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Optical selection rules in superlattices in the envelope-function approximation
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We show that the symmetry properties of the Bloch envelope functions in a superlattice inAuence
considerably the absorption and emission line shapes associated with interband transitions. Absolute
values of the absorption coefficients in superlattices are also discussed.

I. INTRODUCTION

Considerable attention has been devoted to the artificial
superlattices which can be achieved by molecular-beam
epitaxy or metal organic chemical vapor deposition. Up
to now, most of the theoretical works' have been devot-
ed to calculations of the dispersion relations along the
growth axis, but the properties of the superlattice wave
functions have been scarcely studied. They are, however„
of major relevance when evaluating the strength and the
shape of the absorption and recombination spectra. As-
suming perfect lattice matching between host materials, a
supcrlattlcc crystal displays two pcriodlcitics: thc natural
(dII) and the artificial (d). Usually, one deals with
d ~ado. The superlattice electronic states have been
described either by the tight-binding approach' ' or
within the framework of the envelope-function approxima-
tion. ' ' The former scheme focuses the attention on
atomiclike properties (i.e., at the do scale) and builds the
superlattice states from host atomic site to host atomic
site. The latter scheme takes the natural periodicity do
lllto Rccoullt by lllcalls of RII cffcctlvc-IIlass Rpploxllllatloll
(eventually multiband) whereas the superperiodicity d acts
upon the envelope functions which are slowly varying at
the scale of dII. The tight-binding calculations are exact in
essence but to be accurate they require quite elaborate
computational efforts that they are ill suited for actual
layer thicknesses (i.e., d »do). In the envelope-function
scheme, some microscopic (i.e., at the scale of do) infor-
mation is lost. In particular, the details of interfaces be-
tween two consecutive layers and the exact chemical na-
ture of actual host layers (e.g. , which are the chemical ele-
ments of the two terminating planes of a given layer) are
left undefined. In this coarse-grained description, which is
reasonable only for sufficiently thick host layers, each
layer is an effective medium of which only some gaps and
interband-matrix element are known. The electron
dynamics in the superlattice is described by the envelope
functions which are eigenstates of an effective (eventually
multiband) Hamiltonian. Again, the only microscopic in-
formation which has survived in the envelope-function
scheme is embodied into a few parameters (in practice, I
gapa, I spin-orbit coupling, and Kane matrix element)
which are known from experiments on bulk materials.
Dcspltc lts appal cIlt cl'lldcllcss, tllc cllvclopc-fllIlctlo11 ap-
proximation is in excellent agreement with experiments

[for both the GaAs-Ga(A1)As and InAs-GaSb systems].
This is not very surprising as long as the experiments have
been performed on crystals with d ~pdo for which the in-
terface planes represent a relatively minor detail compared
with the "bulk" of each host layers. An important conse-
quence of the smearing out of the atomiclike details in the
envelope-function scheme is the symmetry property of the
superlattice potentials. The superlattice potentials which
enter into the effective Hamiltonian governing the en-

velope functions are even with respect to the centers of the
slices of both host materials. In this paper we exploit this
property to derive a parity selection for the interband opti-
cal transitions (Sec. II). In Sec. III we present an analyti-
cal calculation of the interband-matrix element based on a
linear combination of atomic orbitals (LCAO) expansion
of the enuelope functions associated with the conduction
and valence subbands. The property found in Sec. II is
recovered and its influence on the absorption and emission
spectra is discussed in Sec. IV.

We consider a binary superlattice (SL) obtained by alter-
natively stacking layers of A material (thickness L„) and
layers of 8 material (thickness Lz). Two cases may be en-
countered.

(1) Either the same layers (for example, the 2 layers) are
quantum wells (QW) for both conduction and valence
states (Fig. 1). This situation, so-called "type-I" SL, is
met in the GRAS/Al„GRI „As system. In this case, the
corresponding wave functions are mostly localized in the
3 layers.

(2) Or the quantum wells for conduction (valence) states
exist in the A (8) layers (Fig. 1). This case, referred to as

type-II SI, is that of thc InAs-GaSb system.
In the following, we restrict ourselves to the envelope-

function description of the superlattice states. ' ' The
basic assumptions are the following:

(a) The A and 8 materials are assumed to be perfectly
lattice-matched.

