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Starting from the equation of motion for anharmonically interacting surface phonons, a theory of
the surface acoustic soliton in an insulating solid is developed, based on the coherent-state represen-
tation. The two-dimensional nonlinear integro-differential equation for the classical displacement
field is obtained. By using the reductive perturbation method, the equation can be reduced to the
nonlinear Schrodinger equation, which allows the existence of the surface acoustic soliton of the en-

velope type. The possibility of observing the surface acoustic soliton is also discussed.

l. INTRODUCTION

As is well known, surface acoustic waves (SAW) are
propagated along the solid surface by confining their ener-

gy within about one wavelength from the crystal surface.
Since the elastic energy density of the SAW becomes

uch larger than that of the bulk elastic waves, especially
in a high-frequency region, the effect of the crystal anhar-
monicity will be enhanced in dealing with the propagation
of the SAW with high frequency. There also exists the
dispersive effect due to the discreteness of the crystal lat-
tice or to the layered structure, so we can natura11y expect
that the surface acoustic soliton (hereafter referred to as
the SA soliton) may be realized under an appropriate con-
dition.

As for the bulk phonon, the self-trapping of heat pulses
has been found in a bulk crystal of NaF with high purity
at low temperatures under certain conditions on the pho-
non dispersion and lattice anharmonicity. This
phenomenon essentially occurs since the release of a large
amount of thermal energy into a confined spot of the crys-
tal enhances the lattice anharmonicity which is balanced
with the lattice dispersion. In the field of SAW devices,
there recently appeared an attempt to detect the soliton
based on a simple one-dimensional model, which has not
yet been successful in detecting it experimentally.

In this paper we try to develop a theory of the SA soli-
ton in an insulating crystal on the basis of a surface-
phonon picture in the description of physical properties of
solids with a stress-free boundary. A soliton as a macro-
scopic excitation in the crystalline solids is assumed to be
a state in which a large number of phonons are excited
and consequently the quantum fluctuations may be
neglected. Following the work by Ichikawa et al., wc
take the expectation value of the equation of motion for
tllc liltcractlilg surface pllonolls ill a cohci'cllt state which
automatically ensures the stl css-frcc bouIldary condltlon
of the linear elasticity theory. As a result, we can derive a
nonlinear integro-differential equation for the classical
displacement field, which is reduced to the well-known

In an isotropic clastic medium occupying a half-space
with a stress-free boundary, there exists the famous sur-
face acoustic wave (Rayleigh wave), which is most charac-
teristic for the solid surface. The quantization of the
SAW can be performed as follows: Let us set the configu-
ration where the insulating solid extends over the half-
space xi ~ 0 and has the flat surface x3 =0 parallel to the
x i -x2 plane. The displacement vector u i (r, t) (i = 1,2,3) at
the space-time point (r, t) of the medium in this config-
uration can be expanded in terms of the Rayleigh-mode
eigenfunction u;"(r ) as

u;(r, t)= g (2ptok) '~2[a-(t)+a -„(t)]u;"(r), (2.1)

nonliQcar SchrOdingcr equation by applying thc rcductivc
perturbation method.

In Sec. II we briefly recapitulate the quantization of the
SAW which results in the surface phonon, and we then
define the coherent states of the surface phonons. In Sec.
III the Hamiltonian of the interacting surface phonons is
described up to the cubic term of the displacement field
from which we derive the equation of motion for the in-
teracting surface phonons. Taking the expectation value
of the equation of motion in the surface-phonon coherent
state, we obtain the nonlinear integro-differential equation
as the temporal evolution equation for the classical dis-
placement field. In Sec. IV the reductive perturbation
method for the slow modulation of a rapidly oscillating
phenomenon is applied to the evolution equation to derive
the simple nonlinear equation, which in our case becomes
the nonlinear' Schrodinger equation. Discussion on the
condition for observing the SA soliton experimentally ls
presented in Sec. V. The final section will be devoted to a
brief summary of the result and further discussions.
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ki=irik, k, =a,k,.xi=[1 (u—/ui) ]', ~, =[1 (u—/u, ) ]'
fV=(ai a—, )(ai ir—, + 2a.jib, )/(2aiir, ), and u, u„and ui are2 3

the velocities of the SAW, the transverse sound wave, and
thc longitudinal sound wave, respectively. p is the mass

density, S is the surface area, k =(kl, k2) is the wave vec-
tor parallel to the surface, and r=(x,xz)=(xI~2, x&).
Throughout this paper, III' and 5 are taken to be unity. a-

k

and 1ts HcrImtlan con]ugate Q ~ alc the aIlnlhllatlon and
k

creation operators of the surface phonon (a quantum of
the SAW) which satisfy the following commutation rela-
t1OQ:

