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The quantum-limit cyclotron-resonance linewidth is studied theoretically, assuming electron
scattering by acoustic phonons and ionized impurities. A minimum is predicted for the linewidth as
a function of magnetic field but only for a restricted range of electron and ionized-impurity densi-

ties. Near this minimum the linewidth is proportional to the square root of the impurity density and

is independent of temperature.

I. INTRODUCTION

The cyclotron-resonance absorption linewidth, and par-
ticularly its dependence on temperature and magnetic
field, are very sensitive to the type of scattering mecha-
nism affecting the carriers and hence can be used to probe
these mechanisms. Many theoretical' and experimen-
tal ' studies have been made of the linewidth in the
quantum limit. However, there is still much which
remains to be explained.

Recently the authors developed a general method for
the determination of the frequency-dependent conductivi-
ty' and applied this to a study of the quantum-limit cy-
clotron resonance line shape for electrons scattered by
acoustic phonons. The temperature and magnetic field
dependence of the linewidth were analyzed for several
temperature ranges.

However, at low enough temperatures scattering by ion-
ized impurities is always important and must be taken
into account. In this paper we study a system in which
electrons are scattered by both acoustic phonons and ion-
ized impurities.

An ionized impurity is assumed to give rise to a
screened Coulomb potential where, however, the form of
the screening takes into account the quantized nature of
the electron motion in the magnetic field. ' Such screen-
ing is important only if the inverse screening length is
greater than the wave vector of the phonons which give
the main contribution to the linewidth. The inverse
screening length is proportional to the square root of the
electron density n„and the maximum wave vector of the
"important" phonons is proportional to the magnetic field
8. Explicitly, we find the screening to be significant only
if the electron density exceeds a critical value n„(T,B),

26'Cps T 26'&pal copkg T
n„(T,B)= 8=-
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comes less important as the magnetic field increases.
The main conclusions of this paper may be summarized

as follows: If the electron density is less than n„, and the
density n; of ionized impurities satisfies the inequalities
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(1.2)

then (i) the linewidth y exhibits a minimum as a function
of magnetic field 8 (or coo), (ii) near this minimum y is

proportional to n and is independent of 1, and (iii) the
magnetic field at which the minimum occurs is propor-
tional to n,.

' 'T-'~'.
In Eq. (1.2), So is the sound velocity, p~ is the mass

density, D is the deformation potential, and Ze is the
charge on an impurity ion. If the impurity density lies
outside the above range there is no minimum: If n; is
below the range, then y is an increasing function of mag-
netic field, whereas if n; is above the range, y is a decreas-
ing function. These predictions are in substantial agree-
ment with the experiments of Mccombe et al. '

The lack of a temperature dependence for the minimum
linewidth has been taken to indicate that phonon scatter-
ing is unimportant' ' and most theoretical attempts to
explain the experimental results have assumed that
ionized-impurity scattering is dominant. In the present
model the linewidth minimum arises because of competi-
tion between the phonon and impurity scattering: The
phonon contribution to the linewidth increases with in-
creasing magnetic field, whereas the contribution from
ionized-impurity scattering decreases.

Arora et al. ' have also considered the combined ef-
fects of phonon and impurity scattering. However, they
assumed elastic scattering, neglected the effects of screen-
ing, and concluded in contrast to our predictions that a
linewidth minimum should always occur.

where e and m* are the high-frequency dielectric constant
and the electronic band mass, 8 is the magnetic field, and
the resonance frequency mp is given by e8/m*. It is im-
portant that this critical density depends on temperature
and magnetic field and that, in particular, screening be-

II. FORMULATION OF THE PROBLEM

The power absorption for a circularly polarized electric
field E(t) of frequency co, perpendicular to a static mag-
netic field 8, is
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P [co]= —,
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where o,j(co) is the complex conductivity tensor, and the z
axis is taken parallel to B. In an earlier paper' the present
authors discussed the quantum-limit cyclotron-resonance
absorption in an n-type semiconductor where the only
scattering mechanism was via acoustic phonons. In this
paper we shall consider the more realistic system charac-
terized by the Hamiltonian

