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With a y-ray diffractometer, eight extinction-free structure factors for beryllium have been mea-
sured on an absolute scale with an accuracy of about 0.5%. These data are in good agreement with
another recent measurement by Larsen and Hansen using x rays, but in serious disagreement with
an earlier set of x-ray data due to Brown. The y-ray structure factors are compared with results of
SCF-HF-LCAO (self-consistent-field, Hartree-Fock, linear combination of atomic orbitals) and
APW (augmented-plane-wave) band-structure calculations. Theoretical and experimental structure
factors are in reasonable agreement except for the two lowest-order reflections. A significant im-
provement of the APW results may be obtained by going beyond the muffin-tin approximation.
Renormalized-free-atom and OPW (orthogonalized-plane-wave) model calculations show that the
structure factors are sensitive to the average form of the wave functions, whereas Compton profiles
mainly depend on the orthogonality of the wave functions.

I. INTRODUCTION

The present y-ray diffraction measurements on berylli-
um were inspired by the standard x-ray diffraction mea-
surements by Larsen and Hansen,! the earlier neutron-
diffraction study by Larsen, Lehmann, and Merisalo,” the
Compton scattering and absolute x-ray structure-factor
measurements by Manninen and Suortti,> and the Comp-
ton scattering experiments by Hansen, Pattison, and
Schneider.*

The x-ray data by Larsen and Hansen,! when scaled on
high-order reflections by means of least-squares refine-
ment techniques, show a discrepancy with an earlier set of
x-ray data, measured on an absolute scale by Brown.> The
purpose of the y-ray measurements was to obtain accu-
rate, extinction-free structure factors on an absolute scale
for a few of the low-order reflections (sind/A <0.5 A ')
with the intention of using these structure factors to check
the scale of the relative x-ray measurements by Larsen and
Hansen.

Suortti® measured the three lowest-order reflections for
beryllium on an absolute scale using molybdenum and
copper Ka radiation. By comparing the measured reflec-
tivities for different wavelengths, and for different polari-
zations of the incident beam, the integrated intensities
were corrected for effects of both secondary and primary
extinction. His results were also very different from those
obtained by Brown.

Larsen and Hansen' calculated the charge-density dis-
tribution in beryllium from their x-ray diffraction data
and did not find marked evidence of anisotropy in the
bonding. This result is in disagreement with the con-
clusion drawn by Brown in the discussion of her data, as
well as with the findings of Stewart’” and Yang and Cop-
pens® from their interpretation of Brown’s data. The
valence densities derived from Brown’s data were almost
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identical to the results of an augmented-plane-wave
(APW) calculation on beryllium.® A recent APW calcula-
tion by Redinger, Bauer, and Hansen!® shows the same
features in the electron density distribution as the earlier
calculation, but this time x-ray structure factors have also
been obtained from the wave functions.

Recently, Dovesi, Pisani, Ricca, and Roetti,!! using a
crystal linear combination of atomic orbitals Hartree-Fock
(LCAO-HF) method, have calculated band structure, form
factors, and Compton profiles for beryllium metal. They
do find that p-like states are important in the bonding, but
they do not find a prevalence of one p orbital over another
from their calculations.

In the following, we shall center our discussion on the
form factors of beryllium obtained in the y-ray experi-
ment. In Sec. II, we give a short description of the experi-
ment in general and present measurements on imperfect
silicon samples which we use as a test of the reliability of
our experimental method. The actual measurements on
beryllium single crystals are described in Sec. III, and the
present results are compared with other experimental
work in Sec. IV. As with the structure factors, Compton
profile measurements using high-energy ¥ radiation only
depend on the ground-state wave functions, and we there-
fore compare both experimental structure factors and pre-
vious Compton profile measurements with the theoretical
predictions by Dovesi et al.'! In order to get a better
understanding of the origin of the gross features in the ob-
served quantities, we have, furthermore, calculated both
structure factors and Compton profiles from simple crys-
tal wave-function models (Sec. V).

