance to them.

IV. DIFFUSE COHERENT SCATTERING

TABLE II. Results of fitting of incoherent data for two sets
of Q~~ scans with J| fixed at 550 K.

T
(K)

294
346

373
385
401
419

Set 1

a
(THz)

120
110

40
90
70
50

1.0
0.5

0.5
0.2
0.15
0.16

(K)

294
346
356
374
393

418

Set 2
a

(THz)

80
60
100
20
20

20

1.0
0.6
0.5
0.4
0.23

0.13

A. Scope of the present work

In their early neutron scattering work Samuelsen and
Semmingsen observed a diffuse scattering component ex-
isting at several reciprocal-lattice points above T, . From
the detailed study of the distribution of this component
around the (4,1,0) reciprocal-lattice point they found that
the scattering is extended along the b* direction, indicat-
ing a short molecular correlation range gb in the direction
perpendicular to the hydrogen-bonded plane. The scatter-
ing is quite sharp in the a* (c*) direction, however; there-
fore the correlation length g, within the planes is large.
Owing to resolution limitations a temperature variation of
g, was not observed. No attempt was made to interpret
the data in any particular model.

The present work brings three new features. Firstly, by
improved angular resolution it became possible to identify
a temperature variation of g, . Secondly, despite the
tetragonal symmetry it turned out to be possible to study
the correlation length along chains of squaric acid mole-
cules g, and correlations between chains g, in the same
molecular plane. Although the structure is tetragonal a
distinction between interchain and intrachain correlation
is possible through a favorable weighting of the observa-
tions by the scattering structure factor (see Appendix B).
Thirdly, a model of a weakly coupled Ising-chain system,
having been advanced in informal discussions at various
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occasions, turns out to give an adequate description of
both the coherent as well as the incoherent scattering data. 2000— (4.0,0.9, I )

B. Measurements

The same triple-axis instrument was used for both the
coherent and the incoherent studies. For the coherent
studies the instrument was used in its elastic setting (ener-

gy transfer v=0), and the study was confined to regions
around the (4, 1,0) reciprocal-lattice point at temperatures
above T, . The sample was oriented with a*-b* in the
scattering plane. Scans along c' were performed by tilting
the sample.

The instrumental widths I „I b, and I, along the three
directions, were determined experimentally at (4, 1,0)
below T, : I, by adding successive scans along h with
varying l in the vicinity of l =0 and I, by varying the tilt
angle of the sample when the spectrometer was centered at
(4,1,0). The FWHM is 1,= (0.047+0.001)a' and
I', =(0.062+0.004)c*.

A rather complete mapping of the diffuse scattering
around (4,1,0) was then performed in the a" c* pla-ne at
four temperatures: 375 K (102'C), 381 K (108'C), 398 K
(125'C), and 416 K (143 C). The mapping was performed
within the limits 3.92—4.08 for h (step-length 0.01) and
from —0.4 to 0.4 for l (stepwidth -0.08), altogether 187
points at each temperature. Supplementary data were tak-
en at 379, 392, and 404 K. Examples of scan data are
shown in Fig. 3. Figure 4 shows a contour map around
(4, 1,0) at 398 K.

C. Results
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FIG. 3. Example of diffuse scans at 381 K (not corrected for
spectrometer setting, background is not subtracted). ~ denotes
resolution.

The diffuse scattering was assumed to be describable by
an anisotropic Lorentzian in the form of a wave-vector-
dependent susceptibility

x(q) =
1+4'qa+ 4qk+ 0'e'

where q =(qp„qk, ql ) denote the position in the reciprocal
space relative to (4,1,0). g„gb, and g, play the roles of
correlation lengths. C is a scale factor.

Equation (1) may be taken as an obvious generalization
of the usual three-dimensional isotropic form of X(q).
Furthermore, it can be shown to be the exact form for
q «a*,b*,c" for the model used later. Expressions for
g„gb, and g, in terms of the model are given in Appendix
C.

