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Spin-lattice relaxation in magnetic ion pairs
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A new theoretical model of spin-lattice relaxation for magnetic "ion pairs'" has been developed in
which both the "spin-phonon" and "spin-spin" interactions are jointly effective in producing a net
relaxation transition. The Raman-type indirect two-phonon relaxation rate for non-Kramers as well
as Kramers ion pairs shows T dependence at low temperatures and T dependence at high tem-
peratures. The T dependence is entirely a new result. The T dependence for Kramers pairs is also
a new result as it is not possible in the usual Van Vleck mechanism. Even the T7 dependence for
non-Kramers ion pairs is different from a similar standard result for unpaired ions. It appears that
the electronic spin relaxation behavior of ion pairs may be quite different from that of unpaired
1ons.

I. INTRODUCTION

The electroruc spin-relaxation rate of magnetic ions is a
very important parameter in various magnetic resonance
experiments as it affects the sharpness of the resonance
peaks. It is also extremely important in the observation
and analysis of the Mossbauer magnetic hyperfine spectra
of paramagnetic ions at low temperatures. ' It is well un-
derstood that electronic spin relaxation proceeds by the
two distinct processes known as (i) spin-spin relaxation
and (ii) spin-lattice relaxation. The two relaxation
mechanisms have always been considered to proceed in-
dependently without any mutual influence, that is, the
spin-spin interaction and the spin-phonon interaction are
treated as being completely independent of each other.
However, in many cases (especially in crystals with a good
concentration of magnetic ions) the exchange interaction
and the dipolar interaction between a pair of magnetic
ions may become quite significant, and the spin relaxation
of such magnetically coupled (or exchange-coupled) ion
pairs can proceed effectively under the joint effect of
spin-spin and spin-phonon interactions. In a sense one
considers a situation when a pair of magnetic ions besides
being individually coupled to lattice vibrations are also
magnetically coupled together. The aim of the present
work is to explicitly calculate the spin-lattice relaxation
rate of such "ion pairs" through a specific relaxation path
which connects the two ions both vibronically and mag-
netically. Here the calculation will be presented for a
Raman-type indirect two-phonon relaxation process which
effectively utilizes the entire phonon spectrum of the lat-
tice and is therefore quite dominant. For the sake of
completeness, a brief outline of "spin-spin" and "spin-
phonon" inter'actions will be given and then the relaxation
model for ion pairs will be taken up.

The electronic spin-spin interaction arises from the
Heisenberg exchange and magnetic dipole-dipole interac-
tions between a pair of ions. These interactions can be ex-

pressed as a sum of vanous terms contatntng sptn opera-
tors. ' Among the various possible transitions induced by
these terms the most dominant are those which conserve
the net spin and the crystal-field energy of the system.
Accordingly the spin-spin transitions are mainly induced
by mutual spin flips at the two ions and the relevant in-
teraction is effectively represented by

H (1,2)=J[S+(1)S (2)+S (1)S+(2)], (1)

where
(
J

)
=

i
—,
' J, +G

~

is the effective magnetic cou-
pling constant. Here J~2 is the Heisenberg exchange-
coupling parameter and G =(g,P, /4r, z)(1 —3cos 8,2) is
the dipolar coupling constant between. two ions.

III. SPIN-PHONON INTERACTION

The spin-phonon interaction is responsible for the ex-
change of energy between electronic spins and lattice vi-
brational phonons. With the use of the long-phonon-
wavelength approximation the spin-phonon interaction is
given by '

V„(L)k (ak+ak ),

where M is the mass of the crystal, cok is the phonon fre-
quency of wave vector k, and V„(I.) is the crystal-field
potential with dynamic parameters. The properties of
phonon annihilation and creation operators aI, and ak are
well known.

