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Tight-binding view of alloy scattering in III-V ternary semiconducting alloys
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The contribution of alloy scattering to the electronic scattering rate at the Brillouin-zone center in
18 III-V ternary semiconducting alloys is calculated in the Born approximation using the semi-

empirical tight-binding parameters of Vogl, Hjalmarson, and Dow. Three types of disorder for a
ternary alloy of the type A„Bl „C are included in these calculations. These are (1) ordinary diago-
nal disorder or disorder in the diagonal tight-binding energies associated with the constituents 3 and

8, (2) off-diagonal disorder or disorder in the tight-binding transfer energies between the constitu-
ents 2 and C and the constituents 8 and C, and (3) redistribution disorder which takes into account
the fact that the diagonal tight-binding energy of constituent C is different in substance AC than in
substance BC. The latter two types of disorder are taken into account for the first time by our cal-
culations, and we show that all three types of disorder can make roughly equal and sometimes com-

peting contributions to the alloy scattering rate. Scattering rates appropriate for both conduction-
band and valence-band scattering are presented and chemical trends in these rates for the alloys con-
sidered are predicted.

I. INTRODUCTION

The increasing technological importance of the III-V
ternary scm1conductlng alloys has gcIlcr'atcd considerable
basic experimental and theoretical research on their elec-
tronic properties. An important parameter of these ma-
terials for most device applications is the carrier mobility.
Of particular interest for this parameter is its variation
with alloy composition and from aHoy to alloy.

Among othcl scattering mechanisms, thc alloy OI' disor-
der scattering contribution to the mobility can be signifi-
cant. Furthermore, this mechanism contributes to the
scattering of electrons throughout the Brillouin zone.
Most previous treatments of alloy scattering have been
based on an effective impurity potential that is localized
to within an atomic cell. Although square wells' or
screened effective charges have sometimes been used to
describe this potential, the alloy scattering relaxation rate
in the Born approximation depends only on its volume in-
tegral. The relaxation rate can thus be characterized by a
single parameter, which is often chosen to be an energy
denoted as AE. Once this rdaxation rate is calculated, it
can be used to calculate drift mobilities or high-field
mobilities. Various guesses for the energy parameter AE
exist' but, in fact, it cannot be related to any other
theoretical parameters or to any experimental results ex-
cept the Inobility. Furthermore, although it is usually not
explicitly stated, the implication in this type of treatment
is that the scattering potential and thus AE are the same
for both the conduction and the valence bands.

Recently, coherent-potential approximation (CPA) cal-
culations of band structures of III-V ternary alloys have
been published. These calculations include disorder only

in the diagonal bonding and antibonding energies and not
in all of the various energies that go into the alloy Hamil-
tonian in the tight-binding picture. However, these calcu-
lations do illustrate the fact that the effects of the alloy
disorder on the conduction and valence bands are dif-
ferent.

In this paper we investigate alloy or disorder scattering
in both the conduction and valence bands of the III-V ter-
nary alloys. Our approach is based on an effective tight-
binding Hamiltonian that can be related to Inany other
properties of the alloy considered. We thus believe that
our treatment is considerably more fundamental than
those based on an effective potential. Our theory is limit-
ed to the Born approximation for states near the I point
and the effects of spin-orbit coupling are neglected. The
actual calculation uses parameters from the semiempirical
tight-binding model of Vogl, Hjalmarson, and Dow
(VHD), although it could also be adapted to other tight-
binding-like models. There are no adjustable parameters
in the theory other than the ones used in this band-
structure model.

Since the VHD model includes ten bands, a treatment
of the disorder problem in general would involve 10& 10
matrix equations. However, for states near the I point
(k =0), the disorder part of the calculation for either the
conduction or valence band can be described by 2&2 ma-
trix equations. Thus in that region of the Brillouin zone,
each band can be described by an anion energy E„a ca-
tion energy E„and a transfer matrix element or overlap
energy V. In a ternary semiconducting alloy at the I
point, one therefore expects disorder in V (usually denoted
as off-diagonal disorder) and in one of the two diagonal
energies (usually denoted as diagonal disorder). For exam-
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pie, in a ternary alloy with cation disorder (A„B~ „C) one
expects disorder in V and E, but not in E,. However, by
examining Table I of VHD one can see that E, is also
disordered. That is, the diagonal entries for the anion C
are different in compound AC than in compound BC.
This implies a third type of disorder. That is, the anion
energies for C must be partially determined by the number
of A and 8 neighbors. This disorder is physically due to
charge redistribution within an atomic cell and between
atomic cells and will thus be denoted henceforth as redis-
tribution disorder. To our knowledge, redistribution dis-
order has never been discussed in the literature before.
Furthermore, other than a recent CPA calculation of the
alloy scattering contribution to the mobility done by us
and discussed elsewhere, off-diagonal disorder has never
been explicitly included in any theory of alloy scattering.
In Sec. II we calculate the alloy scattering contribution to
the scattering rate taking into account all three types of
disorder.