II. EXPERIMENTAL

The structure-factor measurements were carried out on
the four-circle y-ray diffractometer at the Hahn-Meitner-
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Institut, described by Schneider, Pattison, and Graf.!> A
neutron-activated gold source delivers ¢ radiation with a
wavelength of 0.0301 A and with an energy resolution
AL/A=10"% The angular resolution for an incident
beam of 2 mm diam equals Aw=2.64". All reflections are
measured in symmetrical Laue geometry, and both the
diffracted and transmitted intensities are measured in or-
der to obtain the integrated reflectivities on an absolute
scale. The Bragg reflections are step-scanned in the o
mode. The intrinsic germanium detector of the diffrac-
tometer allows excellent energy discrimination, and in
consequence the background in the measurements is very
low (0.1—0.01 counts/s, depending on the scattering an-
gle). In this work, the transmitted intensity is measured
before and after each set of scans of a reflection, and each
time with the setting of the crystal corresponding to the
beginning and the end point of the scan, i.e., well away
from the Bragg position.

The measured intensities were corrected for coincidence
loss, which mainly affects the transmitted beam intensity.
The dead time of the counting chain was determined to
6.9 us with a standard deviation of 0.4 us using the
method of Chipman.!® The intensity of the incident beam
is of the order of 4 10° counts/s, resulting in coincidence
loss corrections of 2—3 %. In the measurements reported
here, the peak reflectivity was always less than 0.2% re-
sulting in a maximum peak count rate of the order of 5
counts/s. Therefore, counting statistics is the main limit-
ing factor for the accuracy of the y-ray structure-factor
measurements on beryllium.

For an ideally imperfect single crystal, the integrated
reflectivity Ry, is related to the structure factor F
(neglecting thermal diffuse scattering) as follows:

Ryin =0T /cosbp ,
with
2
ro)LF A‘

where r, is the classical electron radius. A represents the
wavelength, V the unit-cell volume, and T, the crystal
thickness. Ojp is the Bragg angle, and

P(6p)=~+[1+cos%(265)]

P(63), (1

Q:

is the polarization factor.

The importance of a possible correction of the measured
Bragg intensities for secondary extinction can be estimat-
ed on the basis of Darwin’s extinction theory.'* For
symmetrical Laue geometry and a Gaussian mosaic distri-
bution function, the measured integrated reflecting power
R,, can be expressed as

Ry =Ryme 550 g =(21n2/m)'2 /ey, @)

where w), is the full width at half maximum (FWHM) of
the mosaic distribution which can be measured by y-ray
diffractometry whenever w,; is larger than the angular
resolution of the diffractometer. In the present case it
turns out that the effect of the reduction of the measured
integrated reflecting power due to secondary extinction on
the experimental structure factors is always much smaller
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FIG. 1. Silicon rocking curve for (11 1) reflection. Vertical
scale gives the reflectivity in units of 0.1%. Solid curve shows a
Gaussian fit to the observed reflectivity curve.

than the statistical error of our experiment.

In order to check the reliability of the structure factors
obtained using our y-ray diffractometer, we measured two
reflections on imperfect silicon crystals prepared by A.
Freund at the Institut Laue Langevin (ILL), Grenoble.
The experimental structure factors are then compared
with the very accurate results obtained by Aldred and
Hart!’ on perfect Si single crystals using the Pendellésung
method. In Fig. 1 we show one of the measured y rocking
curves. We only measured the two lowest-order reflec-
tions, i.e., (111) and (220), in order to make sure that
thermal diffuse scattering constitutes an insignificant part
of the diffracted intensity.

Table I shows the mean structure-factor values obtained
from two series of measurements. Each reflection was
measured for four different settings. Between the w scans,
the crystal was turned 0.5° around the scattering vector.
In agreement with earlier estimations!® we do not find any
evidence that our measurements are biased by multiple
Bragg scattering.