IV. RELAXATION INTERACTION FOR ION PAIRS

In any theory of spin-lattice relaxation one has to take
into account the electronic states of the magnetic ion, the
phonon states (or lattice-vibrational states) of the crystal,
and the perturbing interaction which can induce transi-
tions between unperturbed electron-phonon states. The
complete Hamiltonian for the electron-phonon system will
be given by

H = Ho+Hp (1h)+Hss(1, 2)+H, ph(2) .
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The Hamiltonian Ho consists of the electronic and
latt1cc-vlbfat1onal 1ntcfact1ons, and 1t p1oduccs thc unper-
turbed electron-phonon states of the system. The relevant
electronic interactions are the crystal-field potential, the
spin-Orbit coupl1ng, and thc ZccIDRQ 1ntcIact1on, RIld tbcy
decide the electronic states of the ion. The phonon state
of the lattice is represented by the number of phonons
(nk ) of varying energies and wave vectors, which is given
by the Bose-Einstein distribution function. The rela.xation
transition between various unperturbed electron-phonon
states of an ion pair are induced by the perturbing Hamil-
tonian H, „i,(1) + H (1,2) + H, ~b{2). While treating
H (1,2) as a perturbing interaction one should be some-
what cautious. As mentioned earlier H (1,2) incorporates
thc cxchangc 1ntcractlon which may become stfong
enough to give rise to ferromagnetic or antiferromagnetic
ordering of the system (provided the concentration of
magnetic ions is large and the temperature is suitable). In
8 IHagnctically ordered system thc clcctfonlc sp1Q states
RI'c w1dcly separated so that only thc gI'Gund state 1s most-
ly populated (i.e., the spin states are long lived) and such
conditions are not favorable for the measurement of spm-
relaxation times. Therefore one is always interested in
cases where the exchange interaction is very small or zero
(that is, the system tends to remain in a paramagnetic
state) and then H„(1,2) can very well be regarded as a per-
turbing interaction.

In the usual indirect two-phonon process the spin relax-
ation between the two electronic states of a ground doub-
let proceeds via an excited state with the emission and ab-
sorption of two phonons. In the case of an ion pair the
proposed relaxation path has been shown in Pig. 1. For
example, at the first ion a phonon of energy iricok is ab-
sorbed which brings this ion into its excited state. Then
there is a simultaneous spin flip at both the ions followed
by the emission of a phonon of energy fink at the second
ion. During mutual spin flips if the spin of one ion
changes by + 1 that of the second 1on changes by —1 so
that the net spin and the energy of the system remains

\
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ion (i) ion (2)

FIG. 1. Schematic representation of the relaxation path,

conserved. F1nally, thc emitted and thc absofbcd phonons
have an energy difference equal to the energy separation
between the electronic ground doublet.

The initial state of the relaxation path is

I
bi»2'nk nk )

the intermediate states are

I
bi &~;nk —I,nk &,

the final state is

I bi, a2, ilk —l, ilk~+ 1 )

and thc cncI'gy scpafat1ons arc

Abj ——Eb —E, , he) ——E, —E~

Ab2 ——Eb —E, , Ac2 ——E, —E,,
»»g 1 l&i& lbi& lci& and l&i& I»& lci& a«
the electronic eigenstates of the first and the second ions,
respectively, and

I
nk } represents the phonon state of the

crystal. The eigenstates of the ion pairs are represented by
Born-Oppenheimer products of the electron-phonon states
of the two ions and Fig. 1 shows one such scheme.

The transition probability per unit time for the transi-
tion

l b2 }~
I
a2 ) will be given by

w4cI'c, cffcct1vcly,

k k' nk(nk +1)5{ficok Acok &b2)— —
JM i 2

k i ~kcok(«2 —~b2 —~k) («i —~&i —+ok)