(b) We are primarily dealing with III-V- and II-
VI—compound direct-gap materials. Since we want to cal-
culate superlattice states which are close enough from the
hosts I points, we assume that only the usual I 6, I 7, I 8
host-band edges significantly contribute to the superlattice
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FIG. 1. Modulation of the host-band edges along the growth
axis for type-I and type-II SL's.

wave function.
(c) The 1 -point —periodic parts of the hosts Bloch func-

tions u„(1 & v& 8) are assumed to be identical in 3 and 8
layers.

(d) Any inversion-asymmetry effect associated with the
zinc-blende lattice is neglected. This quasi-Ge model is
known to work very well for the cubic III-V and II-VI
compounds as far as I -like states are involved

Then the superlattice wave functions are written as

8

P(r)= g u, (r)F„(r),
v=1

where the superlattice envelope functions F,(r), slowly
varying at the scale of do, are the solutions of an 8 X 8 ef
fectiue Hamiltonian obtained by replacing k, in the bulk

quasi-Ge k p Hamiltonian by the operator —itic/Bz for
the kinetic energy and adding a superlattice potential ener-

gy term V (z) which is diagonal in v and represents the
jump of the vth band edge when going from the A materi-
al to the B material if flat band conditions prevail. Any
envelope function F, 1 & v & 8, is solution of a 1)& 1 effec-
tive Hamiltonian H obtained by projecting the 8&&8 ef-
fective Hamiltonian onto the vth edge. H only contains
even powers of 8/Bz, as can be easily deduced from Ref. 6.

Any microscopic details as those occurring at the inter-
faces (chemical nature of the terminating planes, interface
bond lengths, etc.) are washed out in the envelope-function
scheme. Such a scheme makes sense for thick host layers
(d »do), the actual situation, and is, in fact, in remark-
able agreement with experiments (both for the energies
and the parity selection rules in GaAs-Ga(A1)As QW's or
for the subband energies in InAs-GaSb superlattices). The
absence of layer-edge microscopic details has an important
consequence on the symmetry properties of the functions
F . Indeed consider two consecutive A, B layers. Let
O&, O+ be the centers of the A, B layers and bz, bz the axis
bisecting the A, B segments. The product RzRq of the two
reflections Rq and R~ with respect to b,z and h~, respec-
tively, is equal to a transition rd of the SL period
d =I.q+I.~.R~,R~ and rn commute with the effective
Hamiltonian H but not with each other. In fact, we have
[Rq, r~]=Rq(rd —1), [Rz,r~]=(1—rd)Rq, and
[R&,R&)=(rd —1)re '. We choose the Bloch representa-
tion where g'„'q(z) are simultaneously eigenfunctions of rd
and H with eigenvalues e' " and e'„'q, respectively. Here e
and h refer to conduction and valence states and n is a
subband index, while q is the superlattice wave vector
along the growth (z) axis. For q=O and q =n/d, which
corresponds to standing and not-traveling Bloch waves, all
these commutators vanish and we can choose the Bloch
envelope functions F, as eigenfunctions of Rz and Re.
The eigenvalues are +1, corresponding to wave functions
which are even or odd with respect to O&, O~. The rela-
tion

Rg Rg F~q =e q F~q

shows that the parity with respect to the centers of one
type of layer must be the same at q=O and q =m/d, and
that the parity with respect to the centers of the other type
of layer must be opposite at q=O and q =m/d (see Table
I).