CK-+ A'~ A~ =I,

I d2~ f(~n )C
k k k f(I3n ) (2.6b)

III. HAMII. TQNIAN OF THE INTERACTING
SURFACE PHONONS AND NONI. INEAR WAVE

EQUATION

Here f(x) is an arbitrary real function of x which can be
expanded in a power series.

[a-,a, ]=5k' k' k, k' (2.3)
The elastic energy density E up to the cubic term in de-

foHIlatlon tcllsol 7Iij = T~(gij + g~g + gkigkj) ls glvcll by

Next we define the coherent state of the surface pho-
nons

~
a } as an eigenstate of the annihilation operator

a by

a- )a-}=a ~ak k k k

~ 2E=
2 $ Iii +7 cijki lij ski

i i,j k, l

+ g Cijkimn lijjki 9mn (3.1)

In a standard manner,
~
a-} is written in terms of the

k

eigenstate of the occupation number operator
1V =a a-, X-

~

n}= -n~ n- ,}as
k k k' k k k k

and C,jkimn al'C the SCCOnd- al1d

third-order clastic constant tcnsors, rcspcct1vcly. For an

1sotroplc crystal, lllc cllcrgy dcllslty whlcll accollnts for
the cubic anharmonic interaction is given by

(IL )~
Cf~ =e pg

(n i)1j2
n~

(2.5) En= g Cijkimnkrj44mn

The following identities may be useful to perform the cal-
culation in the next section:

c;;ki „a5;,5ki5„.——+P(5;,5k.5i +5ki5 .5, +5 .5j.k5.i)+y(5n5jk5im+5ii5jm5kn)

+(&/6+P)(5~J5k 5i. +5ki5. 5,.+5 .5k5ji)

+(iM/6+y)(5i 5;k5J, +5k 5ii5jn+5km5;n5ji+5in5ik5jm+5im5in5jk+5kn5im5ji) . (3.3)

Herc ~ and p are tile Lame coefficients and a, p, and y
are, respectively, defined by

=&111—6&155+4'&456 ~

P=c155—2c456 ~

I

tegrating over a whole volume, we can obtain the Hamil-
tonian for the interacting surface phonons in an insulating
solid as

ao+II

where the following replacements of indices were conven-
tionally used'

II~I, 22—+2, 33~3, 23~4, I3—+5, I2—+6.
Substituting the expansion (2.1) into Eq (3.1) and .in-

(3.4)

Hg Q4- -, -„——(a-+a -)(a-, +a -, )k, k', k" k —k k' —k'
k, k', k"

X(0-„+a -„)5-k" —k" k+k'+k", 0

where 4g) ls the thl'ce-ph011011 vcrtcx fllIlctloll dc-
)
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X g c,Jtt~„ f dr("dju;")(Btut," )(B„u" ),

then Eq. (3.8) leads to

u (r, t) = g A -„(t)u;"(r ) .
k

(3.10)

Using Eqs. (3.7a), (3.7b), and (3.9), we obtain the tem-
poral evolution equation for A -(t) as

whose explicit expressions will be given in Appendix A.
Then the equation of motion for the interacting surface
phonons can be easily derived in the following form:

ia- =[a-,H]
k k

A ~+cot,A~+6~2p g (Q)Acing co~ ~, )
k k k —k'

Here we consider the third component of the classical dis-
placement field at the surface (x 3 ——0) as

U(x, t)=u3(x, 0,t)= QB-„(t)e'"'", (3.12)

k

(3.13)

X(tz- -,+tz* - -,)
k —k' —k+k' (3.7a)

