PHYSICAL REVIEW B

VOLUME 29, NUMBER 2

15 JANUARY 1984

Missing spots in low-energy electron-diffraction patterns
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A method for the deduction of structural information from the regular distribution of zero-
intensity reflections, or missing spots, in LEED (low-energy electron-diffraction) patterns is
described. The method applies to the cases in which LEED spots are missing at all incident electron
energies and angles. Applications are discussed for the cases of C{001}2X 1 (for which a structural
model is derived), Si{001}2 2 (which is found to be inconsistent with the missing-spot pattern ob-
served), and Ge{111}c(2X8) [which is shown to be consistent with experiment, while a p(2X8)

structure is not].

I. INTRODUCTION

It is well known in x-ray crystallography that certain
types of symmetry affect the diffraction pattern of crys-
tals with those types of symmetry; in particular, certain
types of reflection may be absent. These so-called sys-
tematic absences of certain types of reflection can give
valuable clues to the atomic arrangement in the crystal
studied; they may limit the possibilities to two or three ar-
rangements, or even to a single type of arrangement.!
Similarly, in surface crystallography, certain types of sym-
metry affect the low-energy electron-diffraction (LEED)
pattern of surfaces with those symmetry elements. Sys-
tematic absences of certain types of reflection occur in
LEED patterns as well, but comparatively little attention
has been devoted to them heretofore. In LEED crystal-
lography, the systematic absences are commonly referred
to as “missing spots” because on the fluorescent screen of
display-type LEED equipment the spots that correspond
to the absent reflections are missing. In simple cases, such
as the formation of a ¢(2X2) (or V2XV'2—45°) super-
structure over a square-net surface, the missing spots of
the type 54 5k with & +k odd have long been recognized
as indicative of a centered net,? but are simply a conse-
quence of the use of nonprimitive net vectors. In other,
more complicated, cases, missing spots have been shown
to be caused by the existence of glide lines® and have
indeed proved useful in the search for structural informa-
tion.*> These types of missing spots, however, depend
upon the relative orientation of the incident wave vector
with respect to the surface structure—spots that are miss-
ing at normal incidence may be observable at nonnormal
incidence. A third type of missing spots is caused simply
by the fact that the intensity of the corresponding reflec-
tion is very weak and therefore not observed [see, e.g., the
LEED patterns of Ge{111}2X1—8 and Ge{111}1x 1-Al
(Ref. 6)].

In the present study we are concerned with what we
may call “absolute” missing spots in LEED patterns,
namely, the spots that are missing at all incident-electron
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energies and all incident angles. The quotation marks on
the word “absolute” are meant to indicate that the spots
are missing because the corresponding reflections have
vanishing structure factors only in the limit of kinematic
scattering. Two important examples of such “absolute”
missing spots are found in the LEED patterns of dia-
mond, C{111}2X 1, and Ge{111}c(2x 8), both discussed
below. The LEED patterns from these two surfaces are
reproduced schematically in Figs. 2 and 8, respectively,
where the “absolute” missing spots are indicated with
crosses. The cases that we are going to consider are those
in which the missing spots are regularly distributed in the
LEED pattern so that we can recognize well-defined
missing-spot nets. In Sec. II we develop a procedure that
allows one to deduce structural information from the
properties of such missing-spot nets. In Sec. III, we apply
the procedure, in turn, to the reconstructed diamond
{111} surface, the Si{001}2X2 structure, and the recon-
structed Ge{ 111} surface.

II. METHOD

Since the phase shifts of atoms are functions of energy,
the existence of “absolute” missing spots implies that the
unit mesh of the surface structure must contain two or
more identical atoms or groups of atoms—the waves scat-
tered from different atoms cannot cancel one another for
some reflections for all energies. Thus, we assume that
the unit mesh of the surface contains N identical atoms,
or groups of atoms, located at positions R;(i =1 to N)
with respect to the origin of the unit mesh. In order for a
reflection, i.e., a LEED spot, to be missing in the kinemat-
ic approximation, the structure factor must vanish, i.e.,

N
> exp[ —i(k ™ — K **)-R,;]=0, (1)
i=1

where K ™ and k % are the incident and scattered wave

vectors, respectively.

