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Analysis of reflection high-energy electron-diffraction data
from reconstructed semiconductor surfaces
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Features in reflection high-energy electIon-diffraction patterns arising from various types of sur-
face disorder ale discussed, with speclflc examples of each. The relationship between (001)2+4 and
(001)-e(2&8) reconstructions, which are frequently observed on III-V compound semiconductor
surfaces, is explicitly demonstrated.

I. INTRODUCTION

It is apparent from several recent publications that
the analysis of reflection high-energy electron-diffraction
(RHEED) data from reconstructed surfaces of semicon-
ductol s Iemalns problematical, even when a purely
kInematIc treatment based on Ewald-sphere —recIprocal-
lattice concepts is used. Particular difficulties arise when
one-dimensional disorder boundaries or some lack of per-
fect periodicity are intrinsic features of the reconstruc-
tion. The occurrence of such effects has, for example,
resulted in reports that the 2X4 and c(2&&8) reconstruc-
tloIls observed oil (001) surfaces of III-V co111pollIld scm1-
conductors arc fundaIQcntRlly d1ffcrcnt.

In this paper we show how information on surface mor-
phology, disorder, and topography can be extracted from
RHEED patterns, and point out the importance of mul-
tiazimuthal measurements. We then explicitly define the
relationship between III-V compound (001)2X4 and
(001)-c (2&& 8) reconstructions in real and reciprocal space,
emphasizing that they are not mutually exclusive. Final-
ly, we comment briefly on possible values of the coherence
area in RHEED.

effects can already be explained from simple extensions of
the reciprocal-lattice —Ewald-sphere construction. For the
cases we are considering here we expect any contribution
to streaking from the nonideality of the primary beam to
bc small.

To obtain the maximum amount of information on
overall surface structure from RHEED observations it is
Rlso Important to obtaIn dlfflRct1011 patterns Rt scvcl'Rl az-
imuthal angles. There Rrc two principal reasons for this.

(i) When there is little or no intensity modulation along
the streak it is extremely difficult to determine the com-
plete surface symmetry from a single azimuth. This type
of pattern is, however, very frequently encountered with
semiconductor surfaces, an example of which is shown in
Fig. 1.

(ii) Any one- or two-dimensional disorder in the surface
can only be detected and analyzed by using several az-

II. EFFECTS OF SURFACE MORPHOLOGY,
DISORDER, AND TOPOGRAPHY

QN RHEED PATTERNS

We should first refer briefly to the appearance of dif-
fraction streaks as opposed to spots in RHEED patterns.
For streaks to be observed from a perfectly ordered, per-
fectly smooth surface, using an ideal instrument (i.e., with
no angular or energy spread in the primary beam) they
must have an intrinsic origin. The thermal diffuse
scattering mechanism proposed by Holloway and Beeby
seems the most probable of those advanced so far, but it
has not yet been substantiated by experiment. If we con-
sider real surfaces and real instruments, however, several

I. "t 101 AZIMUTH

GaAs (001) 2X4

FIG. 1. RHEED pattern from GaAs(001) surface, [110]az-
imuth showing integral and half-order streaks. Note the effec-
tive absence of intensity modulation along the streaks.
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I l 1 03 AZIMUTH

GaAS (001) 2XSI.

lT] 0] AZIMUTH

1) and (all) Reclproca1 1attlce E&a1d sphere constructjon sho~][ng 1engthenjng and broadening of diffraction streaks 1e-

sultlng from 1ack of pe~ect ordenng ln 8 speclflc dlrectlon. (bl) and (bll) RHEED patterns 111ustratlng this effect from
GaAs(00&)2g4 reconstructed surface, [110]and [T10]azimuths respectively.

and Hottier er; aI. , so we will not consider it further
here, beyond the general comment that steps are revealed
by splitting of the diffracted beams in a manner charac-
teristic of their orientation and spacing. Finally, the pres-
ence of facets shows up as addltlonal streaks 111 the pat-
tern, formed by diffraction from the facet planes, and so
they Rrc not noITQal to thc shRdow cdgc. This has bccn
treated by Simmons et al. , ' and in Pig. 5 we show an ex-
ample of a RHEED pattern corresponding to the onset of
gIowth by molecular beam cpltaxy of an autocpitaxial
GaAs film on a slightly contaminated GaAs(001) sub-
strate. The arrowhead features are derived from I511l
facets.