We assume here that the soliton is a macroscopic non-
linear entity in the SAW, if it really exists, which corre-
sponds to a state in which a large number of surface pho-
nons are excited, and consequently the quantum fluctua-
tions may be neglected. This prospect can be realized by
taking the expectation value of the equations of motion
(3.6a) and (3.6b) in a coherent state of the surface phonons

I [~-„]& =II-„ I ~-„&.
In the coherent representation of the interacting surface

phonons, the temporal evolution equation for the expecta-
tion value of the annihilation operator a - is given by

Then B-„(t)satisfies the following equation:

2B +a) B + gF,B,B,=0,
k k k k, k' k' k —k'

k'
(3.14)

F„„,= 6v 2p(co t rot co-„„,) 'i (k'
i
k —k '

i )

(3.15}

Substituting the inverse transformation of Eq. (3.12) into
Eq. (3.14), we obtain the following nonlinear wave equa-
tion for U(x, t):

a,'U(x, t)+ f Zx, wax, )V(-x

+ x] x2F x~, x2 U x —x],t

ta -=—
an't, a -—3+4 -,- -,(a-,+a -,)—k —k —k, k', k —k' k' —k'

k

X(tt- -,+tz' - -,) .
k —k' —k+k' (3.7b) W(x)= gtoie'

k

(3.17)

As the expectation value ([a-„j~u;(r, t)
~ [a-„j) corre-

sponds to the classical displacement field u (r, t), we can
express u (r, t) in terms of u-„and a' as

u (r, t)=(ja-„J iu;(r, t)
i ja-„J)

= g(2pcoq} '~ [a„(t)+a*-„(t)]u;"fr) .
k

&-„(t)=(2ptot, ) '~'[c—t-„(t)+rt* -„(t)],

(3.18)

The second term of Eq. (3.16) gives the dispersive term.
For instance, if we assume the intrinsic lattice dispersion
88

coi ——(Uk) [1—(hk) ],
where h is the length parameter whose order is of lattice
OGDstsQt~ %'c 04fRlQ



f dxiP"(xi)U(x —xi, t)= —[U 8„+(Uh) B„]U(x,t) .
(3.20)

The third term of Eq (3..16) provides the nonlinear term
of the convolution type. Since Eq. (3.16) gives the rather
complicated nonlinear integro-differential equation for the
classical displacement field at the solid surface, we try, in
the next section, to reduce it to the simpler nonlinear
equation which allows the analytical treatment by means
of the reductive perturbation method.

Here we note that the displacement field U(x, t) satis-
fies the boundary condition at the free surface in the
linear elasticity theory but not the nonlinear boundary
condition. Therefore our theory should be considered as
an approximate theory of the SA soliton which is valid for
the weak nonlinearity. We emphasize, however, that even
if the nonlinearity is weak enough for the above approxi-
mation to be valid, the soliton can still exist by keeping
the balance with the weak dispersion. The generalization
of the present theory to incorporate the nonlinear boun-
dary condition seems to be very interesting and it will be
left for a future problem.

In this section we show that the nonlinear wave equa-
tion (3.16) can be reduced to the nonlinear Schrodinger

I

equation by applying the reductive perturbation method
developed by Taniuti and Yajima.

Now we expand the wave field U(x, t) in terms of a
small parameter e and of harmonics ZI ——exp[il(k x—~kr)]

U(x, t)= g g e ZiU~' '(g, r),
a=1 /= —ce

(4.1)

where g and w are the stretched coordinates defined by

(4.2)

and vs ——Beak/Bk is the group velocity. The above expan-
sion (4.1) implies that the fast local oscillations are taken
into account through the harmonics, while the dependence
on g and r guarantees the slowly varying property of the
amplitude function U(' '(g, ~)

We first discuss the linear terms with dispersion. Sub-
stituting the expansion (4.1) into Eq. (3.16), we obtain for
the first term

B,U(x, t)= g g e Zi[ —(lcok) +2ielcokABg 2ie Icok—B,+e ABg+O(e, )]U~' '(g, ~), (4.3)

and for the second term

xl 8 x] U x —x)~t = g/

X [U,'"(g,r) g,a,V,"(g—,~)+ ,
'

g', a,'U,'"(g-,~)+ O(~')]