To calculate the interband-matrix element, we make use
of the translational invariance of the effective Hamiltoni-
an in the layers planes:

z, ri)= g ~C,"„"qk U„(z, rz)e' ' "f'„'~k (z) .
V

(2)

In (2), rj and k~ are two-dimensional vectors in the
layer planes of area S. C~k are normalization coeffi-
cients and f~k the z-dependent part of the envelope func-
tion which varies slowly at the scale of do (but not of d).
For an electromagnetic wave propagating parallel to the
SI. axis, the interband-matrix element M„~ becomes pro-
portional to a sum of p~ optical matrix elements between
the quickly varying functions U multiplied by the over-

q=0
q =m/d

TABLE I. Truth table of the parity statements.
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FIG. 2.G. 2. Schematic envelope functions for conduction and valence ground subbands at q=O (solid lines) and q =m. /d {dashed lines)
in type-I (a) and type-II (b) SL's.

lap integrals between the slowly varying envelopes

M„~(q, kg)= gC" - C" - p

+d f2
dz *' z

vmq k&

(3)

does not hold if nonparabolicity effects become dramatic,
which occurs in semimetallic InAs/GaSb SL's (Refs. 6
and 9) when the first conduction and light-hole subbands
anticross. In this case, the complete calculation Eq. (3)
has to be performed.

III. EXPLICIT CALCULATIONS: TIGHT-BINDING
ANALYSIS OF THE ENVELOPE FUNCTIONS

where we have made use of the wave-vector conservation
for interband transitions in any perfect solid. For inter-
band transitions between the few low-lying subbands asso-
ciated with the host conduction and valence bands, the
summation in Eq. (3) can be truncated to the few band
edges which contribute significantly to (2). Let us for sim-

plicity assume that the two hosts conduction and valence
bands are well energy separated, or equivalently that the
host bands are parabolic. Then in Eq. (3) only v (identi-
cally equal to conduction) (S-like) and v' (identically equal
to valence) (P-like) come into play. For type-I systems, we
assume that f„'q and f~q both retain the same symmetry
with respect to Oz at both q=0 and q =n/d Then if th.e.
transition is parity allowed at q=0 (which is the case if
n +m is even) it will remain parity allowed at q =m. /d, as
illustrated in Fig. 2(a). On the other hand, in a type-II SL
f~ (respectively, f~q) is expected to retain the same parity
with respect to O~ (respectively, Oz) at both q=0 and
n/d If the transi. tion is parity allowed at q=0 [say, that

ef~ and fmq are even with respect to Oz as in Fig. 2(b)),
then this transition becomes forbidden at q =au/d be-
cause in the integral in Eq. (3) f~ has remained even with
respect to O~, whereas f~z has become odd with respect
to the same point. Note, however, that this conclusion

In most cases of actual interest, the SL subbands widths
are smaller than the energy separation between the various
levels of the isolated quantum wells from which they ori-
ginate. It is then reasonable to use a tight-binding descrip-
tion of the envelope functions f,~k (z). The superlatticev5$

potential is written as a sum of atomiclike potentials:

V, (z) = g u, (z —nd),

V, (z) = g u„(z nd crd/2), — —

u, (x)= —V, if
~

x
~

&L„/2 and 0 elsewhere, (4)

u, (x od/2) = V—„
if

~

x —od /2
~

& [I.z + ( I o)L& j/2 and 0 els—ewhere,

for conduction- and valence-band edges, respectively. V,
and V„are positive quantities. The index o is equal to 0
(I) in type-I (type-II) superlattices. We again restrict our-
selves to the parabolic case. The isolated quantum-well
problems are assumed to be solved: Let P'„k (z —jd) and
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f„'q(z) = ~ g P'„(z —pd)e'@'
nq + n

f"q(z) = g (i„"(z—pd o.d—/2)e'6'

where N is the (large) number of SL unit cells in the crys-
tal. The overlap integral (f„'~

I

f"
~ ) is equal to

P„(q)= g e's)' p„(p),
p = —(x)

(6)

(t')~k (z —jd —od/2) be the eigenfunctions of the bound

states of the conduction- and valence-isolated quantum
wells at the site labeled j, with the eigenenergies A.'„k,n &~

Since the Hamiltonian of the quantum-well prob-

lem commutes with the reflection with respect to the
center of the well, the P„ functions have the parity ( —1)"
with respect to this point. Generally speaking, the kz
dependence of the P's functions is weak and, for the sake
of simplicity, we will ignore it in the following. In the
simplest tight-binding scheme, the P„'s functions centered
at different sites are orthogonal and the transfer integrals

(p„(z id—)
I
u(z —id)