Note that for the reflection considered Eq. (1) must be
valid at all energies because the LEED spot is missing at
all energies. In order to see the consequence of this fact
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we rewrite Eq. (1) taking into account the relations

k scat + k ;(;art , (2)

I—('inc k inc c + k g;cr, K scat
where the subscripts perp and par refer to the perpendicu-
lar and parallel (to the surface plane) components, respec-

tively, and
K=K+, )
with g a reciprocal-net vector. We obtain

N — . — —
ECXP[ ——l(k inc__ 3 scat).R‘_]

i=1

N
= exp[—i(k 2, — k%2R, lexp(ig-R,)=0. (4)
i=1
In the last sum the first factor is the one that varies with
energy. Hence, for Eq. (4) to be valid at all energies we
must require that the first factor be constant. There are
two possibilities.

(i) E;’;f_ps E;?&,. This is possible only for the specular
reflection, or 00 spot. However, the 00 spot is never miss-
ing because its g is equal to O and hence Eq. (4) cannot be
fulfilled.

(ii) Each vector R, is perpendicular to (k e —K ;f;;,)
i.e., each R is parallel to the surface plane. In thls case,
Eqs (1) and (4) can be rewritten as

N
3 exp(ig'R;)=0. (5)
i=1
This equation states that the missing spot characterized by
the reciprocal-net vector g is missing independently of the
direction of the incident radiation—it is a characteristic of
the unit mesh considered. (Note that this condition is dif-
ferent from the case of missing spots caused by glide lines,
where the incidence direction plays an important role.)
Thus, we have reached the conclusion that if a surface
structure gives a LEED pattern with reflections missing at
all electron energies and all incidence directions, then its
unit mesh must contain two or more identical atoms, or
groups of atoms, which lie on a plane parallel to the sur-
face.

There are N vectors I_i, to be determined. We can, of
course, choose the origin of the unit mesh at the position
of one of the N atoms, leaving N — 1 unknown l_i,- vectors
to be determined. Since for each vector we must deter-
mine direction and magnitude, we have 2(N — 1) unknown
quantities to determine. If we knew the value of N, we
could try and use 2(N — 1) missing spots to get 2(N —1)
equations obtained from Eq. (5). For example, for the jth
missing spot, setting

with ¥ and b* the primitive vectors of the surface re-
ciprocal net, we get the jth equation,

N-1
>, expl(ih;@

i=1

+R;)-explik; b R))=—1. )

FIG. 1. Missing spots (crosses) form a net characterized by

two vectors él and 62.

Note that the sum extends only to N — 1 because the Nth
atom is at the origin (Ry=0) and hence the sum must
equal —1. In principle, we could solve the 2(N —1) equa-
tions obtained from (7) for 2(N —1) missing spots and
thus determine all the ﬁi,’s but in practice the task is dif-
ficult as soon as N becomes larger then, say, 2, and most
importantly, N is usually unknown. However, if the miss-
ing spots are distributed with well-defined periodicities
over the LEED pattern, then there exists a rather simple
procedure for determining the I—ii’s. In the following, we
first introduce two useful theorems and then describe the
procedure with an example based on the reconstructed di-

amond {111} surface.
(i) Theorem 1. If each missing spot in a LEED pattern
belongs to a net of missing spots which is defined by two

net vectors él and éz (as shown in Fig. 1), then each vec-

tor R; defining the position of equal atoms (or group of
atoms) in the unit mesh of the direct lattice must satisfy

the conditions
Ei,'ﬁ,-=2m,~1r and az'ﬁi =2n,'7T ) (8)

where m; and n; are integers.
(ii) Proof of theorem 1. The condition for a spot de-
fined by a reciprocal-net vector g to be missing is given by
Eq. (5) or, taking the Nth atom at the origin, by the equa-
tion
N—1 N
> expligR;)=—1. 9)
i=1

If the missing spot g belongs to a net of missing spots de-

fined by the vectors G1 and G2, then it follows that the
spot g +G1 is also missing, i.e.,