= y. y ez, [W, —~rk,'a, +(~'~2)rk,'a,'+0(~')]U,"(g, ),
a= 1 /= —ce

where g'& —e(k xi) and 8'i, 8'i, and IVY are respectively defined by

—i/k-x (
W( —— dxiS'(xi)e =co

(4.4)

(4.5a)

(4.5b)

W( ——f dxi JY(xi)(k.xi) e '= —Bi~/k

For the nonlinear term, the third term of Eq. (3.16), we have

f dxidx2F(xi, x2)U(x —xi, t)U(x —xi —x2, t)

(4.5c)

n, e'=1 /, /'= —ce

e + Zi+i f f dxidx2e ' 'F(xi, x2)Ui' '(g' —gi, v)Ui' '(g —g'i —g2„r),

—i(/+/'] k ~ x )—i/' k ~ x 2ZI( x —xi, t)Zi (x —xi —xp, r)=Zan+i e
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has been used and $2 is defined by g2
—e(k x2). Making an expansion of UI

' (g —g»~) and Ut' '
(g g—i $—2,r) with

respect to the small variables gi and g2, and integrating over both x i and x2, we obtain

f f d x id x 2F( x i, xz) U( x —x» t ) U( x —x i
—x z, t )

00
( ) (I+('I I+i ', I' I vt '

a,a'=1 7, 7'= —te

I
(

I

e—[F,'„,, (a,V,"V,' '+ Vt'"a, Vt'", )+ F,'+, , V,"a,Vt'"]+O(e') I, (4.7)

where F 's are defined by
o—im k ~ x

&

—ink x2
dxidx2F(xi, x2)e —=F

and

F „=f f dxidxzF(xi, xq)(k. x))e
' "'"' '"" "'=i() F

~ ~ o—im k x
&

—ink. x2F „= dxidx2F(xi, xz)(k x, ) e = BF—

(4.8a)

(4.8b)

(4.8c)

Combining these results (4.3), (4.4), and (4.7), we obtain

e Zt ( —Wt+eHtdg+e J(Bg 2te leo„B—,)vt' '

a=1 7= —eo

+ y y ~ F U(a-a')U(a') 2F (U(a —a')g V(a')+g U(a —a')V(a'))
7

a'=1 7'= —oo

—e Ft t U(' t 'BgVt )+O(e ) =0, (4.9)

where

WI =—( look ) —Wt = ( look ) —co -,2 2

7k
(4.10a)

Ho H+i ——0, H——(&0 for
~

l
~
)2,

Jt&0 for all l .

(4.11b)

(4.11c)

We show in Appendix B that the following relation holds
true for the nonlinear coefficients F 's:

Ht =2ilkcok —Wt =2ik look
Bk 8( l k)

-1
+m, n =+m, n =+m, n =o

~ (4.11d)

and

Jt —=A, ——, Wt =k2 ()oak

Bk

2

()( I k )'

(4.10b)

(4.10c)

if either m or n is equal to zero or m is equal to n

Equating the coefficients of the terms of equal powers
of e in Eq. (4.9), we readily obtain the following equations
for Ut' '. The terms to first order of e yield

8', U7'" ——0 (4.12)

to second order of e

For the dispersive system, W), Ht, and J) satisfy the fol-
lowing relations:

W V, H, a,V, ——gF, , V, , V, . =O,(2) (1) (1) (1)

7'
(4.13)

Wo ——W+i ——0, W(~0 for
~

l
~
)2, (4 1 la) and to third order of e

$lff7 U7 7 g 7 7 g' 7 l COk z 7 7,(3) H g V(» J (l V("+2t'~ Q U"' —g tFt ('(U( t U(. + UI I Ul' ) Fl I (—Ul I' f (' —+ g' I—I' I'—(') a v(i) a v"' U'")
7'

(1) (1)F, , U, , a,V, . ]=O. (4.14)

From Eqs. (4.11a) and (4.12) we have

Vr'" 0«r (1[—&2, (4.15)

and from Eq. (4.13),

v+2 =F+2,+ i ( U+ i ) IW+p(2) (1) 2 (4.16)
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and

Ut '=0 for I1I &3 .