I
(t„(z jd))—

vanish unless j=i+1. The SL envelope functions are
written as

None of the p 's vanishes and all are exponentially small,
being nonzero only through the leakage of the P's func-
tions outside the wells where they are centered. As in (a)
we recover explicitly the general property found in Sec. II.
If the transition is parity allowed at q=O (m+n even),
then it becomes parity forbidden at q =n/d. Reciprocal-
ly, if m+n is odd, the transition is allowed at q =~/d
and forbidden at q=O. In contrast with type-I systems,
P„~(q) depends strongly on q. To the lowest order, we
have

P„(q)= '
2p„(0)e '((d~2cos(qd /2), m +n even, (11)

2ip„(0)e 't ~ sin(qd/2), m +n odd . (12)

IV. ABSORPTION AND EMISSION SPECTRA
IN SUPERLATTICES

A. Absorption

The q dependence of the interband-matrix element
found in type-II SL, as well as its absence in type-I SL,
drastically affects the interband absorption and emission
line shapes. Besides, the orders of magnitude of the
p„~(0)'s are so different in the two types of SL's that a
measurement of the absorption coefficient appears to be
sufficient to determine quite unambiguously which type of
SL is under investigation.

p„(p)= f dz P„'(z)P" ~(z —pd —od/2) .

A. Type-I systems

For these systems o.=O and with the use of the symme-
try properties of the P's, Eq. (6) can be rewritten as

2 g cos(qpd)p„(p), n +m even,

P„(q)=p,„(0)+ '

2i g sin(qpd)p„(p), n+m odd .
p=1

(9)

p„~(0) is nonvanishing only if m +n is even, the diagonal
term m =n being much more intense than the off-
diagonal ones. For p&0, p„~(p) has no selection rule but
is exponentially small as compared to p„~(0). To a very
good approximation P„(q) is independent of q and equal
to p„~ (0). In Eqs. (8) and (9) we have recovered the exact
properties found in II: If at q=0 the transition is parity
allowed (m + n even), it remains allowed at q =m/d.
Symmetrically, if it is forbidden at q=O (m +n odd), it
remains forbidden at q =~/d.

B. Type-II systems

Here o = 1 and we may rewrite Eq. (6) as

For a transition between given valence
I
umq ) and con-

duction
I
cnq ) states, the absorption coefficient reads

m pEpE'p CCOO

&& g I Pn~(q)
I '@&:k~q emk~q

k~

where mp is the free-electron mass, e, the SL relative
dielectric constant, ~ the photon energy, and 0 the
volume of the sample. P is the component of electron
momentum along the polarization axis. A twofold spin
degeneracy has been taken into account. The energy
differences between conduction and valence states appear-
ing in the 6 function in Eq. (13) can be written as

e'„ki~ —e~k, ~
——e~ (1 o) + (e—i) —V, )o.

e h+~n, k&
——0+ ~m, k&

——0

+2(t„' t" )cos(qd)+))t'k) /2M—„

(14)

where M„m is the electron-hole reduced mass, possibly
n, m dependent, for the motion in the layers planes. ez
(e2) ) is the A (B) material band gap and t„' and t~ are the
transfer integrals

t„'("')——(0'„("')(z)
I
u, („)(z)

I

4''„'("')(z —d) ), (15)

P (q ) g e QPcf[ 1 + ( 1 )n +m —i ( 2P + I )qd]

p=0
(10)

where t„' is negative (positive) when n is odd (even)
whereas t is positive (negative) when m is odd (even). To
be specific let us consider a SL built from III-V or II-VI
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compounds. For these materials we have

E,= J
(S

f P„JX)
J
'-23 CV .

PFE 0
(16)

A transition from heavy-hole to conduction subbands in-
volves —,

) (S
~
P„~X) ), while light-hole to conduction

subbands involves —,
'

) IS ~P ~X) [ . The absorption
coefficient associated with a heavy-hole to conduction
subbands transltlon 1s equal to

K„(a))= e ~a~ &p

4CP III O C„CCO%

C

0
~~
~ 2
0
CO

O.S

I a~
4~4 %WIN+ ~

0 k

Xf dxP„
L

F{An) —Es(x)),
I

type II

Es(x) =cz (1—o )+(cII —V, )tr+ A'„k, .