The major contribution to the random error on the re-
sults comes from the determination of the crystal thick-
ness which was measured with a micrometer screw gauge.
The miscut of the crystal is determined on the diffractom-
eter looking at the reflection from a polished surface of
the sample of a laser beam which is parallel to the y-ray
beam. Because of the low scattering angles (63 <0.5°),

TABLE 1. Silicon structure factors.

h k 1 FAH)? F(y)P
1 1 1 60.04(3)° 60.02(18)°
2 2 0 67.08(7)° 67.15(20)°

2F(AH) from Aldred and Hart (Ref. 15).

5F(y) from present study.

°The estimated standard deviations in parentheses are for the y-
ray data mainly due to the uncertainty in the measurement of

the crystal thickness.
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the miscut may be taken into account by modifying the
thickness T in Eq. (1).

In Fig. 2, the resulting structure factors are compared
with the values obtained by Aldred and Hart (Ref. 15,
Table 2) on perfect silicon crystals, the effect of thermal
vibration was included using the Debye-Waller factor
B =0.4613 A? determined by Aldred and Hart. The
agreement is found to be excellent with the Aldred and
Hart values falling well within one standard deviation of
the average values of the y structure factors. Since we
used the identical procedure for the collection of the beryl-
lium data, we consider this an indication of the accuracy
of the data presented in the following.

III. BERYLLIUM STRUCTURE-FACTOR
MEASUREMENTS

Beryllium single crystals were grown at and kindly sup-
plied by the Max-Planck-Institut fiir Metallforschung,
Stuttgart. Two plane-parallel plates had been cut with
spark erosion. One had its faces perpendicular to (100)
and was 2.58 mm thick, the other one was cut perpendicu-
lar to (1 10) with a thickness of 2.94 mm. The (100) crys-
tal had been etched so that it was about 0.2 mm thinner
than cut in order to ensure that the intensities were not af-
fected by poor surface quality. Inspection of the crystal
under a microscope showed only a very slight unevenness
of the surface, certainly less than the error of measure-
ment of the thickness which is of the order of 0.01 mm.
A comparison of the intensities for the (002) and (004)
reflections which could be measured on both samples indi-
cated that the error in the thickness determination was
smaller than 0.5%.

Each reflection has been measured in different volume
elements of the sample and possible bias of the intensities

F(2,2,0)
68.00
I 1 . l
67.00 i I t 1 L
F11)
60.50
l I | T 3
T I
59.50

7-Ray measurements A &H.

FIG. 2. Comparison of the single measured factors wth the
results of Aldred and Hart (Ref. 15) denoted A & H. Error bars
show plus or minus one standard deviation. Horizontal lines
represent the average value of the y-ray measurements.

due to multiple scattering was checked by rotating the
sample around the scattering vector. The resulting struc-
ture factors are given in Table II. The rocking curves ap-
peared as single or double peaks. The peak widths are
about 3'. Taking into account the angular resolution
(FWHM=2.64'), the width of the mosaic distributions is
of the order of 1’. The maximum observed peak reflec-
tivity was 0.17% [for the (002) reflection] which for the
intrinsic diffraction pattern corresponds to a peak reflec-
tivity of about 0.5—1.0 %. We therefore expect secondary
extinction to be small. Using Darwin’s extinction theory
for the (002) reflection, we calculate an extinction factor,
y =0.994. In Fig. 3 we show four rocking curves for dif-
ferent volume elements of two crystals. Curves (a)—(c) are
measured on one crystal and (d) on the other. The values
obtained for the structure factor F(002), are 3.35, 3.32,
3.32, and, 3.31, respectively, with estimated random errors
of 0.02. The good agreement between these four measure-
ments is another indication that extinction is of minor im-
portance for our data.