For 1=0, Eq. (4.14) results in

Bg Up ——0,2 (1)

which has the unique solution

Uo() =0

(4.17)

(4.18)

(4.19)

(4.23) as

id, Q+PB f+Q I g I
/=0. (4.25)

f(y, t )=a sech a (y —Pt)

It is worthy to note that the coefficient Q is always pos-
itive in spite of the details of the third-order elastic con-
stants. Therefore the nonlinear Schrodinger equation
(4.25) has an envelope soliton solution given by

' 1/2

if we require the following localized boundary condition:

U(x, t)=0 as g~+oo .

Equation (4.14) can be reduced to the following equation
for 1=+1:
—J+18gU+1+2)cokB U+1

2 (1) {1)

(1) (2)—(F+ i +2+F+i g 1 ) U~ i U+i ——0 . (4.20)

To discuss further, we take the wave vector k of the
carrier wave parallel to the xi axis (hereafter we simply
refer to xi as x) and rewrite Eq. (4.21) in terms of the
original variables x and t. Defining

P(x, t) =2eU'"i (g, r)

and using the relations

a,=(~k)-'a„

and

B,=e v 8„+e ~B, ,

(4.22)

we finally obtain the asymptotic equation of motion for
the displacement field U(x, t) as

td 0+ivgd @+Pd'0+Q
I 0 I'0=0,

where

1 ~~k
2cokk 2 Bk

(4.23)

(4.24a)

Substituting Eq. (4.16) into Eq. (4.20) and using the
reality condition U~

' ——U' ~, we finally obtain the non-
linear Schrodinger equation for U+1 as

—J+iBgU+ i+2itokB, U+i2 {1) ~ (1)

—1 (1) 2 (1)~+pF+p, +i(F+i, +p+F+i, gl )
I
U+i

I
U+i —o ~

(4.21)

)&exp i —y—
P

—Qa t (4.26)

where a and P are independent parameters. We can, in
consequence, anticipate the existence of the SA soliton of
the envelope type in the propagation of high-frequency
SAW on the dispersive solid surface.

V. CONDITIONS TO OBSERVE THE SURFACE
ACOUSTIC SOLITON

In the preceding section it has been shown that the
two-dimensional displacement field U(x, t) reveals the ex-
plicit soliton behavior whose profile is of the envelope
type. In the actual experimental situation, we almost use
a pulselike wave as an initial state, then under some ap-
propriate condition the pulse wave achieves self-trapping
and becomes the envelope soliton due to a competition be-
tween dispersion which tends to broaden the pulse and the
nonlinearities which tend to narrow it. Therefore whether
we can really observe the envelope soliton experimentally
or not in the propagation of high-frequency SAW depends
essentially upon the propagation distance to achieve maxi-
mal self-trapping. Of course, this distance should be
smaller than the sample size so as to detect the envelope
soliton.

In general, the inverse scattering method tells us that
the bound state of the relevant eigenvalue equation with
initial pulse as its potential has one-to-one correspondence
to the soliton. Furthermore, the number of bound states
does not change with time and is determined only by the
property of the initial potential.

As an initial envelope, we assume the square pulse of
height 0 and width 5 involving the carrier wave with the
frequency k as

H, O~x &6
0 elsewhere .

F p i(F i i+F i i)
2COkS' 2

(F - -)'
2k, k

(4.24b)

Applying the inverse scattering method and performing a
somewhat lengthy calculation after Zakharov and Shabat, 7

we can obtain the condition for which the initial pulse
(5.1) is regularized to be the envelope soliton due to the
competition between the dispersion and the nonlinearity as

' 1/2
2P

(5.2)
The displacement field U(x, t) is then given by

U(x, t)=Re[ g(x, t)exp[ i (kx —cok—t)] J .

Introducing the variable y=x —Ugt, we can rewrite Eq.

The pulse height il of the induced envelope soliton
starting from the initial condition (5.1) is determined by
the intersection of the following two curves:
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' 1/2

y— 2P X 0~X(Hb
Q Hh

(5.3a)
To discuss the competing effect between the nonlineari-

ty and the dispersion quantitatively, we introduce the fol-
lowing thI'cc quantlt1cs:

(5.13a)

1/2 2
' 1/2

Q ~Hl
2P

(5A)

k' ~~k
Dg(k) =-

8k
(5.13b)

In this case, the SA soliton can be written by
' 1/2

U(x, t)=qsech ll (x Ugt)—

2

Dl(k) =1-
4&k

(5.13c)

g cxp ' —l kx —Q)k +—"g
2

(5.5)

Also~ thc propagat1on t1IDC t~ required to achlcvc IHax-

imum self-trapping can be estimated to be
' 1/2

(5.6) and then

~ D, (k)

2k

kN
cokDl(k)

(5.14a)

(5.14b)

To beg1n vvith, we g1ve the limitations on the various
experimental quantities such as ~&, 6, Rnd H.