The starting point for our theory is the virtual-crystal
approximation, which treats the alloy as a perfect crystal
with average energies for each atom and between each pair
of atoms. We then treat the fluctuations about the virtual
crystal in the Born approximation or weak scattering lim-
it. Further, we consider the constituents of the alloy to be
distributed at random and treat the overlap energy V be-
tween a given pair of atoms as a constant depending only
on the two atoms and independent of the composition of
the rest of the alloy. This last assumption obtains from
recent observations that AC and BC nearest-neighbor dis-
tances are virtually independent of alloy composition in
A.„B) „C.

The VHD semiempirical tight-binding model has been
successfully used to predict a large number of properties
of semiconductors and semiconducting alloys. ' How-
ever, the tight-binding energy parameters in the model @re
reliable only to about 0.1 eV, ' 24 and our calculations de-
pend heavily on differences between energies. Thus the
detailed numbers resulting from our theory should not be
taken too seriously. Nevertheless, we feel that these num-
bers should give a reasonable estimate of the strength of
alloy scattering and particularly of the relative contribu-
tions of diagonal, off-diagonal, and redistribution disor-
der, and the importance of the interference effects between
them. They should also illustrate the difference between
scattering in the conduction and valence bands. Finally,
in keeping with the spirit of the numerous previous calcu-
lations using the VHD parameters, ' " we feel that our
calculations should predict the correct chemical trends or
relative orderings of the scattering rates in the alloys con-
sidered here.

The calculational details of the paper are contained in
Sec. II, which may be omitted by the reader without loss
of continuity. The results and their implications are
presented and discussed in Secs. III and IV.

II. CALCULATION

In this section we derive expressions for the alloy or dis-
order scattering contribution to the relaxation rate for
III-V ternary alloys. This is easiest to do by first calculat-

ing the sirigle-particle relaxation rate and then construct-
ing the transport rate from it. Our calculation is based on
the tight-binding VHD model and it is easiest to approach
within a Green's-function formalism. The electronic
Green's function for the alloy is defined as

where E is the energy variable, 0 is the Hamiltonian for
the alloy, Greek indices denote both a spatial atomic site
and a band or atomic level, and g~ is the appropriate wave
function. The equation of motion for 6 p(E) is easily
found to be

(E E~)G—~p(E) QT~—r W~r Gyp(E) =5~p, (2a)

where we have defined

and

I' p=&4
I

~
I fp& (2c)

%e assume only nearest-neighbor interactions throughout
this calculation. Thus we have introduced the quantity
W~r in Eq. (2), which equals one if a and y are nearest-
neighbor sites and zero otherwise. Since, as is stated
above, we are considering fluctuations about ihe virtual-
crystal approximation, we make the following definitions:

(3a)

By construction, the configuration average of Q is zero.
It is straightforward to iterate Eq. (5) to second order in
Q, solve for 6 ', and then average over configurations.
This is equivalent to the usual Born approximation and
yields the results

(G ') p=(GO ')
p
—~ p,

a'~p=g(Q r(GO)rsQsp),
y, 5

6=(6), 6,=(6, ) =6, ,

(3b)

where the angular brackets refer to the alloy configuration
average. Thus (E ) and (T p) are the virtual-crystal-
averaged diagonal and off-diagonal energies, and 5E and
5T p refer to the fluctuations about these quantities.

The inverse of the Green's function 60 for the alloy in
the virtual-crystal approximation is defined as

(Go ') p=(E —(E~))5~p—(T~p) 8'~p .

By combining Eqs. (2)—(4) and expressing the result in
matrix form, it can easily be shown that the true alloy
Green's function 6 and the virtual-crystal Green's func-
tion Go are related by the Dyson equation

6=6 o+Gon6
where we have defined
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where the angular brackets again denote a configuration
average. This equation can be Fourier-transformed and
we will let G(q, E) denote the Fourier transform of
G p(E).