+I," k, o+2(t„'—t~)cos(mx) .

FGI' light-hole to conduction sUbbands tI'ansi'tlons, this ex-
pression should simply be divided by 3. Retaining only
the lower terms in the Fourier expansion of the overlap in-
tegral P„(q) [Eq. (6)], the integral in Eq. (17) is easily
cvaluatcd. %c cxprcss thc photon cncrgy in diIDcnsionlcss
Units

C0
~ ~
CL g
C
CA

~NW

yseO+~
g

~ =c~(I+IT)+(cII V, )I—7+A,'„„

+&,k =o+2(t„—t" )(1—2$) .

For odd-to-odd transitions, for example, the absorption
cocfficlcIlt (17) Is found to be equal to

0, g(0
&„(t0)=—p„(0) arccos(1 —2$), 0&/&1

1T
Ir, g&1,

g~II ( )
~

11 (0)~p

C

0, g(0
X *arccos(1 —2$)+2@'g(1—g), 0(/&1 (21)

g&1,

for type-I and type-II superlattices, respectively. C is the
prefactor of the integral in Eq. (17). In both types of SL's
the absorption coefficient becomes flat (if we neglect the
slight co dependence of C) once (g& 1) the photon energy
exceeds the threshold energy (/=0) plus the sum of the
bandwidths 4

)
t„'

(
+4

(
t"

~

. The plateau is characteristic
of a two-dimensional behavior in the layer planes, hence
the proportionality of X to the transverse mass M„
Close to the onset of the absorption ($~0+), the superlat-

tlcc bchavcs like a three-dlmenslonal~ anlsotroplc matcrI. al
characterized by reduced masses m„' and m„~~~ perpendic-

ular and paraBC1 to the superlattices axis, respectively,
with

M„~~ =Iri'/2d'( —t„'+t" ) . (22)

In type-I SI. s the transition to a two™dimensional behavior
at g= 1 is eye marked by a Van Hove singularity as the
optical absorption is proportional to the joint density of
states of the two bands [Fig. 3(a)]. This singularity is
blurred is type-II SL's by the q dependence of the overlap
illtcgral whlcll VRIllsllcs Rt thc zollc boundary [Fig. 3(b)].
Note, however, that the absorption line shape is not neces-

sarily a decisive criterion for establishing which type of
superlattice is under investigation because of the unavoid-
able existence of damping mechanisms. A rough, qualita-
tive, description of these effects on the absorption line

shapes is obtained by replacing in Eq. (17) the step func-
tion F(x) by —,

' +m. 'Rrctan(x/I ), where I is the
broadening energy. The influence of 6, the dimensionless

damping parameter defined as

6 =(I /2)( —t„'+t" ), (23)

Is sllowil 011 Flg. 3(a) Rild 3(b). Tllc type-I Rlld type-II ab-
sorption line shapes become very similar for 6&0.5.
Since I is at best 2—3 meV, SI. bandwi. dths of at least
5—10 mcV are required to separate the broadening in-

FIG. 3. Absorption line shapes in ape-I (a) and ape-II 0~
SL's. g is the reduced photon energy and 6 the phenomcnologl-

cal dafnping parameter, as defined in tlM text.
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duced from the superlattice-induced contributions to the
absorption tails which are always observed below the two-
dimensional-like plateaux.

However, a clear-cut difference still exists between
type-I and type-II SL's absorption, which is linked to an
"atomiclike" property: we have shown in Sec. III that
p'„~(0) is much larger than p„" (0) because of the spatial
separation of the carriers which occurs in type-II systems.
Assume that all the physical parameters (but the p 's) are
the same in a type-I and a type-II SL. Far enough from
the threshold, the absorption coefficients are flat and we
have

K„(co)/E„(ci))=2ip„(0)
i /ip, (0)

i

tyPe l

The p's can be easily evaluated from the solution of the
isolated quantum-well problems. For instance, for
n =m =1 and the parameters of the GaAs/Ala 2Gao sAs
system: m, =0.067mo, m~~ ——0.47mo& V, =0.2 eV,
V„=0.035 eV, I.q ——102 A, and L~ ——92 A, we have found

