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An electronic Green's function for polyacetylene with a soliton is obtained with the use of the
continuum model but in a coordinate representation. This representation eliminates the necessity of
imposing any specific boundary conditions for eigenstates of the Hamiltonian. The Green s func-

tion is easily used to obtain both the electronic density of states and the spatial charge density for
the midgap state as well as the conduction and valence bands. It is further used to find an optical-

absorption coefficient that satisfies the optical sum rule for the polymer chain with a single soliton.

I. INTRODUCTION given by

The proposal that domain walls between two energeti-
cally degenerate but topologically different configurations
of trans-polyacetylene, (CH)„, play an important role in
determining its electronic properties has contributed a
large share of the theoretical' and experimental interest
in this material. Moreover, the suggestion that these
domain walls —charged solitons —are created at low
dopant concentrations has received considerable experi-
mental support, especially from optical-absorption mea-
surements.

In the soliton model an electronic state forms in the
middle of the dimerization gap which should then give
rise to optical absorption at energies deep within the gap.
Based on a continuum model of (CH)„several calculations
of the optical absorption ' ' have been made. Al-
though they all give the same midgap absorption, not all
of them give the same reduction in the interband transi-
tion, nor do they all satisfy the optical-sum rule. The
source of these inconsistencies apparently lies in the way
each calculation treats the boundary conditions for the
broken symmetry of the polymer chain with a soliton. '

In the present work we propose to avoid some pitfalls
associated with the boundary conditions by working in a
coordinate representation to obtain electronic Green's
functions for (CH)„with a soliton. From these Green's
functions the electronic density of states and the spatial
charge density follow almost immediately. The Green's
functions are then used to calculate an optical-absorption
coefficient which satisfies the optical-sum rule.

In an Appendix, detailed comparison between the
present approach and that of Kivelson et al. 's is made
and the formal equivalence between the two is discussed.
The real part of the dielectric function is also given there.

II. GREEN'S FUNCTION IN THE
COORDINATE REPRESENTATION

In the continuum model the electronic part of the Ham-
iltonian for trans-(CH)„with a soliton localized at x =0 is

H, =g J dxql;, (x) —ivf((73)tj +b(x)(tri)tJ O'J, (x),
BX

where

(2.1a)

b, (x)=6 tanhM/uf, (2.1b)

b, is the dimerization gap, 4' is the electron spinor, and o. s
are the Pauli spin matrices. The Green's functions in the
Matsubara representation are defined as

G; »(x,x', r)= —(T4;,( ,x)rq,t( x0)) .

Recognizing that the anticommutator

Iql;, (x), VJ, (x)I =515„5(x—x')

yields the equations of motion

(2.2)

(2.3)

a ~ a
GJ(x,x', r)+ ivf(tr3);~ h(x)(cr—&); G ~(x,x', r)

Br BX

=515(x—x')5(r), (2 4)

where, for convenience, the spin indices have been
suppressed and the chemical potential is set equal to zero.
[This is correct for (CH)„with a neutral soliton and intro-
duces no loss in generality. ] Expanding in Matsubara fre-
quencies, co„=(2n + 1)irlP, these equations become

=5J5(x —x') . (2.5)

These four first-order differential equations couple Gii
and G21 as well as G22 and G». To decouple the equa-
tions for Gii and G2i, define

G+1 G11+~G21 ~ G+2 G22+~G12 &
(2.6a)

ico„Gtj(x&x',co„)+ tuf(cr3)t~ —b(x)(o, )t~ Gnu(x, x', co„)
BX
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G I
—Gii —IG2I, G 2

—G22 —iGI2 . (2.6b)
exp( —k ~x —x'

) )
GII(x,x', C0„)=

2uf k
(2.8a)

However, since the correct free-particle Green's function
in one dimension satisfies

2—uf +5 +co„GO(x,x',co„)=5(x —x'), (2.7)
X

with

(2.8b)

it follows that this Green's function can be used to solve

any particular solution of the free-particle operator. Thus

Go(x,x', co„)
G2I(x,x,co„)=[ lu—fk sg11(x —x )—tb( x)+ted„][—iufk sgn(x x')—+I+(x')—I'co„]

2co~
(2.9a)

Go(x,x', co„)
6»( x, x', co)=[iufk sgn(x x')—+id(x)+i'„][ iufk—sgn(x x')+i—b(x') ico„]-

2l fdic
(2.9b)

The two coupled equations for G22 and GI2 can be ob-
tained from those for Gii and G2i with the substitution of
—Uf foi' Uf. Consequently, substituting —Uf foi' Uf III Gii
and GzI yields 622 and Glz, respectively.