IV. COMPARISON OF EXPERIMENTALLY
DETERMINED STRUCTURE FACTORS

In the Introduction we gave a list of previous experi-
ments. In Fig. 4 we have shown the deviation of the
structure factors measured by Brown,’ Suortti,’ and the
present y-ray data from those by Larsen and Hansen.!
Brown’s data are on the average 7% lower than Larsen’s
and with as high a deviation as 11% for the (002) reflec-
tion, which is of the strongest reflection. The y-ray re-
sults do not deviate significantly from Larsen and
Hansen’s x-ray values. The agreement between the present
data and Suortti’s is good, except for the lowest-order re-
flection. The random errors of Suortti’s data are close to
1%. Since there is no overlap of the y-ray data set and
the x-ray data set by Manninen and Suortti® we refrain
from discussing their results.

Based on the results of the present work, one is led to
suspect that Brown’s data are not free from extinction as
she assumed. These data were measured in equatorial
transmission geometry and so Egs. (1) and (2) also apply
to that experiment. In order to test Brown’s hypothesis of
insignificant extinction we have plotted In(Fgow/F,) as
a function of QTy/2cosfp for the reflections which
Brown measured on an absolute scale (Fig. 5). Q is calcu-
lated using the y-ray structure factors. This plot should

TABLE II. Beryllium structure factors from present study.

h k ) F(standard deviation)
0 2 3.320(7)

0 0 4 2.196(10)

1 0 0 1.833(6)

1 0 1 2.828(7)

1 0 2 1.455(11)

1 0 3 2.168(12)

2 0 0 1.214(7)

1 1 0 2.659(18)
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FIG. 3. Beryllium rocking curves for the (002) reflection from different parts of the samples. Vertical scale gives the reflectivity

in units of 0.1%.

(% deviation)
5 -

e
S
For—

10 sin@/ALA")

o
——bt
———— TN

-5} o o
o o
L oo
o o
]
o o O
&
o
o o
g o
o o
o
o
a0 - ]

o

FIG. 4. Deviation from the x-ray structure factors measured
by Larsen and Hansen (Ref. 1) of the measurements by Suortti
(Ref. 6), O; by P. J. Brown (Ref. 5), [J; and in the present experi-
ment, ®. Error bars show plus or minus one standard deviation.

result in a straight line of zero slope if extinction is negli-
gible, since the following relation should hold under the
assumption of homogeneous isotropic Gaussian mosaic
distribution:

In(Fgroun /F, ) =In(scale) — +8QT,/cosby .

“Scale” denotes a possible scale-factor error in either the
Y- or the x-ray data set.

For both of Brown’s crystals we observe a reasonable fit
with such a functional form (Fig. 5). For one of the sam-
ples, we conclude that extinction is unimportant, but that
the scale factor is in error. For the other extinction is
serious and there is no significant scaling error. The
predicted mosaic spread is, in the latter case, wy =3'+1".
Because of all the assumptions involved in the above
analysis, we can only take it as an indication that extinc-
tion may be serious in Brown’s data. This observation is
in line with the work by Suortti® who finds that primary
as well as secondary extinction is likely to play an impor-
tant role for x-ray measurements on beryllium samples of
the thickness used in Brown’s experiment. It should be
noted that mean-square amplitudes of thermal vibration
deduced from Brown’s x-ray data far exceed values calcu-
lated on the basis of later diffraction studies which all give
values in good agreement with the results of the short-
wavelength neutron-diffraction study of Larsen et al.2 In
view of the serious doubts cast on Brown’s x-ray structure
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FIG. 5. Behavior of In(Fp /F, ), where Fy is the (Ref. 5) abso-
lute structure factor measured by Brown (Ref. 5) and F, is the
structure factor from the present study. @ corresponds to mea-
surements by Brown on a crystal slab cut perpendicular to [110],
and O corresponds to those cut perpendicular to [001].

factors concerning scale and extinction we will in the fol-
lowing analysis concentrate our attention on the more re-
cent sets of structure factors.