At each temperature a convolution of Eq. (1) with the
instrumental resolution was performed in combination
with a least-square-fitting procedure to obtain the best
values for g, and g, . gb was taken from the data of Ref.
4. Since a two-dimensional numerical convolution in
combination with least-squares fitting is very time con-
suming, a procedure was chosen where first the Lorentzi-
an (1) was fitted in c direction to a sum of eight con-
centric Gaussian functions. Since the instrumental resolu-
tion is taken to be Gaussian, an analytic convolution be-
tween the instrument and the eight Gaussians could be
performed. The remaining convolution in a direction
was then done by numerical integration.

~
')--

-0.05 0 0.05
FIG. 4. Contour map in a*-c* plane around (4, 1,0); ~

denotes resolution.
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Results of the least-squares fitting are shown in Table
III, together with gb data from Ref. 4. The fit to the data
at each temperature is generally good, although at 398 K
the X value is somewhat high.

D. Discussion

It ls sccI1 thRt gg is R't Rll 'tcnlpcl'Rtlll'cs considerably
larger than g, and gs, the ratio being roughly

g, :g, :gb ——50:5:1. Thus the tendency towards one-
dimensionally correlated chains is quite pronounced.
Furthermore, correlations between chains of the same
plane are roughly five times stronger than between neigh-
boring planes. It should be remarked that the in-plane
correlation is parallel whereas the interplane correlation,
although weakest, is antiparallel and of a definite impor-
tance, since otherwise the diffuse scattering would not be
confined to such reciprocal-lattice points where h +k+I
ls odd.

Observations at only four temperatures, of course, does
not warrant a conclusive analysis of critical indices v and

y for the temperature variation of the correlation length
and the intensity. Howcvcf, in ordcf to scc thc tlcnds, wc
have plotted the values on log-log plots in Figs. 5 and 6.
We define as usual

c =(T To)/To,—

Rlld 111 case of powcl'-law bcllavlor wc cxpcct

(3)

X(q =0)=Ca T .

With To ——T, =373 K we obtain

v, =0.33+0.07 with @=5.54,

v, =0.16+0.15 with g~ ——41.3,
vb ——0.12 with $,=0.67,

where the value for vb is calculated with data from Ref. 4,
and

By choosing To lower than T, all these exponents would
increase. For instance To ——371 K gives v, =0.42+0.07,
v, =0.20+0.15, and y=0.65+0.10. Values of To lower
than 373 K would of course mean that neither the correla-
tion lengths nor the susceptibility J(q =0) diverges at the

CA

~0—
D

C$

QP

C3

10 20
T-Tc (K)

FIG. 5. Correlation length vs e= T —T, .

transition tclllpcratlll'c. Tllc dlvclgclicy ls qul'tc weak (Rlso
for To ——T, ) in accordance with previous findings. In
fact the two studies are in agreement in this respect with

y —v=0.24+0.06 from Ref. 4 and y —v, =0.36+0.17
from the present paper. Such critical exponents are not
known for any universality class. Deininghaus has pro-
posed that H2(SQ) rather belongs to a nonuniversal
Baxter-model class where exponents depend on interaction
strengths. Another possibility is that due to crossover be-
tween quasi-one-dimensional behavior and three-
dimensional bchavioI' thc tfuc critical bchaviof is OIlly

seen in a very narrow temperature region closer to the
critical point than was studied here.

V. THE WEAKLY COUPLED ISING-CHAIN MODEL

A. Model

Although the Ising-spin model has its prime application
in magnetism, due to its simplicity and easy physical in-
terpretation it is often also applied to order-disorder phe-
nomena in lattice physics. The Ising chain is the simplest
model conceivable and it is exactly solvable also in the
presence of external fields

A = —JI g CTICT;+I —Il g CT;

TABLE III. Result of least-squares fitting to the coherent data. $0 and J& are values derived from
the model. Correlation lengths are given in number of unit cells, Jl and T in K and scale factor in arbi-
trary units. gb is taken from Ref. 4.

