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We have constructed a model of a high-angle tilt boundary in Si and have examined its atomic
and electronic structure. The 38.94° grain boundary studied contains fivefold and sevenfold rings of
atoms in positions almost identical to those observed in high-resolution transmission electron mi-
croscopy. The grain boundary is continuous on a microscopic scale and does not contain any dan-
gling bonds. The atomic positions on the two sides of the boundary are similar to those resulting
from the joining of two crystals, aligned approximately in the directions of their respective [111]
and [110] axes, along their common (221) surface. The two crystals have commensurate lattice sites
on this surface. As a result, the grain boundary propagates on a macroscopic scale with no disloca-
tions or strain due to lattice mismatch. We have performed energy-minimization calculations to
determine the optimum atomic structure of the grain boundary. The calculated electronic structure
for the optimized geometry has no defect states in the bulk band gap. The calculated surface energy
per unit area of 0.02 eV/A? for the grain boundary is appreciably lower than that obtained for any
of the free surfaces of Si because of the absence of dangling bonds at the grain boundary. Static
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charge fluctuations of —0.14|e | and 0.06 | e | are found at the boundary.

I. INTRODUCTION

Grain boundaries are among extended intrinsic defects
found in most metals and semiconductors. They form in
regions where the surfaces of two small crystals of differ-
ing orientations meet. By using modern high-voltage,
high-resolution electron microscopy it is possible to obtain
direct-lattice images of such defects. There have been a
number of applications of this method to the study of
grain boundaries in semiconductors.!~’ Grain boundaries
which involve only a rotation about an axis in the plane of
the boundary, called pure tilt grain boundaries, are espe-
cially suited to this technique. This is because viewed at
the proper angle, such boundaries consist of parallel
columns of atoms, a property which makes them much
easier to image than twist grain boundaries.® Both high-
angle! 3 and low-angle* tilt grain boundaries have been
examined in this way.

Krivanek, Isoda, and Kobayashi! examined a 39° tilt
grain boundary using transmission electron microscopy.
The image they obtained of a section of the boundary in
Ge shows a complex structure with many twinning planes
and alternating fivefold and sevenfold rings of atoms.
The interesting feature of this grain boundary is that the
rings are arranged in such a way as to eliminate all dan-
gling bonds and to allow the boundary to be continuous.

In this paper we consider a grain boundary very similar
to the one studied by Krivanek and co-workers.”? The
boundary can be regarded as the interface between a crys-
tal oriented in the [111] direction and a second crystal
oriented slightly off the [110] direction. The resulting
grain boundary is continuous and periodic. It contains al-
ternating fivefold and sevenfold rings of atoms arranged
in the same pattern found in the electron microscopy
study. In the following two sections we discuss (i) the re-
lation of these fivefold and sevenfold rings to those in the
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Pandey 7-bounded chain model® of the 2 X 1 reconstructed
Si(111) surface, (ii) the atomic and electronic structure of
the grain boundary, and (iii) its surface energy. We have
also developed general conditions for lattice matching so
that the boundary between two crystals can be continuous
and periodic. These conditions cause the lattices to be
commensurate, allowing the grain boundary to exist on a
macroscopic scale with no strain from lattice mismatch.
Periodic grain boundaries have been observed by electron
diffraction and microscopy studies in some cases.

II. 38.94° GRAIN BOUNDARY

A. Geometrical aspects

A side view of the grain boundary we have studied is
shown in Fig. 1. The solid circles are in the plane of the
page, and the open circles are in a parallel plane displaced
by tay /2, where ay~3.85 A is the hexagonal lattice con-
stant of the (111) surface of Si; R is a translation vector
for the entire structure, i.e., the lower crystal, the upper
crystal, and the boundary all have periodicity I_i,. Both
crystals are also periodic in Ry=(1,—1,0)ag /2, which
is normal to the plane of Fig. 1. Since the grain boundary
itself is also periodic in ﬁz, the entire structure is periodic
in ﬁl and ﬁz. These two translation vectors define the
(221) plane. The (111) planes of the two crystals are at an
angle of 38.94° to each other; the boundary can be thought
of, therefore, as a 38.94° tilt boundary. Alternatively, it
can be viewed as a twin boundary, with the (221) plane be-
ing the twinning plane, since the two sides of the grain
boundary across that plane are symmetrical. As can be
clearly seen from Fig. 1, the grain boundary is very close
to being an interface between a crystal oriented in the
[111] direction and one oriented in the [110] direction, ex-
cept that in this case the (110) surface normal is 3.68° off
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38.94° TILT GRAIN BOUNDARY

FIG. 1. Side view of the 38.94° tilt grain boundary in Si is shown. Projection is on to a (110) plane. Atoms represented by open
and closed circles are displaced from each other by +ay /2 along the [1T0] direction normal to the plane of the drawing. Vectors K,
and R,=(1,—1,0)ay /V/'2 are translation vectors of the entire structures, where ay is the hexagonal lattice constant of the (111) sur-
face. K, is along the [114] cubic axes of the two cystals forming the boundary. Translation vectors K, and R, lie in the (221) plane.
Crystals on the two sides of the grain boundary are aligned along the [111] and 3.68° off of the [110] directions. (111) planes of the
upper structure are rotated by 38.94° with respect to those of the lower one. Positions of the fivefold and sevenfold rings of atoms at
the grain boundary are the same as those determined by high-resolution electron microscopy (Refs. 1 and 2).

the (111) surface normal.