N1 o . N=1 R o o
> exp[i (E+Gy)'R;]1= 3 exp(ig-R;)exp(iG;'R;)=—1
i=1 i=1

(10)
Fulfillment of (9), however, requires that

exp(iG,R;)=1 (11)
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@ INTEGRAL-ORDER SPOTS

O FRACTIONAL-ORDER SPOTS
X MISSING SPOTS

(b)
(a) Observed LEED pattern of three-domain

FIG. 2.
C{111}2X1 structure (schematic). (b) Single-domain LEED
pattern of C{111}2X 1 structure. 23 and b* are the primitive

vectors of the surface reciprocal net; G, and G, define a net of
missing spots.

for all ﬁ,-’s, i.e., that
al'ﬁ,-=2m,~7r ,

where m; is an integer. An analogous argument leads also
to the requirement

a’z'ﬁi =2n,-7r N

where n; is an integer.

(iii) Theorem 2. If there exists a set of vectors ﬁi defin-
ing the positions of N equal atoms (or equal groups of
atoms) in the unit mesh of the direct lattice, such that Eq.
(5) is satisfied with g being a reciprocal net vector that
identifies a particular missing spot in a net of missing
spots defined by vectors G, and G,, then the same set of
l_ii’s will satisfy Eq. (5) for any missing spots in the same
missing-spot net.

(iv) Proof of theorem 2. Given a set of ﬁi’s such that

—

G'R;=2m;w and Gz-ﬁi=2niv [Eq. (8)], and further-

[T T 7
77 1 /5

FIG. 3. Possible distribution of atoms on the C{111}2X1
surface. Vectors @, and B; are the unit-mesh vectors of the sur-
face direct lattice. Circles indicate possible atomic positions. Tii
vectors can be drawn from the origin to the five positions indi-
cated by circles (only fil has been drawn).

more va=1exp(i’g’-§,-)=0 [Eq. (5)], or Efv;lexp(i‘g'-ﬁ,-)
= —1[Eq. (9)], then the theorem claims that
N—1 o -
> expli(E+mG;+nGy)R;]=—1, (12)
i=1
m and n being integers. We see that

N—1 . N
> expli(§+mG;+nG,)-R;]

i=1

N—1 N . . o o
= 3 explig'R;)exp(imG;'R;)exp(inG;*R;)

i=1

N—1 .
= Y exp(ig-R;)exp(im 2m;m)exp(in 2n;)

i=1

N1 .
= > exp(ig'R;)=—1, QE.D.

i=1

FIG. 4. Configurations (a)—(c) are all consistent with the
missing-spot net observed in LEED patterns from C{111}2X1.



902

We now describe the procedure for determining the vec-
tors l_i,- by considering as an example the reconstructed
{111} surface of diamond, denoted as C{111}2X 1. Fig-
ure 2(a) depicts the schematic LEED pattern of a three-
domain C{111}2X1 structure as it is observed experi-
mentally, and Fig. 2(b) shows schematically the LEED
pattern that a single-domain C{111}2X 1 structure would
produce. In general, we can write the unit-mesh vectors

G, and 52 of the missing-spot net in terms of the primi-
tive vectors 3+ and b} of the surface reciprocal net as fol-
lows:

61=H1.§:+K1f;:, 62=H2§:+K23: . (13)

We see from Fig. 2(b) that for C{111}2x1, H,=6,
K;=0, H,=2, and K, =1. If we define the vectors ﬁi in
terms of the unit-mesh vectors @; and Es of the recon-
structed 2 X 1 structure in direct space,

R;=R;,3,+Ryb; , (14)

with 0<R;, <1 and 0<R;;, <1, then the requirements of
theorem 1,

al‘§i=2miﬂ' and az'l_ii=2n,-7r s

can be rewritten as

HiRj,+K\Rpy=m; , HyR;;+K,Rp=n; . (15)
Hence, we get for the components of R;,
m Ky Hy my| H, K,
Ria=Ip, Kz’—D—’ |0, n D P=|H, Ky |

(16)

TABLE 1. C{111}2X1, N is the possible number of atoms or
group of atoms in the unit cell; Comb. is the combination of ﬁ,"s
from (18) that satisfies Eq. (9); Model represents the conclusions
about the resulting structural models.