375
381
398
416

274.7
123.5
77.5
53.8

31.6+25
26.6+3.1

23.4+3.0
22.6+3.0

4.4+0.5
2.3+0.4
2.2+0.4
1.5+0.4

0.6+0.1

0.55+0.1
0.4*0.1
0.4+0.1

5.0
9.8
7,0
9.4

431
512
525
610
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two pseudospins, one connected with the horizontal chain
direction o;, and the other connected with the vertical
direction o&, (Fig. 7}. We put some attention on the pro-
ton position, so that

lA

C3I
C5

o 10—

&ga= ' —1,
for a right (R) and left (L) proton, respectively, and

&ic= ' —1

I

10 20
T Tc (K}

50 100

FIG. 6. Scale factor, corresponding to P(q =0) vs e= T —T, .

showing that no long-range order appears at finite tem-
peratures for the isolated chain system. In real systems a
small interchain coupling will often be present (Jz for
chains within the same plane, J3 for coupling between
planes). Such coupling, although being very weak, will
impose on the system a finite long-range-ordering tem-
perature T, . The interchain coupling is easiest taken into
account by mean-field approximation. Results relevant
to the present work are given in Appendix C. It should be
noticed that the transition temperature depends logarith-
mically on the ratio J~/Jz. Furthermore one notices that
the generalized susceptibility X( q ), has an Ornstein-
Zernike form. However, due to the mean-field approxi-
mations imposed on the model the critical exponents for
the correlation length (v) and for q =0 susceptibility (y}
are predicted to take their mean-field values vMF ———,

' and

yMF
——1. The model predicts that g, should follow a

power-law behavior over an extended temperature range,
whereas g, would approach the high-temperature limit go,
which is the one-dimensional chain correlation length.
should show only a weak temperature dependence of the

2J) /kT
form 8

The Ising model [Eq. (7)] does not contain any dynam-
ics. A stochastic coupling to the lattice via a heat bath
that may induce spin flips, was introduced into the model
by Glauber. A pertinent parameter in this model is the
quantity a denoting a stochastic spin-fiip rate. The time-
dependent self-correlation function which is connected to
the incoherent neutron scattering function, is given in Ap-
pendix C. In squaric acid, we assign to each molecule i

where the coupling constant J~ couples nearest neighbors
along the chain. The solution is particularly simple for
the case of zero field h. For this case the static correlation
function is given by

r

J)
(g, g,.+„)= tanh

P,"=30.;,+Bc';, ,

P; —Bo.;,+30.;, ,

where

(9a)

A +B =Po, (9b)

and po is the permanent" molecular dipole moment.
From Eq. (9) the total polarization and the dielectric sus-
ceptibility can be derived.

C

FIG. 7. Single plane of squaric acid.

for an up (U) and down (D) proton, respectively. Howev-
er, since the whole molecule keeps its low-temperature
shape also for T& T„ the various combinations of o;,
and o;, correspond to the four molecular shapes (orienta-
tions) discussed in Appendix B. For coherent neutron
smttering it must be assumed that the whole molecule
contributes to the scattering. But since only the protons
are incoherent scatterers, only their behavior will be re-
flected through the incoherent scattering observed.

The individual squaric acid molecules mrry an electric
dipole moment. Its direction and magnitude within the
molecular planes could in principle be calculated from
linear combination of atomic orbitals (LCAO) treatment
of the molecule. Such calculations were recently carried
out by Link. It would be a reasonable assumption that
the molecular moment is constant, but the direction de-
pends on the actual molecular configurations. Then the
dipole moment for an arbitrary molecule is given by



ONE-DIMENSIONAL MOLECULAR CORRELATIONS IN SQUARIC. . . 1003

B. Results of fitting to the model

Both the incoherent and the coherent neutron data
could be fitted rather well to the model. In particular a
chain coupling constant of about Ji ——550 K gives a
reasonable fit to the two types of data.

For the coherent part the model enters only in the inter-
pretation of the already derived coherence lengths g„gb,
and g, as well as through the value of T, . From the ex-
pressions of Appendix C one can use Eq. (C13) at every
temperature to derive the correlation length go for a free
Ising chain. Since go is determined by Ji, a value of Ji
can be derived at each temperature. Although the values
show some scatter, an average of Ji ——550+50 K for the
three highest temperatures is found, corresponding to
go-8 unit cells for T & T, .

From the values of g, and gb one can derive Ji and

J3 ~, respectively, giving J2 ——0.025Ji and
~
J3

=0.0004J, . The value of gb is most uncertain. These
values would predict a transition temperature T, =412 K.
Considering the limitations of the mean-field part of the
model the agreement is acceptable.