The crystal structure of beryllium at room temperature
is hexagonal-closed packed with two atoms in the unit cell
in positions with coordinates +(5,%,%+). The structure
factors F(hkl) can be described by the expression

h—k
3

sinf

F(h,k,)=2f X

0s21r +% T (h,k,l) ,

which then defines the experimental atomic form factor f.
The Debye-Waller factor T'(h,k,I) is calculated using the
vibrational amplitudes obtained in the neutron-diffraction
analysis by Larsen et al.> Since we are only looking at

df (electrons)

015k {’

low-order reflections, the uncertainty in the thermal pa-
rameters due to thermal diffuse scattering are relatively
unimportant compared with the experimental errors in the
x-ray and y-ray experiments. We may then compare the
“crystal form factor” with the form factor for the free
atom, and here we shall use the HF form factors.!” The
differences between these and form factors from correlat-
ed wave functions!® are small for sin6/A>0.25 A ~1,
which is at the attainable region of momentum transfer in
the crystal.

The present experiment shows only small deviations
from a free-atom model (Fig. 6). The most pronounced
disagreement is for the (100) reflection which we find to
be significantly stronger than predicted by the free-atom
form factor (f —faom=[0.07(1)]e). Larsen and
Hansen’s x-ray form factors show similar deviations as
the y-ray form factor from the free-atom values. The
form factors corresponding to the three low-order struc-
ture factors measured by Suortti also deviate in the same
manner from the free-atom form factor, and actually the
deviation for the (100) structure factor is even more pro-
nounced (see Fig. 6).

V. COMPARISON OF EXPERIMENTAL FORM
FACTORS AND COMPTON PROFILES
WITH THEORETICAL CALCULATIONS

Dovesi et al.!! have calculated both band structure,
structure factors, and Compton profiles for beryllium. In
Fig. 7 their form-factor results are shown as deviations
from the free-atom form factor. In the same figure we
once again show the deviation of the y-ray form factors
from the free-atom form factor.

The largest disagreement between this theory and the
present experimental form factors is found for (010), the

o0t 7
i
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L ¢ ng
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o1 02 3 foe T PP 4906
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FIG. 6. Deviation of experimental form factors from the free-atom HF form factor (Ref. 17) as follows: Suortti (Ref. 6), O; Lar-

sen and Hansen (Ref. 1), O; and present experiment, ®.
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FIG. 7. Deviation of the theoretical form factors from the free-atom HF form factor as follows: HF LCAO of Dovesi et al. (Ref.
11), O; and APW of Redinger et al. (Ref. 10), 0. Also shown are the present experimental values, @.

lowest-order reflection, but the trend relative to the free
atom is the same, both having higher values. For the
(002) reflection the theoretical value is a little above and
the experimental a little below the free atom, whereas the
agreement is quite close for the third reflection, (01 1).
The experimental deviations for the following reflections
up to sinf/A=0.5 A ~! tend to lie above the curve of
Dovesi et al., and the experimental values are in closer
agreement with the free-atom model than the results by
Dovesi et al. are.

In Fig. 7 we also show the results of the APW calcula-
tion by Redinger et al.!® It is seen to be in about as close
an agreement with the present experiment as the HF cal-
culation. For the lowest-order reflections the experimen-
tal form factors fall halfway between the theoretical ones.

In the following we shall present calculations of form
factors and Compton profiles from simple models in an
attempt to find the origin of the gross features that we
have observed. The model wave functions obey the
translational crystal symmetry and take into account the
orthogonality of the valence and/or conduction electrons
to the atomic cores.

We have already noted that the measured form factors
were close to the free-atom form factors, whereas the ex-
perimental Compton profiles certainly show considerable
deviations from the free atom and are much closer to a
free-electron gas. In order to solve this “paradox” we con-
structed two sets of crystal functions.