(1) Maximum frequency of the coherent SAW attain-
able experimentally at present is about 3 GHz:

Q k'

%-3.0g 1023

(5.14c)

(2) In order to detect the surface displacement by laser

light reflection, minimum amplitude of the surface oscil-
lation should be of the order of 1 A. :

(5.g)

(3) To make the asymptotic method valid which was

employed in Sec. IV, one envelope wave should involve at
least several tens of wavelengths of the carrier waves:

(measured in cm sec ) for Si as an example.
For the dispersive effect, we consider the following two

kinds of dispersive terms.
(a) The intrinsic dispersion due to the discreteness of the

crysta111nc so11d.
(b) The extrinsic dispersion due to the layered structure

of the solid surface.
First we consider the case {a) where the dispersion rela-

tion can be approximately expressed by Eq. (3.19),

aPj, ——(Uk) [1—(hk) ] . (3.19)

(4) The propagation distance d of the envelope wave re-

quired to achieve maximal self-trapping should be smaller

than the sample size L:

In this case, Dl(k) and Dl(k) are given by

Dl(k)=3(hk) [1——', (hk) ][1—(hk) ] (5.16a)

From Eq. (5.2), it is shown that the product of the
width and height of the envelope soliton is constant and
its order of magnitude is v'2P/Q. Therefore, combining
the above limitations (5.8) and (5.9), we obtain

Q & Us/HlL —1.6~ 10''

(mcas«cd in cm scc '), where we have assumed that
L = 1 cm and the group velocity Ug

—4.9&( 105 cm/sec for
Si.

(5.12)

2P/Q-(Hh)'&7. 3X 10-" (5.11)

(measured in cm ). Also, the t~ can be estjmatcd to be

4r —H Q lf wc consldcr thc sollton witll the same height
as that of the initial pulse (l)-H). This determines the
magnitude of the constant Q to be

Dl(k)=3{hk) [1—(hk) ] (5.16b)

Substjtutjng thcsc leslllts jll Eq. (5.14c) and taklllg h=3
A. , we have

[1——', (hk)l][1 —(hk)2]
Q

(measured in cm ), which is almost llldcpcndcnt of thc fre-

quency and is too small to satisfy the soliton f0~ation
condition (5.11).

Next we consider the case (b) whose confjg«ation js
for example, a ZnO layer over the Si substrate. In this

case, the effect of dispersion is essentially determined by
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the relative magnitude of the layer thickness and wave-
length of the carrier wave.

Solving the boundary-value problem for the elastic wave
equation in the ZnO-Si layered structure to evaluate the
dispersion relation, we obtain the critical values of the
ZnO film thickness hi and the frequency of the carrier
wave vk as

h( (2.4& 10

(measured in cm) and

(5.18)

Vk & 1.6 (5.19)

(measured in GHz) to satisfy the formation condition
(5.12). Therefore we can conclude that the ZnO-Si layered
structure w'ith about 2000-A layer thickness, for example,
offers a good possibility of observing the SA soliton in the
propagation of the SAW with the frequency about 2 GHz.

The introduction of the layered structure which ensures
the soliton-generating condition (5.12) results in a new
problem to be solved. The localized eigenmode of the
elastic waves in the layered structure is no longer a simple
Rayleigh wave but rather a complicated wave, i.e., Love
wave, Sezawa wave, etc. This gives, however, no serious
alteration in our results because the waves localized to the
solid surface can always be described by the Rayleigh type
wave, and the profile function of that wave toward the xi
axis may only suffer a slight modification. Therefore the
results obtained in this paper are not qualitatively altered.