A structure with a topology similar to this grain boun-
dary is Pandey’s 7-bonded chain model® for the Si(111)-
2X1 surface. This model contains alternating fivefold
and sevenfold rings which produce a surface with zigzag
chains similar to those on a (110) surface. A crystal in the
(110) orientation, however, cannot actually grow on top of
the Pandey surface because of lattice mismatch. The lat-
tice vectors of the surface structure and the (110) crystal
are commensurate along the cubic [110] direction; in the

[1T2] direction, however, the lattice vectors of the (110)
and (111) surfaces differ by about 22%. This means that
a crystal in the (110) orientation can grow continuously on
top of the chain structure for only a very short segment.
Otherwise, as the length of the interface is increased, the
strains resulting from lattice mismatch become large and
produce a dislocation. This problem can be overcome by
allowing the grain boundary to propagate at an angle to
the (111) surface, and by allowing the (110) surface to be
tilted slightly in relation to the (111) surface as in Fig. 1.
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TABLE I. Some lattice-matched grain boundaries that can be
obtained by taking a crystal oriented along the [111] axis and ro-
tating it by 180° along the lattice vector R, are shown. Only the

directions of the lattice vectors l—il and R,, with respect to the
bulk cubic axes, are given.

ﬁl fiz Boundary Rotation
Axis of rotation plane angle

[1T4] [T10] (221) 38.94°
[113] [T10] (332) 50.48°
[111] [T10] (112) 31.59°
[132] [TT2] 421) —65.06°
[042] (112] (5T2) —3101°
[152] [T12] (201) —7.93°

Both of these mechanisms are incorporated into the
grain boundary model of Krivanek et al.! which was con-
structed on the basis of their high-resolution electron mi-
croscopy studies. Their grain boundary is nonperiodic but
continuous and shows the way in which the fivefold and
sevenfold rings of atoms eliminate all dangling bonds at
the boundary. For our theoretical studies, we have deter-
mined a simple method to construct a grain boundary that
is both continuous and periodic, but which retains the
basic geometry of the model of Krivanek et al.! Several
methods for generating periodic grain boundaries have
been previously examined.” !4

The method referred to, basically consists of choosing a
plane containing two lattice vectors normal to each other
and forcing it to be a twinning plane. This is done by ro-
tating the structure 180° around one of the lattice vectors
in the chosen plane, and then joining the rotated and unro-
tated crystals along the plane. This results in a pure tilt
boundary of angle

a=70.53°-20, (1)

where 6 is the angle between the lattice vector serving as
the axis of rotation and the (111) plane of the crystal. For
example, for the configuration similar to thag of Krivanek
et al. a (111) crystal is rotated 180° about R, in Fig. 1.
Since l_i, is at 6=15.79° relative to the (111) surface, this
rotation produces a tilt boundary of a=38.94°. Because
(110) planes are at 35.26° relative to (111) planes in the
ideal crystal, the top part of the grain bounary is aligned
approximately along the [110] direction and is tilted by
3.68° away from the [111] direction of the lower crystal.
This small tilt angle is clearly visible in Fig. 1.

The existence of a lattice vector normal to the axis of
rotation is a necessary condition for the rotation to result
in commensurate lattice sites. Lattice vectors ﬁl, which
are suitable candidates as rotation axes resulting in con-
tinuous periodic grain boundaries, are given by

m
V2

where m, n, and p are any positive or negative integers.
Table 1 is a partial listing of such lattice vectors, their cor-

responding perpendicular lattice vectors ﬁ2, the plane in

R,= (1,T,0)+7”_2—(1,o,1)+—%(1,1,0), 2)

which they lie (i.e., the plane of the grain boundary), and
the angle of rotation of the boundary. The particular
grain boundary, which we have investigated results from
the rotation about the first vector, is listed in Table 1.

B. Optimization of structure

The atomic structure of the 38.94° grain boundary
shown in Fig. 1 was optimized via tight-binding-based
energy-minimization calculations.!” The optimization was
done in two stages. In the first stage a two dimensionally
periodic slab with a (221) surface at each end was con-
structed. A (221) surface is easily created by “cleavage”
of the structure shown in Fig. 1. This can be done by re-
moving all atoms whose projections onto the plane of Fig.
1 fall on one side (or other) of a given line which is paral-
lel to ﬁl. An examination of Fig. 1 shows that this line
can be picked in a way such that the surface atoms fall on
fivefold and sevenfold rings.