We shall first examine a set of single orthogonalized-
plane-wave (OPW) functions, i.e., the crystal wave func-
tions are

=y ik-T core
X?(r)-e’ ‘+a?)(i- (r),

where XCT‘:»“ is the tightly bound core wave function for the

crystal momentum K, and ap is so chosen that X 7 for

each K is orthogonal to the core wave function. The func-
tion X 7> as written, is not normalized. Brown’ also used

this approach for calculating structure factors for Be, and
Chaddah and Sahni!® calculated Compton profiles for a
single OPW but included correlation effects in an approxi-
mate way and did not assume a spherical Fermi surface
(in the extended-zone scheme) as it is done by Brown’ and
by us.

Next we employ the so-called “renormalized-free-atom”
(RFA) model.”® The construction of the crystal wave
function has been outlined in the Appendix. The model
was successful in fitting experimental isotropic Compton
profiles for the first-row transition metals.?! It has been
observed that the RFA wave function gave a good value
for the valence charge density at the nucleus for beryllium
metal.?? As for the OPW model we assume a spherical
Fermi surface. Whereas the anisotropy in the Compton
profiles of beryllium mainly is determined by the Fermi-
surface shape,* the isotropic profile is not expected to be
very sensitive to the detailed shape which is also an as-
sumption that must be inherent in the work on transition
metals by Berggren et al.,>! and which must be more seri-
ous for those materials.

The results for the valence-electron form factors are
shown in Fig. 8. It should be stressed that these curves
only have a physical meaning for sin@/A values corre-
sponding to reciprocal-lattice vectors, and that the
behavior between these points depends on the way an
atomic fragn}ent has been defined. Nevertheless, for
sind/A >0.3 A ~! the reciprocal-lattice-vector lengths are
so closely spaced that for all practical purposes we may
consider the curves as continuous. In the present case, the
atomic fragment is defined as the total electron density
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FIG. 8. Beryllim form factors (normalized) starting from 1.0
as follows: free-atom core (HF) ( ), and free-atom valence
(HF) (— — —); starting from 0.34 as follows: RFA model
(——); and starting from —0.06 as follows: OPW model
(—— =)

within the Wigner-Seitz sphere minus a constant equal to
the density at the Wigner-Seitz sphere boundary. This
definition leads to values of the form factor different from
one for zero-momentum transfer. The OPW model re-
sults in form factors lying below the free atom for the
lowest-order reflections (the range 0.25<sin6/A <0.33
A 1), whereas the RFA model gives values above those
of the free-atom model (Fig. 9). The differences between
these two simple models at high sinf/A values (larger
than about 0.5 A —') arise from the core orthogonaliza-
tion. The degree of this deviation is simply proportional
to the difference of the overlap of the ansatz valence and
the core wave functions.

The isotropic valence-electron Compton profiles calcu-
lated from the two models are very similar. The peak
values are 1.35 and 1.38 for the RFA and the OPW
models, respectively, and for low momenta in quite good
agreement with experiment. The general shape is very
close to the free, noninteracting electron gas, except for
the tail at high momenta. For the OPW calculation, the

dflelectrons)

010

005

-0.05

FIG. 9. Deviation of model form factors from the free-atom
HF form factor as follows: RFA model ( ) and OPW
model (— — —). Hatched area shows +1% of the free-atom
form factor. Also shown is the present experimental values, ®.

high-momentum tail in the Compton profile is purely an
effect of the core orthogonalization. In the RFA model
the shape of the atomic ansatz function without core
orthogonalization also results in a contribution at high
momenta. Nevertheless, also for this model, the major
contribution at high momenta arises from core orthogo-
nalization (see Table III).

In Fig. 10 we have shown the results for the isotropic
valence Compton profiles together with the valence
Compton profiles for the free atom, the noninteracting
electron gas, the LCAO calculation,!! and from the exper-
iment by Maninen and Suortti.3

The LCAO calculation by Dovesi et al.!! produces an
isotropic Compton profile which is close to the measure-
ment by Manninen and Suortti.> The peak value predicted
by the theory is slightly too low, and also for high mo-
menta, the theory gives lower values (g > 1.0 a.u.) than the
experiment. The disagreement may in part be due to an
incomplete correction of the experimental data for resolu-
tion smearing, but electron-electron correlation which is
not taken into account in the theory, is expected to give
rise to an effect of about the right order of magnitude.”