H = gh(r~, P~)+ gAcozb qb q
k q

h(r, P)=, + g[y-(r)b +y-(r)b ]
[P+eA(r)]

q

+ g V(r —R~) . (2.2)

b and b are the creation and annihilation operators for
q

a phonon of wave vector q and energy fuo-; y (r) de-

scribes the interaction of the electron and phonon and is
of the form C exp(iq r), where C depends on the type

of interaction; V(r —R ) is the potential of the electron
due to an impurity at R; A is a vector potential which

gives rise to the static field B.
Lodder and Fujita developed a general theory of cy-

clotron resonance by means of a proper-connected dia-
gram technique applied to the Kubo formula for o+ (co).
This theory applied to an electron-phonon system' yield-
ed results in substantial agreement with experiments on
very pure Ge. Recently Suzuki and Dunn' developed a
different and much simpler approach to the evaluation of
the conductivity tensor cr,z(co) suitable for a strongly in-
teracting electron-phonon system. This theory based on a
resolvent super-operator technique in the weak coupling
limit yielded the same equations as the diagram approach.

The extension of the theories to the present case is
straightforward. If we restrict frequencies to the neigh-
borhood of the resonance frequency co=coo, then the
power absorption is given in the quantum-limit
hcoo »ks T by the following set of equations:

2

t = = (q„+qr) .
2m cop 2m*cop

(2.7)

The cyclotron resonance width y is determined in gen-
eral by

P(co „+1ti)=iP( co„),

( ~,„—yt. ) = —,P (co~,„),
'7='VA+'VL ~

(2.8)

where co,„corresponds to the maximum power absorp-
tion. For a symmetric line, of course, yz ——y~.

The temperature dependence of y arises from two
sources: The electron distribution function f -, and the

0, 1&'

relaxation rate I'(k, ). It can therefore be very misleading
to try to determine y directly from 1 (k, ), and it is cer-
tainly incorrect to associate, as is often done, y with
2I (0). However, as a Uery rough order of magnitude, we

may write for a nondegenerate semiconductor

y=21 (k, =(2m "ksT/A )' ) . (2.9)

This formula can be used to give a guide to the tempera-
ture and magnetic field dependences of y. In this paper
we shall not make use of this short-cut procedure, but we
evaluate y directly by using Eqs. (2.3)—(2.8).

III. SCREENED INTERACTIONS

f - is the distribution function for the lowest Landau
0. 14

level; I'(k, ) is the total relaxation rate associated with
transitions between the n= 1 and n=0 Landau levels and
comprises I z, the phonon contribution, and I;, the im-

purity contribution; X is the mean phonon occupation
q

number; e(k, ) is the energy associated with the motion
along the magnetic field A k, /2m'; t is given by+

2 2 f -„I(k)
Re[cr+ (co)]= m*V - (co—coo) +I' (k, )

I (k, ) =I (k, )+I;(k, ),

(2.3)

(2.4)

The effect of the electron-electron interactions can be
taken into account approximately' ' by dividing the bare
interactions by the purely electronic contribution to the
static wave-vector-dependent dielectric constant e( q ).
This electronic dielectric constant is usually evaluated in
the Debye- Thomas-Fermi approximation

e(q)=e(1+I,, /q ), (3.1)

&( [(N + 1)5(e(k, —q, ) e(k, ) + fico )—where A,, is the classical inverse screening length and is
given by

+X 5(e(k, —q, ) —e(k, ) —irico-)],
2
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(2.5) In the presence of a static magnetic field the motion of the



electrons is quantized, and hence their screening effects
ale rl1odified. Boring has evaluated the dielectric coIl-
stant in the random-phase approximation including the ef-
fects of the magnetic field. His result may be expressed as

I

e(q) =e(1+A, (q)/q~), (3.3)

where the inverse screening length A,(q) is, for a nonde-
generate semiconductor, given by

fi q, (1—u )

Srn'kg T
fiq J

201 Q)o

cosh(f)co0/2k~ T) co—sh(fico0u /2k~ T)

sinh(fico0/2k~ T)
(3A)

In the limit ))i—+0, this reduces to a classical result. The
integral in Eq. (3.4) is always less than, or equal to, one,
and so the presence of the magnetic field reduces the
screening effect.