N Comb. Model

2 R, Fig. 4(a)
ﬁg 1x1, excluded
R Fig. 4(a)

3 None

4 R.,R,R; Fig. 4(b)
l_ihl—iz,ﬁs Fig. 4(c)
qz,isyﬁs 1Xx1, excluded
R,R,R, 1x 1, excluded
R,R,R; Fig. 4(c)
K3, KR Fig. 4(b)

5 None

6 R, R, K;, R,R; 1x1, excluded

W. S. YANG AND F. JONA 29

FIG. 5. In hypothetical case (a) N =4, but these are two dif-
ferent subgroups of two atoms each that produce the same
missing-spot pattern (Ro is unknown). This case can be reduced
to N =2 with larger but equal atom groups [shown by dashed
lines in (b)].

In the case of C{111}2X 1, we obtain
Ria =m,/6 and R,—b=n,-——2R,-a , (17)

and the possible l_i,- vectors are those drawn from the ori-

gin to the circles in Fig. 3 (in the figure only ﬁl has been
drawn). Thus, the maximum value that N can have is 6,

and therefore there are five possible values of R; (R4 being
at the origin),
R,=%,/6+2b,/3, R,=%,/3+b,2/3, Ry=%,/2,
. (18)
R,=2%,/3+2b,/3, Rs=5%,/6+b,/3 .

Al

S\
MIRROR
PLANE

R

@ Ist LAYER
O 2nd LAYER
X 3rd LAYER

CROSS SECTION A-A
FIG. 6. Possible structure of the C{111}2X 1 surface.
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Only certain combinations of these vectors will generate
the missing-spot net observed (Fig. 2), namely, those com-
binations that satisfy Eq. (9) with N <6 and any g point-
ing to a missing spot in the LEED pattern.

To find out which combinations are acceptable we
select, e.g., the missing spot P in Fig. 2(b), so that
g=34}, and then calculate the following relations:

exp(i§°§1)=~—1, exp(i'gf'-ﬁz):l, exp(i§~ﬁ3)=—1,(19)
exp(ig-Ry)=1, explig-Rs)=—1.

We now assume that N =2. Only one of the ﬁ,-’s will
then be possible (remember that one of the N atoms or
group of atoms is at the origin): ﬁz and R, are excluded
because they do not satisfy Eq. (9). But either ﬁl or §3 or
R; satisfies Eq. (9): R, would produce the structural
model shown in Fig. 4(a), §3 would produce a 11 struc-
ture (@ and b were defined as the unit-mesh vectors of the
2X 1 structure) and is therefore excluded as inconsistent
with the observed 2 X 1 pattern, and R would produce the
same model as ﬁl. Trying all possible values of N in a
similar fashion, we get the results summarized in Table 1.
The only three possible models are drawn schematically in
Fig. 4. These results represent all we can get from con-
siderations of the missing-spot pattern. Other considera-
tions may allow further reduction of the number of possi-
ble models as discussed in the next section.

It is possible that the N equal atoms or groups of atoms
can be subdivided into two or more subsets, each of which
produces the same missing spots. For example, a struc-
ture with N =4 can be treated as the sum of two N =2
structures, a structure with N =35 as the sum of one N =2
and one N =3 structure, etc. This procedure could be ap-
plied to the case N =4 in Table I, i.e., the surface unit
mesh could contain two subsets of atom groups, and in
each subset the equal groups would be related to one
another by way of vector ﬁl, as depicted schematically in
Fig. 5(a). Unknown in this case would be the translational
vector l_io which translates one subset to the other. Obvi-
ously, however, such a structure could be treated as one
with N =2, the groups related by ﬁl now being larger, as
shown in Fig. 5(b). The internal constitution of the
groups would still be unknown. Thus, in the example of
C{111}2X1 treated above, we still would obtain the
models drawn in Fig. 4 as consistent with the missing-spot
net observed experimentally.

III. APPLICATIONS

A. C{111}2x1

In Sec. II, three structural models shown schematically
in Figs. 4(a)—4(c) were found to produce the missing-spot
net defined in Fig. 2. However, two of these models [Figs.
4(b) and (c)] involve four atoms per reconstructed unit cell
and are therefore rejected as unlikely. The model depicted
in Fig. 4(a) for the first atomic layer seems reasonable and
we will discuss it further.