Certain properties of the system can be immediately ob-
tained from these functions. Analytically continuing ico„
to obtain the retarded Green's function gives the electron-
ic density of states p(e),

p(e)=Ir 'Im f dx QG;; (x,x,e+i5) . (2.10)

p, (x)= 1

2uf cosh (Mluf)
(2.14)

Similarly the change in the spatial charge density for the
valence band is expressed as

5p„(x)=~ 'Im f de+6;;„(x,x,e+I'5) —po„(x),
C

I

with no spin sum because of the single occupancy. This
trace is also easily evaluated and is

p, (x)=Ir 'Im f de+6;;„(x,x,e+I'5), (2.13)

This trace Is caslly cvaluatcd as

e)b, (2.11a)
(P +2)1/2 ~e(e2 +2)1/2

p(e) = .25(e),
i
e

i (b, (2.11b)
—2I E 25

(
2 g2)1/2 e(e2 g2)1/2 '

(2.11c)

where thc correct signs arc obtained by cvaluatlng thc
square root just above the br'anch cut. T4C terms propor-
tional to L give the correct density of states for trans-
polyacetylene without a soliton, pz(e), while the delta
function lying at midgap is the well-known electronic
state associated with the domain wall separating the two-
degenerate ground states. (The factors of 2 come from
spin. ) The change in the continuum density of states pro-
duced by the soliton, 5p(e), is easily integrated to give

f 5p(e)de+ f 5p(e)de= —2, (2.12)

which explicitly shows that one-spin degenerate quantum
state (half an electronic state) from each of the two bands
coiltributes to tile IIiiclgap state. Iii Ilelitial (ililclopecl) po-
lyacetylene this results in one electron from the previously
filled valence band being forced into the midgap state.

The spatial charge density at T=O for thc singly occu-
pied midgap state is given by

which gives

5p„(x)= 1

»I cosh (M luf )
(2.16)

This emphasizes that the charge in the valence band is
spatially redistributed to exactly cancel the space charge
due to the electron in the midgap state. Therefore, it is
easily concluded from these Green's functions in the coor-
dinate representation that trans-polyacetylene with a soli-
ton and a singly occupied midgap state is "locally" as well
as globally charge neutral. " The unusual charge-spin rela-
tions of a soliton in (CH)„, q =0, s = —,

' or q =+e, s =0,
directly follow.

In the Matsubara formalism the current-current correla-
tion is

11(r)= —( rs(r)Z(0) ) . (3.2)

Thc retarded current-current correlation is obtained by
Fourier expanding in Matsubara frequencies and then
analytically continuing ico„ to co+I'5 The frequen. cy-
dependent conductivity is derived from this as

III. FREQUENCY-DEPENDENT
CONDUCTIVITY

In the continuum model the current-density operator
for polyacetylene is given by

J=euf g f dx 4;,(x)cr2;Jq//, (x) . (3.1)
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i II(co+i 5)o co =Re
CO

(3.3) II(r)=2e vf fdx f dx'(cr2), J(cr2)„

Considering only the time-dependent part of the current-
current correlation, hence

X Gfn(x, x, ',r)G;(x', x, r—), (3.4)

Gp(x x' co' )Go(x', x,co' —co )
II(co„)=2e vf dx dx'—

con (con con )
~n

X Icon (con con ) +uf k (con )k (con con ) 2con(con con )Uf k(con )k(con con )

uf—[k (co„')+k (con' co„—)]h(x)h(x')+2co„'(co„' —con)h(x)h(x')+b, (x)b, (x')] .