The density of phonon states may be approximated to be continuous and Debye-type, which is given by9

g (k)dk = ( V/2' )k dk,
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where V is the volume of the crystal. Then the summation over phonon states is replaced by an integration and the ex-
pression (5) reduces to

i' J Mi cokcoi, nk(np~+ 1)5(ficok Skag—g —kb )dcokdcok

I6m'p'v" (60—ficok )
(&)

where k =co/v, v is the vdocity of acoustic phonons in the crystal, p is the density of the crystal, and it has been as-
sumed that Ae& A—b&-Ac2 —b,b2-60. Completing the integration over the 5 function, which exists only when
ficok =ficok+hb, and using the expression for the phonon occupation number, one finally obtains

y
co (co+Eh/fi) exp[(fuu+ b b)/kii TJdco

gir3p2v'0 (&0 iiico)4 [exp(fico/kz T) —1]I exp[(fico+ b b)/kii T]—1 I

(now the label k has been removed from cok ).
The transition probability for the reverse transition

~
a2 )—+

~
b2 ) may be similarly obtained by using the initial state

~
bi, a2, nk, np~)

the intermediate states

~
bi, c2, nk, n'k 1),—

~
ci,b2, nk, nk I ),—

and the final state

~
bi, b2, nk+ l, nk —I) .

Then one obtains

I co3[co+(bb/fi)] exp(fico/kii T)dco

ger'p2v'0 (50—fico)4 [exp(fico/kii T)—1]I exp[(fico+ hb)/kii T]—1]

The relaxation rate (1/T, sec } is equal to the sum of the two transition probabilities given by expressions (9) and (10)
and hence it is equal to

J M i ~~~ co3(co+ gb/g)3 I exp(fico/kii T)+exp[(fico+ dLb )/kii T] I dco

Ti gir3p2v'0 o (&0—fico)4 [exp(%co/kz T) 1]I exp[(fic—o+hb)/kii T]—1 J

This is the general expression for the relaxation rate. The
1ntcgratloIl cxtcIlds ovcI thc cIlt11c phonon spectrum and
hence the upper Hmit goes up to Debye frequency (coD) of
the crystal. The integral in expression (11) can be evaluat-
ed under different approximations.

A. Case I: h,o~~kco

This condition is usually satisfied when the Debye ener-

gy of the lattice is less than b,0. In this case, fico may be
neglected compared to 60 in the denominator (apart from
b,b/fi being always neglected compared to co) and the ex-
pression (11) reduces to

B. Case II: ho&

This condition may be satisfied at sufficiently high tem-
peratures and then 60 may be neglected compared to Ace.

The expression (11) then reduces to

1 J Mi kiiT ea~r x'e"dx2 2
' 3

(13)
3+2 10f4 g 0 (ex 1)2

This indicates that for high-energy (or swift) phonons the
relaxation rate is proportional to T which is entirely a
ncw result foI' non-Kramcrs 1on pairs.

C. Case III: Kramers ion pai.rs

JM)
3 2 10g4

7
kaT JOD'T x'e"dx

0 (ex 1)2
For Kramers ion pairs expression (11) will be modified

to give

where fico/kiiT =x and 822 is thc Dcbyc temperature of
the crystal. This shows that the relaxation rate of ion
pairs is proportional to T, which is similar to the stan-
dard Raman T process for an unpaired non-Kramers
ion, but where the absolute values are different for the two
cases. At low temperatures (022/T&12) the upper limit
of the integral in expression (12) may be replaced by ao

and then its value approxiIDates to 6f. At higher tempera-
tures the value of the integral diminishes sharply; this can
be obtained from standard tables. '

J M) ~g) I
4 p v' b,

" 0 (b, —Rco) (6 +fico)
+

co exp(fico/kii T)dcox , . (14)
[exp(fico /kii T ) —1 j

In the case of slow phonons at low temperatures
(fico ~&50) the term within the large parentheses in (14)
can. be or approximated to be 4/Ao so that
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Q~pD x'e dx
3p2 10g4 g DP (

x 1)2

VI. DISCUSSIGN

It appears that the spin-relaxation behavior of ion pairs
may be much different from that of the unpaired ions. "
Actually spin relaxation in a system may proceed through
various possible paths and the dominant mechanism
within a given temperature range can be decided only by
matching experimental data with theoretical calculations.
However, the proposed new relaxation for ion pairs can be
identified by observing any T dependence of relaxation
rate which is predicted in the case of ion pairs only.
Another distinct feature of the proposed relaxation mech-
anism is that the relaxation rate will be sensitive to tem-
perature as well as ionic concentration and this may be
utilized to identify the proposed mechanism.