To determine the registry of the top layer with respect
to the bulk, we recall that the experiment revealed the ex-

@ INTEGRAL-ORDER SPOTS
O FRACTIONAL -ORDER
(a) X MISSING SPOTS

(b)

FIG. 7. Study of a Si{001}2X2 structure: (a) LEED pattern,
and (b) possible vectors joining equal atoms.
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® INTEGRAL-ORDER SPOTS

———MIRROR PLANES

(b) o FRACTIONAL-ORDER SPOTS
@ INTEGRAL-ORDER SPOTS
X MISSING SPOTS

FIG. 8. Ge{111}c(2X8): (a) observed three-domain LEED
pattern (schematic), and (b) single-domain LEED pattern. @5
and b ¥ are primitive vectors of the reciprocal net; G, and G,
are unit-mesh vectors of the missing-spot net.
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istence of a mirror plane along the doubling direction @'
(Fig. 2) and hence perpendicular to i;s in direct space.
This requirement leads to the model depicted in Fig. 6.
The C—C bonds within the first layer are 1.456 A long.
We recall that the C—C bond length in bulk diamond is
1.542 A and in graphite it is 1.420 A, the latter having
“one-third double-bond character.”” Thus, in the model
of Fig. 6, the top-layer bonds have about 18% double-
bond character. This model involves only reconstruction
of the top-layer, with the deeper layers maintaining the
bulk structure. In principle, distortions of the second and
third atomic layers cannot be excluded, but, if present,
they must be consistent with the existence of the mirror
plane and with the requirements of Fig. 4(a).

There is some qualitative similarity between the model
presented in Fig. 6 and the 7-bonded chain model pro-
posed by Pandey for the cleaved Sif{111}2X1 structure.?
However, the latter model involves two chains and in gen-
eral does not cause systematically missing spots. Structur-
al differences between the C and the Si surfaces are not
surprising, not only because different, albeit similar,
atoms are involved, but also because the C{111}2Xx1
structure was prepared by thermal annealing, whereas the
Si{111}2x 1 surface can only be obtained by cleavage in
an ultrahigh vacuum.

B. Si{001}2X2

It has been suggested by several authors”!® that the
reconstruction of Si{001} surfaces might include several
superstructures, and among others, a Si{001}2X2 super-
structure, provided that the (5 5 )-like beams have always
very weak or vanishing intensities. We ask here, as an ex-
ercise for the missing-spot analysis presented above,
whether a Sif{001}2X2 structure can exist that has zero
intensity, i.e., missing spots, at all (5 %)-like positions in
the LEED pattern.

We assume, therefore, that the LEED pattern looks like
the one depicted in Fig. 7(a), and we identify the net of

o P-—-0--9 O
o ;5’ o ,d' o
o ,d/ o ,d/ o
o /d/ o ,d/ o

[P a
s —
R3

FIG. 9. Unit mesh of ¢(2X 8) structure (dashed line) and unit
mesh of (2 9) structure on Ge{111} (solid line). &, and b, are
unit mesh vectors; ﬁ,, R,, and §3 are possible vectors joining
equal atom groups to explain the missing-spot pattern.

missing spots with the two vectors él and 62 drawn in
that figure. Thus, G,=2a’, and G,=2b*. Using (8) and
(14) we find that R, =m;/2 and R;,=n;/2, resulting in
three possible vectors l—il, ﬁz, and ﬁ:, as shown in Fig.
7(b). Thus N can be either 2, 3, or 4. For N =2, either ﬁ,
alone, ﬁz alone, or I_i3 alone must be considered. It is easy
to see that ﬁ, alone and ﬁz alone would generate a 2X 1
structure, whereas §3 alone would generate a ¢(2X2)
structure, all of which contradict the original assumption
of a 2x2 structure. Hence, we reject the case N =2. For
N =3 we find that either R, and R,, l—il and Ry, or R, and
§3 produce the same structure, but when we test Eq. (9)
for the missing spot at g=38*+ b*, we find that the sum
of exponentials equals —2, and hence Eq. (9) is not satis-
fied. For N =4 we see immediately that the resulting
structure would be 1< 1. Hence, we must conclude that a
Si{001}2Xx2 superstructure with all (3 5)-like spots
rigorously missing is not possible.