~ ptt ~

—1 while in a type-II system with the same band
parameters, we get

~

p't't
~

—1.7X10 . The prefactor
C/m in Eq. (20) is equal to 2.8X10 cm ' with e„=13.1
and fuo=1.6 eV. For a type-II SL the absorption coeffi-
cient is then very small ( &10 cm ') and requires rather
thick samples to be revealed. The absorption coefficient in
a type-I SL is much larger. Still it is smaller than the ab-
sorption coefficient for bulk-A material. For multiquan-
tum well (MQW) structures in the thick well limit, fo
stance, we have

lg

Q
~ ~
40
M
'E 0.5
UJ

+11(r 1)/+bulk(C 1) L'A /Lg +~B

I ln
FIG. 4. Reduced band-to-band emission line shapes for type-I

(a) and type-II (b) SL's. 8 is the reduced thermal energy as de-

(25) fined in the text.

B. Emission

%ith the same parameters as used in the previous sec-
tions, and assuming nondegenerate distributions for elec-
trons and holes (room-temperature band-to-band recom-
bination), the energy emission spectrum is given by

A(co)=ace e ~~ KII '(g),
where 8 is the dimensionless thermal energy

8=kT/4(t, t;) . —

(26)

The details of the SL band parameters are included in the
a coefficient, which may slightly depend on the energy in
case of strong nonparabolicity. Figures 4(a) and 4(b) show
the dimensionless emission spectra A(co)/ato for type-I
and type-II SL's, respectively, and for two values of 8,
8=0.5 and 1. It is clear on these figures that for a given
temperature, the maximum of the emission line occurs at
a lower energy in a type-II SI. than in a type-I SL, even

Miller e& a/. ' have recently measured the absorption coef-
ficient of GaAs-Ga(A1)As MQW's. The absorption coeffi-
cient in MQW s is distinctly smaller than the bulk GaAs
one, in qualitative agreement with the previous discussion.
In semiconducting InAs-GaSb type-II SL's Chang et al.
have found absorption coefficients of the order of few 10
cm at the onset of the superlattice band-gap absorption.
Our calculations are in qualitative agreement with these
experiments.

though characterized by the same bandwidth. Because of
the Van Hove singularity at q =rI/d, the type-I emission
spectra exhibit a spike at g= 1. Such a spike is blurred by
the q dependence of the optical matrix element in type-II
systems. Hence the determination of effective electron
temperature, SL band parameters, etc., obtained from a fit
of the band-to-band recombination line shape is crucially
dependent upon a correct description of the q dependence
of the interband-matrix element and therefore of the SL
wave functions.

V. CONCI. USIQN

%'e have investigated theoretically the interband optical
properties of superlattices. The superlattice electronic
states have been described by the envelope function ap-
proxirnation. The q dependence of the optical matrix ele-
ment is negligible for type-I SL s while it is crucial for
type-II systems. %e have given a quantitative discussion
of the absorption coefficient which should be relevant to
the determination of the nature (type I or type II) of a
given SL (Ref. 10) as well as to the discussion of the rela-
tive strengths of magneto-optical transitions in SL's.
However, in high-quality type-I superlattices, excitonic ef-
fects have been observed, " which considerably influence
the absorption lineshapes.

Finally, the parity selection rules derived in Secs. II and
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III exist only because we have neglected the noncen-
trosymmetric nature of the III-V (or II-VI) unit cells as
well as the effect associated with layer edges. These two
approximations may seem severe at first glance. However,
the quasi-Ge model is known to work very well in bulk
II-V and II-VI materials (it is indeed extremely hard to
measure the strength of the inversion asymmetry constant
in bulk III-V materials). As far as edge effects are con-
cerned (i.e., that the terminating planes are made of dif-
ferent atoms in the right-hand and left-hand sides of a

given layer), they should be small for thick (i.e., actual)
layers. In fact, the only transitions seen in absorption ex-
periments performed on isolated QW structures" fulfill a
parity selection rule (b,n even) as if indeed the parity
operator Rz were commuting with the effective Hamil-
tonian.
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