A useful approximation to Eq. (3A), obtained by mak-
ing a piecewise linear approximation to the argument of
the exponentia1, is

fi q, fi qi, &AT, , &ficoi) .
2I?l 2??I

The approximation is therefore inappropriate. It has the
unfortunate effect of greatly enhancing A, (q) for small
values q, and hence of exaggerating the screening effects.

The screened ionized-impurity potential is

&z &2 [exp( —u) —l](1+u —U)+u
q =kg 1—

fmo
cosh

2
i'

%NO
sinh

2

(3.5)

Ze I
V

«oq'V 1+X'(q)/q'

and the deformation potential interaction is given by

(3.7)

A' (q) +q, )

2m*kg T

Numerical tests show that this is a good approximation
both for very small and very large values of q. In the re-
gions which are important for the current problem,
fi qg /21)i & k)) T, '6 qi/2&i & f)co0, f)co0))ki) T, the ap-
proximation exaggerates the screening effect but by less
than a few percent.

Shin and co-workers have, in their study of cyclotron-
resonance absorption, used a much cruder approximation
for the inverse screening length,

where the deformation potential D already contains the
factor e

IV. REX.AXATION RATE I

In order to simplify the expressions for I we introduce
the following dimensionless variables:

2
4m*kg T

A, (q)=A.,
Aq,

(3.6)
ficoo

(4.1)

A detailed analysis of expression (3A) shows that this is
valid only if

A'q, A'qj
, g~k~T,2' 2ffl

However, as we shall show, the q regions for the pho-
nons which produce the major contributions to the
line%'idth are

The relaxation rate I
& due to acoustic-phonon scatter-

ing via a deformation-potential coupling was determined
previously. The result comprises contributions due to
phonon emission I

& and to phonon absorption I &, and
for positive K is

gIIo ' 1 —exp[Q. (Q.—2&)/T] [1+A'(Qi, Q. )/(Q&+Q,')]'

1~ (&)=, dQ, + dQ,
min f 0,2(Ic —1)J m

' exp( —Q & /Q0) Q',Q,'(Q, —2K)'

8Q() 2«+'~ exp, ,—2X X —&

(4.2)

(4.3)

Q).= 4 [(Q.—2&)'—4] (4.4)
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The dimensionless inverse screening length A is given by

Q, Qi cosh(QO/2T) —cosh(Qou/2T)
A (Qi, Q, )=A, du exp — (1—u )—

4T Qp sinh(QO/2T)

It should be noted that for 0 &K & 1, that is, 0 & k, & m sp/iil the phonon emission process is prohibited.
The expression for the relaxation rate due to the impurity scattering is

fIO~K
~

o BIO [Qi+A (Qi 0)]
+

[Qi+4K +A (Qi 2K)]

(4.5)

(4.6)

(4.7)

1 Ze

4~@pm &&p
(4.8)

If we assume that the electron occupation f - is sim-
O, k

ply a Boltzmann distribution, then the power absorption is
proportional to

I;(K)= '

A;n;

QoiK[
'

A;n;

200/K
i

'

(5.1)

(5.2)

~ ne ~
dK exp( K /T)I"—(K)

nteT 1/2 0 (~ ~ )z+rz(K)

(4.9)

where r(K}=r, (K)+r~+(K)+r~ (K).
The electron density n, is a function of temperature in

thermally generated cyclotron resonance. At low tem-
peratures the carriers are sometimes generated by optical
excitation: In such cases n, is a function of the intensity
of incident light.

An analysis of the above equations shows that the main
contribution to the linewidth from the impurity scattering
arises from the following ranges:

0.2ApQO T, E (2+2QO

ApOpTr, (K)= ', n, &K'&2+2n,

ApOT

2iK
f

(5.3}

(5.5)

If we further assume the high-teinperature limit
Qp » T»Qp, then the phonon-occupation number1/2

N =[exp[Q, (Q, 2K)/T] ——1] ', which appears in Eqs.
(4.2) and (4.3), can be approximated by T/Q, (Q, —2K)
and the phonon contribution to the relaxation rate is

A, ((Qp, (4.10)

which says that n, must be much less than n„[Eq. (1.1)].

V. QUALITATIVE BEHAVIOR

In order to demonstrate the qualitative behavior of the
linewidth as a function of magnetic field and temperature,
we consider various restricted ranges.