C. Ge{111}c(2X8)

The observed three-domain LEED pattern and the cor-
responding single-domain LEED pattern are depicted
schematically in Fig. 8. Figure 9 shows, in direct space,
the primitive vectors @ and b of the bulk unit mesh and
the boundaries, with dashed lines, of a 2 X 8 surface unit
mesh. If this unit mesh is centered then a smaller unit
mesh can be drawn (solid lines in Fig. 9) as defined by the
vectors @, and b,. Since &,=27 and b, =3 +4b, we la-
bel this structure with the matrix (3 ).

In Fig. 8(b), we define a net of missing spots with the
two unit-mesh vectors G;=28*+b* and G,=2b*, and
from Eq. (8) we find three possible R,’s.

R,=%,/4+b,/2, R,=33,/4+b,/2, R;=37,/2,

which have been drawn in the unit mesh in Fig. 9. First
assume that all three occur, i.e., that N =4. In this case

Ts
(a)

l=-MIRROR PLANE

ATOMS
X Ist BULK-LAYER
ATOMS

o
.}SURFACE

FIG. 10. (a) Schematic distribution of equal atom groups in
the unit mesh of the Ge{111}c(2X8) structure. (b) Possible
structure involving eight atoms per unit mesh and two equal
groups of atoms (1,2,3,4 and 5,6,7,8) consistent with (a).
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@ INTEGRAL-ORDER
SPOTS

O FRACTIONAL-ORDER
SPOTS

X MISSING SPOTS

(b)

FIG. 11. (a) Single-domain LEED pattern of hypothetical
Ge{111}2X8 structure. (b) 2X8 unit mesh: Numbers indicate
the terminations of the vectors ﬁ,, cees ﬁ7 discussed in the text.

the surface structure could be described by a smaller unit
mesh than the one defined by 3 and Bs mentioned above,
namely, by the unit mesh defined by R; and R; (Fig. 9).
Since we see from Fig. 9 that ﬁ3=5’ and §1=§’+ 2b, then
the structure would be defined by the matrix (] 9), dif-
ferent from the (3 9) we started from, and hence N =4 is
excluded. If N =3, we have three possibilities, and for
each possibility, we check whether (9) is satisfied for a
missing spot, say, g=b* [Fig. 8®)]: () R, and R, (see
Fig. 9) do not satisfy (9), (ii) R; and R; do not satisfy (9),
and (iii) l_iz and l_i3 do not satisfy (9). Hence, the case
N =3 must be excluded.

We are left with the case N =2, which allows three pos-
sibilities: either ﬁl, ﬁz, or ﬁ3. The latter can be excluded

immediately because we see from Fig. 9 that with f{3 we
can redefine the unit mesh to the structure (! 9), which is
different from the starting structure and hence unaccept-
able. The choices of ﬁl alone or ﬁz alone lead to the same
structure, so we will consider the solution R, only, repeat-
ed for clarity in Fig. 10(a). Thus, the observed periodic
arrangement of missing spots leads us to the distribution
of equal atoms or groups of atoms depicted in Fig. 10(a).
We do not know the atomic arrangement inside each
group and we do not know the registry of the surface net
with respect to the bulk. If we assume that there are eight
atoms in each surface unit mesh, as shown in Fig. 10(b),
then the result of the missing-spot analysis tells us that
the group of atoms 1,2,3,4 is equal to the group 5,6,7,8.
This model is indeed the same as that proposed by Chadi
and Chiang.!! The experiment (see, e.g., Jona'?), shows
that there is a mirror plane along ﬁl (parallel to E:)
Hence, atoms 7 and 8 [Fig. 10(b)] must be mirror images
of one another (excluding, e.g., simple buckling models).
Furthermore, the surface-net registry must respect the
presence of this mirror plane, as done, e.g., by the model
of Fig. 10(b).