(3 5)

The frequency-dependent conductivity or optical absorption is reduced to evaluating the imaginary part Eq. (3.5), the
calculations are straightforward but tedious, and the technique for evaluating the integrals over x and x' therefore will
be given in Appendix A, but the results merely stated are

H(a)= fdx fdx'exp( —a
I

x —x'
I

) = 2L, '

a
2 2 exp( aL')—
2+ 2 7

a a
(3.6a)

I(a) =fdxtanhx fdx'tanhx'exp( —a
I
x —x'

I
)

2L 2 1 2exp( aL') 4n —exp( —aL'/2)
2

—8
2

—
2 +

a „0(2n+a) a a sin(m. a /2)

J(z)=f dx tanh x f dx'tanh x'exp( —a
I
x —x'

I )

2 8 2 1 2 exp( —aL ') 4~ exp( aL /2)————4—4a+ 8a 2+ 2 +
a g2 a „0(2n+a) a sin(m. a /2)

(3.6b)

(3.6c)

where L' Zl. /v—f and z = [k(co„' ) +k (co„' —co„)]uf /Q, and Eqs. (2.8a) and (2.1b) have been explicitly used.
Combining ail the terms proportional L, the chain length, results in the current-current correlation for rrans-

polyacetylene without a soliton:

2e uf L co„'(co„' —co—„)+vf k(co„' )k (co„' co„)—6—
IIO(co„)= (3.7)

, ufk(co„')k(co„' —con)uf[k(co„)+k(co„co„)]—

Q2
cro(co)=4e vfL 2, co&25 .

2( 2: 4g2)1/2
(3.8)

This expression is easily integrated over frequency to
obtain the sum rule

f cro(co)dco=e ufL . (3.9)

The midgap absorption essentially comes from the pole
structure of II(co„). Upon analytically continuing
ice„~~+i5 and changing to a real variable of integration
the relevant pole is of the form

1/(x —co —i5) = 1/(x —co) +xi 5(x —co),

This Matsubara sum is performed, with the appropriate
contour integral. Upon analytic continuation of ico„ this
contour is deformed analogous to the contour used in cal-
culating optical absorption in a superconductor. ' The re-
sulting conductivity for a chain without a soliton at T=0
1s

I

trivially. With the use of the identity'

(2n+ 1) —(co /6 —1) m /8

z [(2n +1) +co /6 1] co—sh [2r/2(co2/52 1)'i2]—
(3.10)

the expression obtained for the midgap absorption is the
same as that obtained by others' ' and is

e uf
cr, (co)=

f2.(co b, )'i cosh [m./2(co /6——1)'i ]
co & b, . (3.11)

The reduction of the interband transition is obtained al-
most as easily. The only term that can be evaluated expli-
citly comes from the third term ( —8/a) in Eq. (3.6c).
The rest of the bleaching in the interband transition comes
from an imaginary principal part integration arising from
the I/(2n+a) terms in (3.6b) and (3.6c). The final result
is given by

and the imaginary parts of the integrals are then evaluated cr;(co) = [1 (4b, uf )/(Lco )]cro(co—) F(co), —(3.12)
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where I'(co) is determined numerically from the principal
value integration. Figure 1 gives the results for the
changes in the optical absorption owing to the presence of
a soliton in the chain. Note, however, the sign for the
reduction in the interband transition has been changed so
that ho';(co) is positive in Fig. 1. The optical-sum rule has
been verified numerically to four significant figures,
which, although lacking the elegance of an analytical re-
sult, is in satisfactory agreement. On initial inspection the
Icsults arrived Rt herc RI'c ln Rgrccmcnt only with
Horowitz' who creates a somewhat artificial dilute lattice
of solitons. However, the results of Kiveison et al. ' may
be rearranged to be (apart from a missing numerical fac-
tor) identical to those found here as well. Examination of
their Eqs. (813) and (815) show that each contains a can-
celling factor of (2uf /&I-)oo(co) which then gives an opti-
cal absorption in agreement with that found here. The
agreement with Kivelson (which is further discussed in
Appcndlx 8) ls sRtlsfylllg bccRusc lt dcnlollsti'Rtcs thc
equivalence of the alternatives of a coordinate space calcu-
lation or an eigenfunction expansion, both of which deal
directly with the unusual boundary conditions confronted
in trans-polyacetylene with a soliton. This equivalence
should provide flexibility in carrying out further Green s-
function-based studies on this and related polymers.

nate representation point of view. The continuum approx-
imation to the Su-Schrieffer-Heeger model is used without
reference to boundary conditions for a chain of finite
length. In this way details of the system's eigenstates be-
come unimportant.

