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Spin-orbit scattering in dirty superconductors
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Spin-orbit scattering and the resulting spin contamination of the pure spin-up and spin-down

states of a singlet Cooper pair lead to a finite exchange term in the pairing interaction, besides the
direct term of BCS theory. Both of these terms are evaluated as functions of the spin lifetime ~„
and the effective coherence length g of a dirty superconductor. We show that, as w„decreases, the
weakening of the direct term caused by spin rotation of the pair within g is exactly compensated by
intervention of the exchange term. Both effects are proportional to g/use„(where ur is the Fermi
velocity). The physical conclusion is that the transition temperature T, remains unaffected, a result

first noted by Anderson.

The theory of dirty superconductors' is based on the
BCS interaction, I, that occurs between pairs of one-
electron states which are exact time-reverse partners of
each other. For ordinary impurity scattering, these scat-
tered states are either pure spin-up or spin-down states.
An impurity-induced change of the transition tempera-
ture, 5T„can arise from anisotropy and band-structure ef-
fects. The first effect is caused by a reduction of the
(favorable) gap anisotropy. The resulting decrease in T,
saturates when the mean free path l is reduced to a value
comparable to the coherence distance of the host, go.

Besides momentum scattering there can be spin-orbit
(so) scattering by the impurities. In a macroscopic crystal,
this scattering leads to complete spin contamination of a
scattered state. Such states have no average spin com-
ponent in any direction, as pointed out by Anderson in
the context of residual Knight shifts in superconductors.
Consider the interaction I of the gap equation; all that
matters is the spin rotation of an electron that occurs
within the effective coherence length of a Cooper pair,
g=(gaol)'r . This spin contamination (during the time that
the electron needs to traverse g) introduces an exchange
contribution to I, absent in BCS theory.

Why, then, does so scattering have no effect on T,?
The standard observation is that the time-reversal symme-
try operator commutes with the so coupling operator. As
a consequence there are still exact time-reverse partners
from which to construct bound Cooper pairs. However,
the off-diagonal matrix elements of the phonon-mediated
interaction, which occur in the BCS integral equation, are
altered in detail. As we show below, the direct matrix ele-
ments are reduced in magnitude, and new exchange terms
arise. However, we subsequently find by explicit calcula-
tion that the two changes cancel.

We shall consider a host superconductor without so in-
teraction, but we assume that the scattering potentials of
the impurity atoms contain significant so coupling. Then,
the interaction terms of the gap equation involve both
direct (dir) and exchange (ex) contributions between time-
reversed pairs, cf. Fig. 1. What matters for the interaction
in the linear-gap equation at T, is the degree of spin rota-
tion within the effective coherence distance g. The wave

functions for the two partners of a time-reversed pair are
written as
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FIG. 1. Direct and exchange contribution to the pairing in-

teraction I for the scattered states n and n (= time reversed state
to n) of a Cooper pair. A dot ( ~ ) indicates a matrix element M
and g, g indicates the spin contamination.

Here p„= g-„(n!k)lt- solves the impurity scattering

problem in the absence of so scattering, g- are Bloch
k

functions, and a,p are the spin eigenfunctions of o, . The
spin rotation away from the z axis is measured by the an-
gles 8,$. It must be emphasized that 8 and P generally
depend on n, and are slowly varying functions of r. We
neglect this latter dependence since the length scale is
v~r„where ~„ is the spin lifetime. With the basis func-
tions defined by (1) and (2), the interaction in the T, equa-
tion is given by
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We have adopted the usual notation; M(n, n')=(g„~ 5V- -,
~
1{„)where 5V -, is the perturbing potential due to a

k —k' k —k '

phonon with momentum k —k . The matrix elements for direct and exchange scattering are obtained from the wave
functions (1) and (2):

M{n,n')=Mc(n, n') cos—cos—+e'~ &'~ sin —sin—8 8 g(&' )/2 ~ 8 ~ 8
2 2 2 2

M(n, IT') =M&(n, IT') e '~~ sin —cos——e '~ ~ cos—sin—8 8'
g~ g2 8 . 8'
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where Mo(n, n') = (P„~5V
~
P„). The time-reversed counterparts of (5) are obtained in a similar fashion:

M(n, n ')=M(n, n')*, M(n, n')= —M(n, IT' )* .