D. Ge{111}2x38

The observed LEED pattern of a clean, reconstructed
Ge{ 111} surface has been ascribed in the literature to sur-
face unit meshes with 8X8, 4X8, and 2X8 periodici-
ties.'>~1* As pointed out by Chadi and Chang!® [who
suggested the ¢ (2X8) unit mesh discussed above], all the
unit meshes proposed earlier reproduce all the observed
LEED spots, but, in addition, each one produces an appre-
ciable number of LEED spots which are not observed ex-
perimentally. We ask here whether a 2 X8 unit mesh is
consistent with the observed missing-spot net. A single-
domain Ge{111}2x8 LEED pattern would look like the
one depicted schematically in Fig. 11(a).

The missing-spot net is defined by the vectors G; =27}
and 6}2:43:, and the unit mesh of this net contains four
missing spots, one each at §,=b %, g,=2b*, §;=3b",
and ,=3*+2b*. From Eq. (8) we get,

Ria =m,/2 and Rib =n,~/4 N
that is,

Ria=07%>1 and Rib=0’%’%’%’l :

TABLE II. Values of exp(ié’i-ﬁj) for the four vectors g;, i=1 to 4 and the seven vectors
ﬁj, j =110 7, listed horizontally and vertically, respectively.

gi=b g.=2b" 2:=3b" Ei=ar42b7
R,=b,/4 i —~1 —i -1
R,=b,/2 —1 —1 1
R,=30b,/4 —i -1 i —1
R.=3,/2 1 1 —1
Rs=37,/2+1,/4 i -1 —i 1
Re=7,/2+b,/2 —1 —~1 —~1
K,=3,/2+30b,/4 —i -1 i 1
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|
MIRROR
Ik PLANE

FIG. 12. Sole allowed distribution of atoms in the 2 X 8 unit
mesh (solid lines) reduces the structure to the c(2X8) or (3 )

unit mesh depicted in Fig. 9 (dashed lines).

Hence, the possible l_i,- ’s are,

=b,/4, Ry=b,/2,

R,=3b,/4, R,=3,/2,

R,=3,/2,

Rs=3d,/2+b,/4, Rg=7,/2+b,/2,
R,=%,/2+3b,/4 .

LA

These vectors I_i,, e ﬁ-, can be visualized in the
schematic 2X8 unit mesh depicted in Fig. 11(b) as the
vectors joining the origin O to the points labeled 1, ..., 7,
respectively. Next, we must test whether Eq. (5), or (9), is
satisfied for all four missing spots identified by g, g,, g3,

and g4. For this purpose we construct Table II. We note
that in the columns for g, and g, the values of exp
(i fg',--ﬁj) are either 1 or —1, so in order to satisfy_l?q. 9)
we can only take combinations of odd numbers of R, i.e.,
N must be even, that is, N =2, 4, 6, or 8.

For N =2 only one ﬁj is eligible at the time. We see
from Table II that none of the rows adds up to —1, so Eq.
(9) is not satisfied. Thus N =2 is excluded. For N =4 we
consider all possible groups of three ﬁj’s at the time. Of
the 15 possible combinations all but one must be excluded
[e.g., the combination R, R,, and R; indeed satisfies Eq.
(9) but we see from Fig. 11(b) that in this case the struc-
ture would be 22, not 2X8 as assumed initially]. The
only combination allowed is ﬁl, l_i6, and 1_i7, which we dis-
cuss below. For N =6, we consider groups of five I_ij ’s at
the time and find that none of the 21 possible combina-
tions satisfies Eq. (9). For N =8, we see immediately,
from Fig 11(b) that the resulting structure would be 2X2
and thus excluded.

The combination ﬁl, Rs, and l—i7 therefore, is the only
one allowed by the missing-spot analysis. We see from
Fig. 12 that this 2X8 structure is in reality a c(2x8)
structure and can be defined by the matrix (3 9). We con-
clude therefore that a Ge{111}2 X 8, structure is incompa-
tible with the observed missing-spot net, and we find
again that the ¢ (2X8) or (3 9), structure is acceptable. A
longer analysis would be required to exclude the
Ge{111}8X 8 structure.
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