Finally, it would be worthwhile to note the sign of the
product I'Q. In order for the SA soliton to be stable as an
envelope soliton, the sign of the I'Q should always be posi-
tive. This condition will be experimentally satisfied by
adopting the layered structure with the elastically "soft"
layer on the "hard" substrate which implied the dispersion
relation satisfying the inequality 8 coklBk & 0. The
ZnO-Si layered structure which we have taken in this pa-
per just satisfies this characteristic property.

the coherent-state representation. The two-dimensional
wave equation with a nonlinear term of the convolution

type has been obtained which can be reduced to the simple
nonlinear Schrodinger equation by means of the reductive
perturbation method. We can therefore anticipate the
possible existence of the SA soliton in the ballistic propa-
gation of the high-frequency surface phonons on the
dispersive crystal surface.

The experimental possibility of observing the SA soliton
has been also discussed with the aid of the inverse scatter-

ing method. It has been shown that the layered structure,
for example, ZnO-Si, with the layer-thickness around
2000 A, may offer the necessary condition to generate the
SA soliton in the propagation of high-frequency SAW
(about 2 GHz).

In the field of solid-state devices, the SAW have been
normally applied for use as a delay line, convolver, or
SAW filter. Since the SA soliton has been shown to be of
the envelope type involving high-frequency carrier waves
and, in addition, is remarkably stable against the small
perturbations existing in the medium, we can naturally ex-
pect that the SA soliton may be able to carry the informa-
tion over long distances without being distorted. There
will, therefore, be possibilities of making use of it for the
application to a transmission system.

When the SA soliton is considered to have a potential
application to the communication system, we must ampli-
fy and reshape the SA soliton to compensate for an un-
avoidable deterioration of the pulse shape due to the
several intrinsic defects or irregularities in the medium.
Such an amplification can be achieved by using the
electron-phonon interaction in a semiconducting solid sur-
face as an amplifier. The generalization of our formalism
to include the electron-phonon interaction in a semicon-
ductor is now under investigation and the result is report-
ed in the following paper.
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APPENDIX A

In this appendix we present the explicit expression for the three-phonon vertex function 4-„-,-„„. In an isotropic
7

elastic medium with free surface, 4- „,-„„is given by
7

N-„-„,-„„=(2pW) ~ (cokcokark )
'~ kk'k"P- -, -„,

7 7

(A 1)

(A2)

P's are written, respectively, as
3

(a) „=a xi ——AHLII,k, k', k"
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= —+pk, k', k"
KI
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+2 —

2 A —
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~~2+1 az(~, +1)

2KIKt &t
+2 — A —,(8+8")+(C+C") HLTL

pP, +1 vi(v, +1)
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2
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gg+1 az(~, +1)
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+[~,(A+8") (a, +1—)C"]Hz'z'L, I (A4)

y() p(p)
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2 A —
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=4'~
k, k', k" k', k, k" k", k, k'

~ ~ 0ff/~ ~ ~ If/~
k k'k" k'k k" k" k k'

(AS)

As is clearly seen in the above expression, 4„„,„„
and also P- -„, „are completely symmetric against thek, k', k"
exchange of any two wave vectors and are invariant under
the simultaneous inversion of wave vectors:

(83)

We now try to prove Eq. (4.11d) for the vertex function
(A3). In this case we have

3
(a) 1KI——m k, n k, (m —n) k K~

4
k, k', k" —k, —k', —k" '

+ + + ~ +
k, k', k" —k, —k', —k"

lm I+ In I+ lm —n
I

' (84)

APPENDIX 8

—pmk, nk

3lm Ik I+a,
+ + + 0

p~ l ~& —m k, n k, (m —n) k

(81)

Using (Ag), we obtain

mk, nk —mk, —nk mk, (m —n)k

Here we show that the relation (4.11d) holds. From the
definitions (3.15) and (Al), we have

which clearly vanishes if m or n is equal to zero or m is
equal to n. Since the other vertex functions [(A4)—(A7)]
also have the similar dependence on m and n to that of
(A3) such as

Im I+d In I+d'lm —n
I

where d and d' are some constants, we see that Eq. (4.11d)
holds for F~ „. Quite the same argument can be applied
for F ' „and F „[Eq.(4.11d)], then we have completed
the proof of the relation

+,n =+m, n =I', n =0
if either m or n is equal to unity or m is equal to n.
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