The coordinate representation Green's function for the
chain with a soliton, which is required for the optical-
absorption calculation, permits a surprisingly simple cal-
culation of the density of states. The subsequent optical-
absorption calculation is conceptually straightforward but
mathematically more tedious. However, the contour in-
tegrals that arise are very similar to several already fami-
liar from superconductivity theory and those techniques
have been applied here. The results confirm the eigen-
function expansions of Kivelson et al. and suggest a flexi-
ble Green's-function approach to this class of one-
dimensional systems.
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IV. CONCLUSIONS

The symmetry of trans-polyacetylene with a soliton. is
substantially different from the translationally invariant
dimerized chain. Although vestiges of translational in-
variance remain because of the domain-wall topology, care
must be taken in determining the way this topology is
tI'anslRtcd into boundRI y condltlons Rnd ultimately lIlto
the eigenstates of the system, and there appears to be some
inconsistency in the literature on this point.

The presence of a soliton is sufficiently analogous to the
introduction of any localized effect that we have con-
sidered the problem of optical absorption from a coordi-

APPENDIX A INTEGRATIONS OVER x and x'

To evaluate II(co„) requires the integration of three
separate integrals, H(a), I(a), and J(a) in Eq. (3.6). The
correct expression for H(a) can be obtained using the
techniques shown below or by direct integration and will
not be discussed in this appendix. However, the evalua-
tloll of I(Q) Rlld J (0) ls Ilot qllltc Rs straightforward Rnd
the procedures used will be outlined here. First consider
the integral

I(a)= f dx tanhx f dx'tanhx'exp( —a ix —x'
i

) . (Al)

It is convenient to use the following integral representa-
tion for exp( —a ~x —x'

~
),

exp( —a
~
x —x'

~

)=—f exp[iq(x —x')] . (A2)
Q dq

+Q

Following this sUbstltUtloIl

1(u)=—f, ,f'(q),
+Q

(A3)

I '/2
f(q)= f dx sin(qx)tanhx .

Integration by parts and assuming L'= &L/Uf »1 yields

2 cos(L '/2)

g

(A4)

(A5)f(q)=
sinh(m q /2)

At this point it is convenient to use the following identity
for 1/sinh (mq/2), '

FIG. 1. Change 1n the optical absorption owing to the pIes-
ence of a soliton in the chain; the sign for the reduction in the
interband transition is changed so that it appears positive in this
f1gure.

1 4 1 f ~ x cos(qx)exp( —x)dx
sinh (mq/2) m' q sinhx

(A6)
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Substituting the expression (A5) and (A6) into (A3) and
combining terms so that second-order poles cancel enables
the q integrations to be done using simple pole residue
techniques. The only remaining integral to be done comes
from the identity expressed in (A6). This integral is of the
form of a Laplace transform and can be found in most
tables. The result is in the form of an infinite sum or Ezk = —e'zk =e'k = (Uf k +5 ) (82)

is generated where the 1(&k's are the spinors discussed in the
work by Kivelson et QI. ' ' ' The quantum number k can
either label the set of states in the conduction band ck,
the set of states in the valence band uk, or the midgap
state s. The energies associated with these states are

—(a+1)x
1-dx=,—+2 gsinhx a2 „0(2n+a)2

With the use of this expression the final result is

(A7)
and k, =0. It is important to note that these states form
an orthonormal set, i.e.,

f ek(xWk'(x)dx 5kk, (83)

2L' 2 1 2exp( aL')—I a= + —8
a a „0(2n+a) a

+ 4m exp( —aL'/2)
a sin(m. a /2)

Now consider

J(a)=f dx tanh x f dx'tanh x'exp( —a
~

x —x'
~

) .
(A9)

Substituting the expression 1 —sech x for tanh x results in
three integrals, two of which can be performed without
difficulty. The remaining integral is

J (a)—f dx sech2x f dx'sech2x'e t I (A10)

only with the proper normalization and proper boundary
conditions,

kL =2na+pk (conduction band),

kL =(2 n+1)m+(tk (valence band),

iWk
~

'=(I, Ufo/e2k—)-',

(84a)