It might be interesting from an experimental point of
view to look into a system where there is no direct spin-
spin relaxation within the ground doublet, that is,
(a

~
S+

~
b) =0 (or g1=0), which is often true for axial

symmetries. For such a system the spin-relaxation rate at
low temperatures should not depend upon the concentra-
tion of magnetic ions unless the proposed "pair relaxation
mechanism" is operative. This can provide direct experi-
mental evidence of the proposed relaxation process pro-
vided one studies the variation of spin-relaxation rate at
low temperatures as a function of ion concentration.

It is appropriate to note that several authors have al-
ready described the cases of "cross relaxation" among
"exchange-coupled ion pairs" where both spin-spin and
spin-phonon interactions are operative and hence they
may superficially appear similar to the relaxation mecha-
nism proposed here. But this is not so, which will be evi-
dent from the following discussion.

This gives a relaxation rate proportional to T which is a
new result for Kramers systems. Similarly for swift pho-
nons at high temperatures (fuu &&ho) the term within the
large parentheses can be approximated to 4/(ftca) so that

1 J ~i AT OD'T x'edx2 2
'3

3 2 10' g 0 (
x 1)2

(16)

This gives a relaxation rate proportional to T which is
again a new result for Kramers systems.

Harris and Yngvesson have considered the spin-lattice
relaxation of exchange-coupled pairs of iridium ions. In
their approach ihe effect of exchange interaction is only to
modify the electronic wave function by introducing an ad-
mixture from other electronic states and by removing the
spin degeneracy. After that the relaxation transitions are
produced by the orbit-lattice interaction for the ion pair.

Gill and Ivey' have reported the observation of a cross
spin-lattice relaxation in which the spin-lattice relaxation
rate is affected by the presence of the exchange cou-
pling. They believe that in Tutton salt
(NH4)2(Cu, Fe,Zn)(SO4)2 6H20 the spin-lattice relaxation
of Cu + ions is mainly due to their coupling to very-fast-
relaxing Fe + ions. Here a rapidly relaxing Fe + ion in
effect produces a varying magnetic field on a neighboring
Cu + ion. The magnetic field, whose magnitude and
direction depend upon the strength of spin-spin coupling,
in turn produces an admixture of high-energy electronic
states into the ground Kramers doublet (which is mostly
occupied at liquid-helium temperature), and consequently
an orbit-lattice transition within the ground doublet be-
comes possible. This leads to an enhancement of the
spin-lattice relaxation rate of Cu + in the presence of
magnetic (or exchange) coupling with neighboring Fe +
ions (a standard result for Kramers systems).

Recently Vasson et al. '" have reported measurement of
an electronic cross-relaxation rate of Cr +(3d ) in ruby
crystals containing fast-relaxing Ti +(3d ') and other
transition-metal ions. In order to explain the experimental
data they have utilized a two-step relaxation mechanism
represented by Cr +—+Ti +—+lattice. The transition
Cr +~Ti + is made possible by a dipolar spin-spin in-
teraction and the transition Ti +~lattice proceeds by
means of strong orbit-lattice interaction while Cr + itself
is only weakly coupled to lattice. The theoretical frame-
work of such a relaxation scheme has been discussed by
Bates et QI."

In fact, the processes discussed by Harris and Yngves-
son, Gill and Ivey, Bates et al. , and Vasson et al. are very
similar because in all these cases the spin-lattice relaxation
rate of a weakly coupled ion is increased due to its mag-
netic coupling with a fast-relaxing ion. In perspective it
appears that the spin-lattice relaxation mechanism for ion
pairs, which has been proposed in the present work, is of a
new kind where both the ions are strongly coupled to lat-
tice vibrations besides being magnetically coupled togeth-
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