As already noted the model would predict classical in-

dices v, and y for the temperature dependence of g, and
of X(q =0). The actual values are considerably lower. In
fact one would expect a nonuniversal behavior in the sense
that at high temperature a one-dimensional behavior
would be seen [g, ~go ———,'exp(2Ji/kT)] crossing over
first to a two-dimensional behavior in an intermediate
range, and finally becoming three-dimensional closer to
T, . The temperature range covered, e(0.12 is far below
the limit kT, /2Ji ——0.34 where crossover to higher di-
mensional behavior would occur. The model would
predict g, proportional to g, in the temperature range
covered. Since the experimental uncertainties are large for

at the lowest temperature, it is probably agreement
within the experimental uncertainty. As can be seen from
Appendix C X(q =0) is in fact expected to diverge as
1+2$, +2gb. Therefore, X(q=0) will diverge with the
correlation length which diverges strongest, probably g,
and the limiting value for y is thus

This is in fact reasonably well observed although the actu-
al values are below the mean-field ones.

C. Dynamics

probably more justified to take a as some average
phenomenological constant without a clearcut interpreta-
tion. When the spins are not individually free, but are
coupled to their neighbors through the Ising coupling con-
stant J&, they will be less free to jurnp and the jump rate
will be considerably reduced with respect to a.

In Sec. III we already discussed the data fitting to the
incoherent scattering. a =0 would of course give no ener-

gy width, whatever the value of J, . On the other hand,
for Ji ——0 the peak width would be determined by a alone.
Since from the coherent data we observe large one-
dimensional correlations along the chains. Ji must be fi-
nite and large. Therefore, since a and Ji are finite, one
has to try and find their optimum values through a data
fitting. Not unexpectedly the two parameters are consid-
erably correlated in the fitting procedure, in fact because
Ji enters the model only in products of the type
aexp(+Ji/kT). The values of Ji are found to be in the
order of 550+100 K. Although a varies a lot and shows
some lack of systematics, it comes out in the range of 50
THz from one set of data and 80 THz from another set,
resulting in a=65+25 THz. This number is of the same
order of magnitude as a time constant ro ——2.6&&10 ' s
obtained from ' C NMR data and a characteristic fre-
quency fo 30 THz ——obtained from dielectric relaxational
studies. These frequencies are of the correct order of
magnitude to be compared with the OH stretching fre-
quency in squaric acid, which is located to be unusually
low, about 1300 cm ' (39 THz). ' On the other hand,
it must be admitted that in our case the high flipping rate
of an idealized isolated spin may be due to the model. It
is possible that the inclusion of a tunneling term in the
model would reduce this rate.

The observed energy broadening is much lower than this
value, being of the order of 1 THz. We believe this fre-
quency to be associated with the average proton jump rate.
A correlation length g, would come out as the average
length of ordered string pieces of spin either up or down
(Fig. 8). The spins at the boundaries are the ones most
likely to jump, which would take place at a rate of a cor-
responding to the (stochastic) motion back and forth of
domain boundaries. However, the average rate, experi-
enced by some averages spin will be slower than that by
(2g, ) '. Since g, is 20—40 units we would get a jump
rate of the order of 1—2 THz. As is known moving
domain walls in one-dimensional systems can be described
as solitons, even for Ising systems.

The Ising model as given by Eq. (7) does not contain
any dynamics and is therefore not able to describe
frequency-dependent effects. However, dynamics may be
put into the model in a statistical sense as shown by
Glauber.

In the Glauber model an inverse time a is introduced
which is to be identified with the rate of spin flips per
spin for a system of independent spins due to stochastic
agitation by the surrounding heat bath. Thus u should be
proportional to the rate of thermal knocks on the walls of
the cage of the pseudospin. It might be tempting to iden-
tify n with some vibrational frequency of the system, e.g.,
with the OH bending or stretching frequency. But it is

Specific heat and dielectric properties

With the model at hand one can go on and calculate the
above-mentioned properties. In fact such calculations
were already performed by Deininghaus. ' The specific-
heat curve obtained by him is shown in Fig. 9. It is
noteworthy that there is a huge specific-heat tail above T„
and the entropy contained under the peak is only a small

~F Sr ir lr Sy qr i P
lr $r lr q~ 'l(

FIG. 8. Schematic representation of ordered strings, see text.
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fraction of the total disordering entropy, corroborating the
cxlstcncc of lalgc collclRtcd I'cglolls above T~ 111 Rglcc-
ITlcnt with OUr mcasurcIQcnts.