In our calculations, we chose a 40-layer slab, periodic in
only two dimensions, and constructed a (221) surface on
each end of it in the manner described above. The two
surfaces were made to have fivefold and sevenfold rings of
atoms similar to those occuring in Fig. 1. The four dan-
gling bonds (per unit cell) at each end were capped off by
hydrogen. The optimal atomic configuration for the sur-
face and substrate atoms was then determined by the
minimization of the Hellmann-Feynman forces acting on
the atoms.'®*!” This was done by moving each atom in the
direction of the force acting on it. The absence of many
layers of atoms above the fivefold and sevenfold rings of
atoms in these calculations allowed a much faster optimi-
zation of the structure. At the end of this stage of calcu-
lations, the hydrogen atoms were removed and a grain
boundary similar to that shown in Fig. 1 was constructed.
The model used for these calculations was made to be
periodic in three dimensions. The unit cell contained 10
layers each of (111) and (110) planes. Together with the
boundaries,'® each unit cell consisted of 146 atoms. The
structure of the grain boundary was optimized again via
the minimization of the Hellmann-Feynman forces. The
resulting structure shown in Fig. 1 is found to have a very
low energy. The difference in total energies AE,, between
a structure with this grain boundary and the perfect Si
structure is calculated to be

AE.,=0.85 ¢V , (3)

per boundary and per unit cell.”” This translates into an
energy per unit area of

7=0.0240.002 eV /A2, “)

for the grain boundary which is appreciably smaller!’ than
for any of the free surfaces of Si. For comparison, the
surface energies of the ideal Si(111)-1x 1 surface and of
the mr-bonded—chain model for the Si(111)-2X 1 surface
are calculated to be

Y1x1=0.085+0.005 (5)

and
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¥2x1=0.055+0.005 6

measured in eV/;Xz, respectively. Since cleavage leads to
two surfaces, the values of ¥ in Egs. (5) and (6) should be
doubled for comparing the stability of the grain boundary
relative to these surfaces.

III. ELECTRONIC STRUCTURE

The electronic states of the 38.94° grain boundary of
Fig. 1 were calculated for eight points in the irreducible
part of the Brillouin zone. No electronic states falling in
the bulk fundamental band gap were found. The absence
of any dangling bonds at the boundary, resulting from
perfect lattice matching, is the most obvious explanation
for the defect-free nature of the electronic states in the
band-gap energy region. More surprisingly, the change in
ring topology from sixfold to fivefold and sevenfold rings
at the boundary and angular deviations as large as +29°
(—20°) from the perfect tetahedral angle of 109.47°, do
not lead to any band tailing.

The most sharply localized defect states associated with
the boundary are calculated to be at 7.83 eV below the
bulk valence-band maximum (VBM) in the region of the
pseudogap in the bulk density of states of Si. It is well
known that odd-membered rings of atoms give rise to
such states in the pseudogap.’’ Many other resonances
and localized states were found between 0.5 eV to 13 eV
below the VBM.

The calculations reveal small deviations from charge
neutrality at some boundary atoms. Most of the atoms
are neutral to within +0.02e, however, excess electronic
charges as large as 0.14e and deficiencies as large as 0.06e
occur on some atoms as a result of bond length and bond-
angle variations. These values are consistent with experi-
mental determinations?! of static charge fluctuations of

0.11e (root-mean-square value) in amorphous Si from
high-resolution Si 2p core-level spectroscopy. Our calcu-
lations show that the largest deviation from charge neu-
trality of 0.14e occurs at a boundary atom around which
the bond angles are within 3° of 109.47°, but for which a
bond-length shortening of 2.3% has occurred. The max-
imum bond-length variation from the ideal one is, in fact,
—2.3%. Not all atoms with such a bond-length change
are found, however, to have excess electrons on them. The
bond-angle variations on most of these atoms tend to
counterbalance the charge fluctuations resulting from
bond-length variations.

IV. CONCLUSIONS

We have examined the structural and electronic proper-
ties of the high-angle 38.94° tilt grain boundary in Si. The
atomic geometry of the boundary, consisting of fivefold
and sevenfold rings of atoms first observed by high-
resolution electron microscopy,”? was optimized via
total-energy—minimization calculations. The calculated
electronic structure of the boundary has no defect states
with an energy falling in the fundamental band gap of
crystalline Si. This results from the absence of any dan-
gling bonds at the grain boundary studied. Static charge
fluctuations as large as 0.14e, consistent with experimen-
tally determined values® for amorphous Si, are found. A
simple method for producing continuous grain boundaries
is described.
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