TABLE III. Values of the isotropic Compton profile calculated from different simple models. Fermi
momentum for the noninteracting free-electron gas is pr=1.027 a.u. momentum.

Noninteracting RFA, no core-orthogonality
q (a.u) electron gas constraint OPW RFA
0 1.459 1.443 1.383 1.354
1.03 0.000 0.008 0.026 0.027
2.00 0.000 0.005 0.018 0.025
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FIG. 10. Isotropic Compton profiles for beryllium as follows:
experimental, Manninen and Suortti (Ref. 3) ( ); HF atom
(— — —); noninteracting electron gas ( ); RFA model
(- -+ ); and HF LCAO calculation, Dovesi et al. (Ref. 11) (----).

VI. CONCLUSION

We have described the y-diffraction measurements of
eight structure factors for low-order reflections in berylli-
um. They are believed to be on an absolute scale and
without any considerable amount of extinction, although
the rocking curves indicate that the samples consist of a
few rather perfect regions. The values of the ¥ structure
factors coincide quite well with other recent accurate data
sets,® but are significantly different from the beryllium
structure factors measured by Brown.’

Matthai et al?>* constructed Wannier functions for
beryllium assuming an sp, hybridization of the atoms.
They find a qualitatively satisfactory agreement with
Brown’s x-ray data except for the (100) reflection. Since
their choice of model was influenced by the conclusions
drawn from the analysis of Brown’s experimental data,
their results cannot be used as a confirmation of the relia-
bility of these data. What nevertheless is in reasonable
agreement with Brown’s data, is a calculation of structure
factors by Becker” using linear-response theory. It
should be borne in mind that such an approach is based
on a series of approximations which may not be valid for
systems which deviate strongly from a free-electron-like
system as in Be.

The theoretical calculations by Dovesi et al.!' are in
reasonable agreement, not only with the present diffrac-
tion data, but also with experimental isotropic Compton
profiles for beryllium metal. The discrepancies in the
Compton profile anisotropies are probably due to errors in-
the Fermi-surface shape obtained from this theory,
whereas the small disagreement in the isotropic profiles
may be caused by the neglect of electron-electron correla-
tion effects in the theory. Owing to the relatively good
agreement with experiment, the theory by Dovesi et al.
may be used as a starting point for an understanding of
the bonding mechanism in beryllium metal. The density
of states calculated by Dovesi et al. shows a very large p-
orbital contribution, but the different p orbitals contribute
about the same to the density of states below the Fermi
energy, so that at this level the discussion does not clarify
why beryllium does not form an ideally hexagonal-close-
packed structure and why many of its properties are not
isotropic.

The APW calculation by Redinger et al.!° gives struc-
ture factors in as close an agreement with experiment as
the HF calculation by Dovesi et al. Nevertheless, neither
of the theories is satisfactory when judged based on the
experimental accuracy. It is an open question as to what
causes the differences. The results of the HF calculation
may be affected by basis-set deficiencies, and by neglect of
electron-electron correlation. For the APW calculation
(the method has no basis-set problem) the muffin-tin ap-
proximation to the potential may be too restrictive. A
more advanced treatment of exchange-correlation effects,
at least more advanced than the local-density approxima-
tion, may be necessary.26