Therefore, in the interpretation of the specific-heat data
thc backgrouIK1 should Ilot bc dI'awn as 8 smooth 11nc con-
necting the levels at the two sides of the specific-heat
peak. However, it would be difficult to separate the one-
dimensional specific-heat tail above T, from the broad lat-
t1cc contribution.

Thc clcctric po18r1zatlon Rnd thc stat1c diclcctrlc pcI'-

mittivity g can easily be calculated. A static measurement
corresponds to a zero wavelength study, whereas the dif-
fuse neutron study corresponds to a wavelength b/2 along
the plane normals (due to the antiferroelectric correlations
between neighboring planes). The static susceptibility
must have the form of Eq. (C9), only with a sign change
in front of Js due to the cosine function.

The observed dielectric permittivity is characterized by
8 very weak temperature dcpcndcncc of T Q T~. It should
be noted that the values for e of Refs. 5 and 33 differ by a
factor of about 2. We can compose the data with the neu-
tron scattering observations by substituting J2 and J3 with
thc corrcspond1Qg cxpI'css1ons conta1nlng only thc corrcla-
t1OQS ICngthS, g1V1Qg

1+2$,+2/1,
abdiel +0

1+4/1,

where Xo-(kT)
However, with the experimental values from Table III,

the fit is still rather poor, although a qualitative improve-
ment is obtained over the mean-field results for the tem-
perature dependence above T, . The reason for the poor fit
is probably because Eq. (10) is not sufficiently general, but
relates back to the mean-field treatment of the interchain
coupl1ng.

pronounced one dimensionahty of intermolecular coupling
in Hq(SQ). The ratio of correlation lengths g, :g,:gt, were
found to be of the order of 50:5:1. The temperature varia-
tion of the correlation lengths were found to be
anomalous, with critical indices v of the order of only 0.3,
and thc susceptibility 1ndcx 7 0.5. Thc1nd1ccs are rathe1
UxlccrtaIQ, howcvcl .

Both kinds of experiments were analyzed using a weak-
ly coupled Ising model, with dynamics of the Glaubcr
model. Thc intrachain coupling parameter J& was deter-
IH1ncd to 550 K, whc1cas thc 1Q-plane-1ntclchalQ coupling
Z2 is about 0.02J~ and the interplanar coupling J3 is
—0.002JI. %ith these parameters we calculate a transi-
tion temperature T, =412 K, in fair agreement with the
observed value 373 K. Inelastic broadening of the in-
coherent scattering corresponds to frequencies of about 1

THz, wh1ch )s to bc 8ssoc18tcd with thc Rvcx'agc proton
)UITlp 18tC.

The Glauber rate constant a comes out with a value of
about 50+25 THz. This value may probably be associated
with the (stochastic) motion back and forth of domain
boundaries between oppositely ordered regions of the
chains.
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APPENDIX A: INCOHERENT SCATTERING FROM
A DOUBLE-%ELL PROTON SYSTEM

Thc lncollcl'cllt scattering fullctlon Is determined by the
Fourier-transform of the self-correlation function of the
scattering density p(r, t) which for a proton system is

p(r, t) = gbII 5(r —R;) .

The scattering amplitude for the proton will be

' [I+cr;(t)]e'q d~

&a.=brl. e
tAC 2

where cr;(t) takes the value + 1 when the proton is in a
right (R) well, say, and —1 when it is in a left (1.) well. R;
is the vector of the position of the center of the hydrogen
bond i Then the. scattering function reads

We have performed incoherent neutron scattering stud-
ies over a wide tenlperature x'ange as well as coherent neu-
tron scattering studies above T, up to T, +40 K. Both
kinds of experiments are consistent with the existence of

W(g, v)= g I I d'rdte') 'e ' '(p;(0, 0)p;(r, t))

&(v)cos ——— +6 (v)sin'
—28~ Qd 0 d

1IIC 2
I I
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where

G(v)= f dt(o;(0)o;(t))e-' '". (o, (n nb)cr (n nb )) = '

(A4)

1 for nb n——bAn, =n,
0, otherwise . (83c)

The explicit form of G(v) for our model is derived in Ap- It is convenient to introduce expressions
pendix C.