K(T'i, Q, =0,2K, Qi(Qp

For the phonon scattering in the high-temperature regime,
Op » T »Qp, the important ranges are1/2

K(T'' Q &Te'' Q (0 '

With the use of these values and the fact that A & A„we
see that, in the quantum limit, screening is negligible if

'V=XI +TP (5.6)

where y; and yp are the linewidths which would occur in
the presence of impurity scattering and phonon scattering,
respectively. In this high-temperature region an analytic
expression can be obtained for the conductivity

These limiting expressions for the two different scatter-
ing mechanisms are similar for the high-K and
intermediate-K regions, but they differ considerably for
the small-E region. The ionized-impurity relaxation rate
diverges as K~O, whereas the inelastic nature of the pho-
non scattering provides a "cutoff" below K =2(200) '~ .

In the high-temperature limit this inelastic region
represents only a very small part of the K values which
contribute to the linewidth E&T. Hence I;(E—) and
I z(K) have, over most of the K region, the same K depen-
dence and, because of this, a form of Matthiesson's rule
holds,

A. No screening

If the electron density satisfies n, & n „(T,&),
screening is negligible, and we can obtain approximate ex-
pressions for the relaxation rates. The ionized-impurity
relaxation rate is

28 n&T zRe[0+ (co)]= e' Ei(z ),
CO —COO

g T 1/2+A g —1/2T —1/2
p p &~I' Pz=

(5.7)



DENNIS DUNN AND AKIRA SUZUKI

where E&(z) is the exponential integral. ' The full width these values, the relationships between B and T and the
at half-peak height is corresponding dimensionless quantities are

y=2. 561(g QOZ' ~ +g.n. Q T r
) (5 8)

This linewidth exhibits a minimum as a function of Qo
(and hence of magnetic field B) and the minimum

o=1.47X1o &,

The high-temperature region is specified by

96B))T) 6.4~B, (6.1)
y;„=5. 122(AqA;n; )

'~

occurs at

(5.9)
and the critical electron density n„, below which screen-
ing is unimportant, is in m

omin=
A;n;

ApT

' 1/2

(5.10)

It is important to note that the minimum linewidth is in-
dependent of temperature.

There are two approximations essential to the above re-
sult: The scattering is elastic and the phonon-occupation
numbers are given by their high-temperature limits. As
the temperature is lowered the elastic approximation
breaks down first at T=6~Qo and the approximation to
the occupation numbers breaks down at T=~Q~. We
can therefore be somewhat more precise about the lower
end of the high-temperature region,

Qo)) T) 6~QO . (5.11)

T ApT' ' (&n, &'-
64A,

(5.12)

When the appropriate expressions for Az, A; are substitut-
ed, this yields expression (1.2).

If the temperature fails to satisfy (5.11), then the pho-
non contribution to the linewidth is greatly reduced and
no minimum occurs: The linewidth is a purely decreasing
function of Qo (or B). At the transition region T= 6~0p,
a very asymmetric and shallow minimum occurs.

If a minimum is to occur, then consistency demands
that the condition (5.11) must be satisfied at Qo;„. In-
serting the expression for Qo;„gives a restriction on the

impurity density: The linewidth will have a minimum as
a function of magnetic field only if

n„=2.5)&10 BT . (6.2)

1.2~10' T (&n; &(2.0&10' T (6.3)

If these conditions on the temperature and impurity densi-
ty are satisfied then our "qualitative" theory predicts a
minimum linewidth (in Tesla) of

y;„=1.8/10 ' n;

which occurs at a magnetic field
1/2

=3.1X10-"—
T

(6.4)

(6.5)

Figure 1 shows the relaxation rate I (E), and its constit-

50

The assignment of the deformation potential D is a
problem: Published values of D span the range 7.2—45
eV. We have therefore regarded D as an adjustable pa-
rameter and have chosen it to give the best fit to the
linewidth data of Kaplan, McCombe and Wagner. ' The
resulting value for the deformation potential is (in eV)

D =60,
which is just beyond the upper end of the range of mea-
sured values. This result lends weight to the argument of
Tsidilkovskii and Demchuk that the commonly accepted
value, D =8, is much too small.