The first reaction to the experimental structure factors
and Compton profiles was that the latter looked very simi-
lar to what one would expect for an almost-free-electron
gas, whereas the former were very close to free-atom
scattering factors. The more realistic RFA model, howev-
er, predicted the right trends for both experiments in spite
of its simplicity. It is interesting to note that the OPW
and RFA models result in almost identical isotropic
Compton profiles, whereas there are definite differences
for the low-order structure factors. It may be taken to im-
ply that for such simple structures the Compton profiles
are more sensitive to the constraints that the structure
puts on the wave function combined with Fermi-surface
shape. In terms of the simple models, the Compton pro-
files depend weakly on u (T') which represents the average
behavior of the valence-electron wave functions (see the
Appendix). The structure factors on the other hand de-
pend solely and sensitively on the function u (T'), and seem
to emphasize an atomiclike picture in the present case.
These arguments should not be pushed further since we
have only considered the coarse features in the observ-

ables.
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APPENDIX

In the following we shall give a short outline of how the
structure factors and the Compton profiles are calculated
from the RFA model. The OPW calculation is also con-
tained in this formalism.

The starting point for the RFA model is a free-atom s
orbital,

1
= ——R y
Xs(r) v (r)
where R (r) is a radial function. This function is then
chopped off at the boundary of the atomic Wigner-Seitz
cell which in the actual calculations is replaced by a
sphere with the same volume and renormalized as follows:

Rypa(r)=aR (r) for r <Rwsg, otherwise zero ,

where « is a constant chosen so that

R
fO WSRRFA(T)ZI"zdr =1

(Rws is the radius of the “Wigner-Seitz sphere”). These
functions are then repeated around each atom, thus result-
ing in a periodic function,

u(f)= 3 Rrra(T—Taom) >
atoms

and the crystal wave functions are given as
Yo(F)=u(De'*'T,

where the extended-zone scheme is employed.
The charge density p, corresponding to these wave
functions is given by

po(T)=n, |u(D)|?,

with n, being the number of valence electrons per unit cell
(for Be, n, =4). The corresponding structure factor F(h)
is the Fourier transform of p, which is most easily calcu-
lated by first calculating the form factor for an atomic
fragment equal to the density within the Wigner-Seitz
sphere minus a constant equal to the density at the surface
of this sphere,

. 6 R
SrEA ilil— = fo " ([Rrga (NP —[RrraRws) )
sin(47r sinf/\) Y2dr
47r sinf/A ’

and next the structure factor through

k1
3 T3

F(H)=2fRFA cos |27

This does not include the effect of thermal vibrations.

The momentum density p,(P) is obtained from the
crystal wave functions by first Fourier-transforming these
and subsequently squaring and summing over occupied K

ulr)

|
|

FIG. 11. RFA and OPW wave functions and periodic part of
Block function as follows: OPW model ( ); RFA, (-+-) sin-
gle Slater-atom orbital without core-orthogonality constraint;
and RFA, valence orbital orthogonal to the atomic core orbitals
(—— =)

states in the extended-zone scheme. The approximation
that the periodic part of the crystal wave function is in-
dependent of the crystal momentum K has the conse-
quence that the momentum density is a step function.
The isotropic Compton profile is then calculated by

J@=2 [ " plp.(p)dp ,

where ( ) denotes spherical averaging. The details of the
calculation have been described thoroughly for the
hexagonal-close-packed structures by Berggren, Man-
ninen, and Paakkari.?’

In the RFA calculations presented here, we have used
Slater-orbital representation with the screening constants
by Clementi and Raimondi,?® i.e.,

X1s(r)~exp(—3.6848r) ,
Xs(r) ~r exp(0.9560r) —aX 4(r) ,

where “r” is in units of Bohr radii, and a constant a is
chosen to make the 2s orbital X,; orthogonal to the core
orbital, X ;. We calculate only the contribution from the
2s orbital to the Compton profile since the 1ls orbital is
hardly affected by the crystal environment.?’

The OPW results are simulated by the same procedure;
we are only starting from an atomic 1s orbital for the core
and a 1s-like function for the valence, but very diffuse, so
that it is almost constant within the Wigner-Seitz cell.

In Fig. 11 the periodic part u of the wave functions
from the RFA model, with and without core orthogonali-
zation, as well as the plane-wave and OPW models, have
been shown.
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