(84b)

(84c)

g —+ f dk(L vfh—leak) .2' (85)

where pk ——tan '(ufk/b, ) and vr/2 (—pk (ri/2. Recog-
nizing that with these boundary conditions any sum over
k is changed to an integral in the following way:

Again, use of the integral representation in Eq. (A2) yields Then it is easy to show directly that

J,(a)=—f, ,g'(q),
q +a

(A 1 la) g Q';k(x)gfk(x') =5;,5(x —x'),
k

(86)

where

cos(qx)g(q)= dx
cosh x

(A 1 lb)

The identity given in (A6) once again enables the q in-
tegration to be done. However, in this case some care
must be taken with respect to the convergence of the q in-
tegration, since one of the integrals is of the form

f q 2e le/ e le
dx =2m5(x) —a f —— dq .

g +a ~ g +Q

where the sum over k includes all the states in both con-
tinuum bands as well as the midgap state. Now a field
operator can be expanded as

4;(x,r) =g P;k(x)ak(r),
k

where ak (ak) annihilates (creates) an eigenstate of the
Hamiltonian in the Matsubara representation. Note that
the eigenstate is a spinor while the operator, ak (ak ), itself
is not a spinor. With this expansion it is straightforward
to show that the anticommutator

jV;,(x), 4'~, (x) I =5;i5„5(x—x'), (88)

which was the assumption in Eq. (3).
Now the eigenfunction expansion of the Green's func-

t1on isJ(a) = 2I '
———4—4a+8a2 8 2 1

g 0 „,(2n+a)' Pk(xWJk«')
G&1(x&x &co» ) =g

l Q)n ~k
(89a)

+ 2 +2 exp( —aL') 4m exp( aL'/2)—
a sin(m. a /2)

Gkk (~.) =5kk /(&~. —&k) .

The last integral from the identity (A6) is again performed
using (A7). Now combining the two terms that were done
directly yields

APPENDIX 8: COMPARISON OF THE
OPTICAL-ABSORPTION RESULTS

WITH KIVELSON et al.

~elk ~k Pk (81)

Given the Hamiltonian in Eq. (2.1) a set of eigenstates
defined by

The Green's functions in Eq. (89a) can be shown to be
identical to those in Eq. (9) by simply performing the sum
over k in the prescribed way and the Green's function in
(89b) is exactly what would be expected from an eigen-
function expansion of a Green's function.

Now the Green's function from (89a) can be used in
Eq. (20) with the integrals over x and x' performed prior
to the sum over k and k'.

The integrals of interest are
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%),k(x)%'t~(x)dx = —AkAq +L l—z ek eq Slnh 1ruf k —ti
(810)

r

Ln
%'(~k x %')s x x=Ak—

' 1/2
1

cosh(t. uf k/2&)
(811)

Performing the Matsubara sum with the appropriate contour integral yields (in the low-temperature limit)

m(co„) =m; (to„)+n.s (to„),

where

(812)

11,(~„)=e'uf
cosh (nuf k/2b, )

1

«~k+~k
(813)

r

IIs(to„)=2e ufo' g ~Ak ) (Aq ~
+ f(k q)—

&k &q 'con —(&k+&q) tcon+&k+&q
l

with f(k —q) =muf f25 sinh[nuf(k —q)/25] I and Ak being the correct normalization given in Ref. 13(b).
Upon analytical continuation of in„

ill, (co+i5) z zQ uf 5(to —ek )
tr, (co)=Re =e uf dk

4 &co cosh (n/2uf k/. 5)

ReII, (co)=e uf — dk23~ 1 &k

coshz(II/2uf k/b, ) to2 —ek
(816)

illb(co+i5)
trb(to) =Re

2'IM Vf5 ~ 1 1
'

g )Ak
~ ~As ~

+ f(k —q)5(co —ek —eq),
M 6k eq

Rell, (~)=¹e'uf'a'g ~a, ~'~~, [' + f(k —q) —,
ek Eq (ek+eq)

(818)

Within a constant factor the conductivities are identical to those in Ref. 13(b) and the real part of the dielectric response
has been obtained as well.
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