~R FRU+FRD,+

APPENDIX B: STRUCTURE FACTORS

The diffuse scattering will vary throughout the recipro-
cal space due to the spatial distribution of the scattering
density. In the previous neutron work it was shown that
not only the protons but rather the whole molecules give
rise to the scattering. Furthermore, the molecules keep
their low-temperature shape also above T, . Therefore, the
scattering from the individual molecule in a given refer-
ence orientation F,i(hkl) will play an essential role. h, k,
and l need not be integers.

Since the present study shows that above T, the mole-
cules are correlated along chains a distance of several tens
of unit cells, whereas the correlation lengths are short in
the other two directions, it was found reasonable to esti-
mate structure factors from a model easily manageable:
Each molecular string is assumed to possess full order of
the protons of the molecules, being to the right (R) or to
the left (L) for horizontal strings, up (U) or down (D) for
vertical strings. One thus has to do with four types of
molecules: RU, LU, RD, LD, the molecular structure fac-
tor of which can be calculated:

F~g)(hkl) =FgU(hkl) .

The direction of the orientation of the molecule at posi-
tion (n„nb, n, ) is given by o, (n„nb, n, )=+1 and
cr, (n„nb, n, ) =+ I, where the indices a and c are for the
horizontal and vertical directions. In our model apparent-
ly o, is independent of n, and o, is independent of n,

With this picture one can develop expressions for the
structure factor squared

~
F„,

~

', expressed by the molecu-
lar structure factors and cr„o,. In the final stage in-
dependent strings were asumed by imposing the average
values

(a. ) =(~.) =(a.o. & =o (83a)

and

(cr, (nb, n, )o, (nb, n,
' )}= . 1 for nb ——nb An, =n,'

0, otherwise, (83b)

and similarly

F+U(hkl)= g bje 'exp[2mi(hxj+kyj+lzj)]. (81)
J

molecule

Assuming the same shape of the molecules in all orienta-
tions, one will see that

FiU(hkl) =FLU(lkh),

FgD(hkl) =FLU(lkh),

~R =FRU —FRD,

~L =FLU+FLD,+

~L FLU FLD

(84)

Then for the case of ordered chains completely uncorrelat-
ed among themselves one finds that

~
F„,

~

consists of
four terms:

Ii= l~~++"S. I'@Q. ~a+«b ~b+—(Qe 'e)—, (85)

which represents fundamental reflections with h+k+l
even, sharp in all three directions, existing at all tempera-
tures,

I,= ~W;+a; ~'S(Q, —r, ),
which represent reflections diffuse in h, sharp in l,

Ii ——iAg+ —Ag+
i 5(Q, —;),

which represent reflections diffuse in l, sharp in h,

(86)

(87)

C$

C)

cf4
~i

1.0

410 510

-1.0
FIG. 10. Structure factor variation around (4, 1,0).

which represent reflections diffuse in both h and l. It
should be noticed that the interplanar (anti-correlation) is
not taken into account, and that the k dependence of the
diffuse components are not included.

From the observed molecular coordinates at room tem-
perature and using the fitted Debye-Wailer exponents at
121'C, the structure factors around (4, 1,0) are shown in

Fig. 10. As is seen the infinite chains along the a direc-
tion contribute much more to the scattering at (4,1,0) than
do the chains along the c direction. By this fortunate sit-
uation one sees at (4,1,0) in practice only the a chains.
[Similarly the c chains would be seen at (0, 1,4).]

When the chains are not infinitely long, a width in the h

direction will develop from which the correlation length

g, can be determined. For obtaining the correlation g„
the slow variation of the diffuse structure factor squared
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is unimportant since the observed width is of the order of
0.2c*.