I "and I'" involve products of two M's. The cross terms that arise vanish after averaging over P and P':

(M(n, n')M(n, n'))&,q= ~Mc(n, n')
~
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Note that Eq. (8), which is needed for I'", has a minus
sign which will cancel the minus sign in Eq. (3). For this
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the binding energy of a singlet Cooper pair. On subtract-
ing (8) from (7) one finds identically,

(M(n, n')M(n, IT'))p p
—(M(n, n ')M(IT, n'))pp

=
i
M&(n, n') i, (9)

our purpose to follow the time evolution of (cos8), which
determines the so changes of Eqs. {7)and {8). According-
ly, from the P, (cos8) term of Eq. (11) and the fact that
(cos8) = 1 at I=0, we have after a coherence time t~,

(cos8) =exp( —2D„t~ ) .

The average matrix elements, (7) and (8), are then

(M(n, n*)M(n, lT'))~ ~ = —,
'

i M&
i

[1+exp( 4D„t~)], —
so that I„„,Eq. (3), is unaffected by the spin rotations re-
sulting from so scattering. Demonstration of this is the
major purpose of this paper.

It is still of interest to determine the changes in I "and
I'". We estimate these by solving a diffusion equation in
SP1Q SPRCC. WC Q1RkC thC 1QtUlt1VC RSSUIPt1OQ thRt thC

average spin tilt 8 can be calculated by keeping track of
the stochastic, infinitesimal changes in 8 caused by the so
term of each scattering event during a coherence time tg

Let M(8, t)dQ be the probability of finding a unit vec-
tor oriented in the solid angle dQ at time t. (We shall
treat only the case for which M is independent of P.) The
time dependence of M is then given by a diffusion equa-
tion on the surface of a sphere as follows:

0.5

(13)

BM(8, r) D
1 8 . 85M

D„ is a spin-diffusion coefficient, which will be derived
below. The solution of (10) is

M(8, t) = g clexp[ —l(i+1)D„t]PI(cos8) .

IPI J are Legendre polynomials. Their coefficients cl are
determined from tllc 1111tlal condlt1ons, w11lcll wc take to
bc a 5 fllllctloll alollg tllc polal axis, 8=0. It sllfflccs fol'

FIG. 2. Direct and exchange parts of the pairing interaction,
I=I~' I'*, vs g/i„; g' is thc e—ffective coherence length and i„
is the spin-Aip mean free path.
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In what follows we shall show that the argument of the
exponential factors of (13) and (14) can be expressed in
terms of the spin-flip mean free path /» =r»uz. (r„ is the
spin lifetime. ) We will find that

2D„tg =g/I„. (15)

The variation of the direct and exchange terms, Eq. (4),
with g/1» is shown in Fig. 2. Note that the loss in
strength of the direct matrix element is compensated by
the emergence of the exchange term. In the limit of large
so scattering I "and I'" become equa

In order to derive Eq. (15) we define the fractional spin
polarization, P,

—(M(n, n ')M(n, n'))~~ = —,
'

~Mo
~

[I—exp( 4—D„t&)] .

(14)

D„of Eq. (10), consider the average magnitude, 5, of spin
rotation per collision. We take it for granted that 5 &&1.
5 is of course related to W,

cos5=-1 ——,5 =1—2$', (20}

(S') =n(5') =4D,.h . (21)

The factor 4 is characteristic of two-dimensional dif-
fusion. We eliminate t from (21) by using

so 8'= (6 )/4. The last equality of Eq. (20) can be seen
as follows. Consider a spin rotation 5 from an initial
spin-up state. After the first collision the probability of
spin down is 8', and the probability of spin up is 1 —W;
Accordingly, (rr, ) =(1—8') —W. The mean-square an-
gular deviation (5 ) after n scattering events during a
time t is

where N is the sum (N'+X') of spin-up and spin-down
electrons. The time variation of I' is, of course,

r

dP 1 dX' dN'
dh X dh dt
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Whereupon,

D„= (5 )= W.
4E E

(22)

(23)

dI' = —2 RP—:—
dt E

P
+SO

(18)

The spin lifetime r» is, by the above definition,

E

2 8 (19)

In order to relate r» to the spin diffusion coefficient

Now, let W be the spin-flip probability per scattering
event (from an impurity). Since the number of scattering
events per second is uF/l, Eq. (17) implies

We next use Eq. (19}to eliminate W. Thus,

2D„= 1

SO

(24)

Equation (15) is obtained by multiplying the numerator
and denominator of (24) by uF. The denominator becomes

I„,and the numerator is g/t~
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