III. (001)2~4 AND (OOI)-e (2X 8) RECONSTRUCTIONS
QF III-V COMPOUND SEMICONDUCTORS

There has been considerable emphasis in the literature
that (001)2X4 and (001)-c(2g8) surface symmetries,
which occur on many III-V compound semiconductors,
represent different structures which are mutually ex-
clusive. ' Critical examination of RHEED and LEED
data shows that this is not the case, but that they are in
fact simply rdated by a surface disorder effect. This has
been implied in several publications, *' and an example
of the disorder can also be seen in Fig. 1 of Ref. 2, which
was published without comment, but where the streaks in
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Rec ipse oca I- Reciprocal-lattice plane
in plane of incidence

Recipr ocal-lattice
lane inclined to
lane of incidence

[1101AZIMUTH

GaAs (001)

FIG. 5. RHEED pattern from a GaAs{001) surface, [110 az-
imuth. Facet formation is indicated by the arrowhead structure,
in which the streaks are not normal to the h d do es a owe ge. Forthe
angle between these streaks and the surface normal ( —19') the
facet planes are —j 511).

[010l AZIMUTH

GaAs (001) 2X4.

FIG. 4. (a) R( ) eciprocal-lattice —Ewald-sphere construction
showing the origin of curved streaks. A and B define the streaks
originating from the reciprocal-lattice plane in the plane of in-

cidence and inclined at an angle P, respectively. (b) [010] az-
imuth RHEED pattern from a GaAs(001)2)&4 reconstructed
surface. Note the curved streaks, and that extended streaks are
only present in the half-order positions, i.e., they do not pass
through the origin of reciprocal space.

the f010 azimuth are clearly curved. Here we stress the
important results and illustrate the relationship in real and
reciprocal space. There are two features of the RHEED
patterns which enable the analysis to be made.

(a) Thea e presence of domains having a strong ordering
direction is indicated by the lengthening and broadening

of t e fractional and integral order bearns in a specific
irection for two orthogonal (110) azimuths, as shown in

Figs. 3(a) and 3(b).
(b) The observation of curved streaks in intermediate

azimuths, as shown in Figs. 4(a) and 4(b), confirms the
presence of one-dimensional disorder boundaries, but the
periodicity of the disorder can also be deduced from the
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FIG. 6. (a) Real-space representation of one-dimensional (1D)
disorder in a 2X4 lattice, with disorder in the direction of two-
fold periodicity. Not all lattice points are shown. (1) 2&4 re-
ciprocal lattice section showing sheets of intensity resulting from
this disoxder.

due, for example, to atomic steps or to the type of boun-
dary d1scussed above.

F1nally, we add a cautionary note on colmlencc area
values used in RHEED, which may be significant when
discussing domain sizes. Hernindez-Calder6n and
Hochst' very recently quoted values based only on the fi-
nite convergence and energy spread in the incident elec-
tron beam which indicated that RHEED could detect or-
dered regions g 1000 A in diameter, compared with re-
gions ~100 A in diaIDeter in I.BED. However, it has

FIG. 7. Tilted diner model of the GaAs(001) reconstructed
surface, showing a one-dimensional disorder boundary, with all
lattice points on the 1&4 lattice. The dimers are represented by
open circles in Fig. 6(a).

been shown by Beeby's that it is only the dimension of the
electron wave packet which is important in determining
the coherence area, and the calculation of the spatial ex-
tent of a wave packet for a particular experiment is ex-
tremely difficult. General values based only on the energy
and angular divergence of the primary beam may not be
valid.
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