APPENDIX C: THE WEAKLY COUPLED
ISING MODEL

The time-dependent spin-correlation function for a
one-dimensional Ising chain was already given by
Glauber:

&cr, (o)crk«) &
= xp( —ct

I
t

I
)

very weak coupling fields a much simpler approximation
involving a phenomenological parameter C which ac-
counts for the influence of the coupling field. C is thus a
parameter to be fitted,

G(v) =C5(v)+2Re 1

r

X
p + (p

2 ~2y2) 1/2

W[Is(at)]R,s) —1
——a (p —a )

+( 2 2)1/2

with the definitions: rt =tanh(PJ1), y=tanh(2pJ1 ), I„1s
the modified Bessel function (I „=I„for n integer) a is
the inverse characteristic time in the Crlauber model, P is
the inverse temperature. The incoherent neutron scatter-
ing function G(v) is defined as the Fourier transform of
(oj(0)oj(t) &:

+ 00 00

G(v)=2 g q''~ e ' + '""It(ayt)dt .
0I =—00

Using the formula for the Laplace transform of Is
r

p+(p —& y ) —cty

C varies between zero and one; it should be remarked that
the sum rule for the incoherent neutron scattering func-
tion

6 v v=1, (C7)

is fulfilled in our approximation for all values of C. As
expected the value of C tends towards zero with increasing
temperature (see Tables I and II), but it remains signifi-
cantly larger than zero above T, . This may indicate a lo-
cal order above T, (Ref. 17) or can be understood as the
influence of a random field generated by the neighboring
sp1ns.

In the case of vanishing field, the formula given in Ref.
37 can easily be transformed to (C6) using

with p =a+2ni v and Rep &
~

Rea
~

one finds easily

G(v)=2Re 1 p+(p ay )' +ayr—
2 2y2)1/2 p +( 2 &2y2)1/2

(C4)

(C4) gives in the limit J1 ——0 a Lorentzian as it is used in
our preliminary work. ' ' Formula (1) of Refs. 16 and 17
contains a slight typographical error and should read (us-
ing the notation of Ref. 1.6)

I( )
—2W(Q)

5(co)[1—2co1co2 cos(g d )]

y/1r+. 2co1co2[1—cos(Q. d)]
CO +f (C5)

The "hopping" model used in Refs. 16 and 17 which is
also related to problems in diffusion theory can be
looked upon as a special case (J =0) of the model
described in the present work.

The dynamics of an Ising chain in the presence of an
external field was studied by several authors with applica-
tion to the helix-coil transition in biopolymers. In the
paper by Tanaka et al. an approximation for the
Fourier-transformed autocorrelation function is given.
Since Tanaka's expression for G(v) contains an integral
which only can be solved numerically and G(v) itself
must be convoluted numerically with the experimental
resolution, it does not seem possible to use it for the data
fitting because this. procedure would be very computer
time consuming. Therefore, we suggest for our case of

exp(z cos8) =Io(z)+Z g Itc(z) cos(k8) .
k=1

Expressions for the generalized susceptibility for the ki-
netic Ising model with vanishing or small external fields
are given by Suzuki and Kubo and by Zumer, respec-
tively. The relations between the generalized susceptibility
and the correlation length in a weakly coupled Ising chain
were discussed by Scalapino et al.

Taking the coupling constant J] along the chain, J2
perpendicular to the chain (intraplanar), and —J3 perpen-
dicular to the chain (interplanar), the susceptibility per
spin can be written as

X(q1~q2~q3) =
1 —(2J2 cosq2 —SJ3 cosq3)X1g(q1)

(C9)

with X1& as the susceptibility of a one-dimensional system
which can be approximated as

Xo
Xld(ql ) =

I+koq1
(C10)

J3 is used instead of J3 in order to indicate the antifer-
roelectric character of this coupling. The components of
q are taken along the a~, c*, and b* direction, q~ is de-
fined as a fraction of a*=2m/a, q2, and q3 similarly.
The correlation lengths are therefore directly given in
units of cell constants. The factors 2 and 8 in the denomi-
nator are the numbers of nearest neighbors. For the
analysis of the coherent neutron scattering data the cosine
functions in the denominator are expanded around q1 ——0,
qz ——0, and q3 ——q3 —m. One then can express the suscep-
tibility in a form
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X(q&,q2, qs)=,(C11)
1+(r.ql)'+(sbq3)'+(c. q2)'

'

Cu =to[1+2(k'+4)]'" .

[1—(2J, +SJ,)Xo]'~'

4J3&o

1 —(2J2+ SJ3)Xo

sr2XO

1 —(2J2+ SJ3 )Xc

(C12)
go ———lnI[tanh(PJ, )] 'I .

As is seen JI can be obtained from gc.

(C14)
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