The restricted range of impurity densities which gives
rise to a linewidth minimum is then

B. Strong screening

If the electron density greatly exceeds n„(T,B), al-
though the expressions for the relaxation rates become
more complicated, we can extract the magnetic field
dependence

40

30

I;-Ap-8, I -Qp-83 . (5.13)
20

The linewidth is therefore a purely i'ncreasing function of
magnetic field for this range of electron densities.

VI. NUMERICAL RESULTS
10

We now turn to numerical solutions of Eqs. (4.2)—(4.9)
with application to InSb. The relevant data for InSb is
m*=0.0139m„@=17.64, ' Sp ——3775m, ', and

p~ =5780 kgm . Sp is calculated from the measured
elastic constants to be the rms angular average of the ve-
locity of the quasilongitudinal mode. With the use of

0 I

20 4,0 60 80

FIG. 1. Constituents I;(EC) and I ~(K) of the relaxation rate
in units of m So/2A: 8=0.5 T, T=4.5 K, n; =3.0)& 10' m
n, =4.0/10' m . (E=fik, /m*S0. )
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The predicted temperature variation is also somewhat
greater than the experimental limits. Both of these occur
because the experimental conditions are only just within
the high-temperature region (T=4.5 K is outside) at the
high-magnetic-field side, and hence inelastic effects reduce
the phonon contribution. However, in view of the sim-
plicity of the model, the agreement is as good as we have
any right to expect. In particular the reality in InSb is
complicated by a nonparabolic energy band and, more im-
portantly, by more complicated conduction-band wave
functions than is assumed in the model. It is also compli-
cated by (weak) piezoelectric scattering and by a Fermi en-
ergy which varies with temperature and magnetic field
and is very close to the bottom of the conduction band.

FIG. 2. Comparison of the theoretical and experimental
linewidths. Solid lines show the theoretical predictions; data
points indicate the experimental results of Kaplan et al. (Ref.
10). (n;=3.0&(10 m, n, =4.0)&10' m .)

uents I;(E) and I z (E) calculated for B=0.5 T
(0 =7350) and T=4.5 K (T=686.25). The characteris-
tic E ' dependence is evident for large E as is the inelas-
tic cutoff of the phonon contribution below

EC=(2+200)'~ =16 .

These values for B and T are just at the boundary of the
high-temperature region. The effects of inelasticity are
just starting to be significant.

Figure 2 shows the comparison of the computed
linewidths for a range of temperatures with the experi-
mental linewidths of Kaplan et a/. ' measured at 4.5 K,
but which are stated to be independent of temperature to
within the experimental accuracy over the range 4.5—15
K. %e have used n; =3)& 10 m and n, =4X 10' m
and we have ignored the observed variation of electron
density with magnetic field.

There is obviously a broad agreement between the
theory and the experiment together with some discrepan-
cies. The theory predicts minima which are shallower on
the high-magnetic-field side than the experimental results,
and, in particular, for T (6 K the minimum disappears.

VII. SUMMARY

%e have shown that, in agreement with Arora et al. '

even at low temperatures the cyclotron-resonance
linewidth due to acoustic-phonon scattering should not be
ignored, and that as a result of competition between the
phonon and ionized-impurity scattering a minimum may
occur in the linewidth as a function of magnetic field.
The minimum value of the linewidth is proportional of
n and is only slightly dependent on temperature. Even
away from the minimum only a weak temperature depen-
dence is predicted: On the basis of Eq. (5.8), if the
linewidth is set at its minimum value and the temperature
is then increased or decreased by a factor of 4, keeping the
magnetic field fixed, the linewidth is increased by only
25%. This is in substantial agreement with the experi-
mental results. ' '

In contrast to the theory of Arora et al. ' we have
predicated that such behavior should occur only for a re-
stricted range of impurity and carrier densities. This ex-
plains the absence of minima in other experiments. "'

In the numerical studies we have concentrated on InSb
but, of course, the theory applies (with somewhat less
qualification) to other materials. For example, in a sam-
ple of n-Ge with n;=n, =10 m at T=4.5 K, we
predict that a minimum in the linewidth should occur at a
magnetic field B=8.6 T.

*Present address: School of Materials Engineering, Purdue
University, West Lafayette, IN 47907.
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