In the VHD scheme, each. Greek index refers to a space
point and to one of ten bands so that Eqs. (6) are in gen-
eral IO&(10 matrix equations. However, at the I point
(k=0), the 10X10 Hamiltonian matrix of VHD reduces
to five uncoupled 2X2 matrices. Thus Eqs. (6) similarly
reduce to five uncoupled 2X2 matrix equations and the
conduction and valence bands are described separately by
such equations. For finite k these matrices are, of course,
connected to other elements of the 10X10 matrix. How-
ever, for small k and in the weak scattering limit it can
easily be shown that the disorder in these connecting ma-
trix elements is of the order of (5E) k, where 5E is a typ-
ical fluctuation about the virtual-crystal average. We thus
neglect these terms here since we are only interested in
developing a lowest-order theory where only terms of or-
der (5E) and k are kept. The virtual-crystal parts of
these connecting matrix elements are, however, kept as the
effective-mass part of the energy. Thus in our calcula-
tions we use Eqs. (6), with only two bands, but include the
k -dependent effective-mass energy in the virtual-crystal
Green's function Go.

In the rest of this section we consider only alloys of the
form A Bi „Cwith cation disorder. In the 2X2 matrix
equations obtained from Eqs. (6) in the weak scattering
limit, we let the indices 1 and 2 refer to the cation and
anion, respectively. Results for alloys with anion disorder
may be similarly obtained. When the atomic site part of a
is 1, then we denote E as e„ if an A atom occupies that
site, and as eb if a 8 atom is situated there. Similarly, we
denote the quantity T p as t„ if it connects neighboring A

and C atoms, and as tb if it connects neighboring 8 and C
atoms. Finally, if a is 2, we denote E as —,e, times the
number of neighboring A sites plus —,eb times the number
of neighboring 8 sites. In this notation, the virtual-crystal
diagonal and off-diagonal energies are

&Ei & =xe, +(1—x)ei, , &Ez & =xe, +(1 x)eq,—(7)

and

& Ti2 & =xt, +(1 x)tt, . —
In the evaluation of cr p in Eq. (6), it is necessary to

evaluate expressions of the form

&5E.5Ep& = &(E.—&E.&)(Ep —&Ep&) &,

&5T.p5T» & = &(T.p —
& T.p&)(T,s —

& T,s &) &, (g)

and

&5E 5Tpy&=&(E &E &)(Tpy &Tp—y&)& . —
In evaluating these expressions one makes use of Eqs. (7)
and the formal expression

E~ =+8'~php,
P

where a is on sublattice 2 and where h p is —,e, ( 4 eb ) if P

is an A (8) site. Equations (8) can be easily evaluated in
the notation just discussed. They have the explicit forms

&5E 5Ep&=x(1 x)[—5 p5 i(e, eb)—'+5~2f~p(e, —~$)'

+ —,(e, eb—)(e, —eb)W~p], (10a)

&5T~p5Tys & =x (1 x)(t,—tb)2—[5~y5 i+5 s5 i

+5py5pi+5ps5pi]

(10b)

&5E.5T,„&

=x(1 x)—(t, tb)[(e—,—eb)5 i(5 p+5 y)

+(e, —eb )5~2 —,
'

( 8'~p+ 8'~y)],

(10c)

where

f p=X~ r~rp
y

(10d)

and we have used the shorthand notation 5~i (5~2) to
denote that a refers to a cation (anion) site.

By using Eqs. (10) one can easily evaluate the com-
ponents of o p in the small-k limit. They have the form

where

be, =e, —es, he, =e, —ei, , bu=(t, tb)/4 . —(12)

In Eq. (11) we have defined

g p(E)= —J i [Go(q, E)] p,
1 d q

(2~)'

where n is the number of atoms per unit volume and E is
understood to have an infinitesimally small positive ima-
ginary part.

The single-particle relaxation rate can be extracted from
the energy eigenvalues of Eqs. (6). From these equations
one can easily obtain the roots of the characteristic equa-
tion,

E+ = '[E.+E.+tyii+a2—2+[(E,+a» E. a22)'— —

+4( V+o»))'"I, (14)

where &Ei &, &Eq&, and &Tii& have been replaced by E„
E„and V/4, which denote the diagonal cation and anion

0 ii ——x (1—x)[(be, ) gii+(bu) gi2+2(be, bu)gi2],

a22 x(1 x)[(bea) g22+(~u) gil+2(~ecru)glzl ~ (11)

aiz ——cr2i ——x(1 x)[(be,be,—)giq+(bu) gi2

+(be, bu)g»+(be, bu)g22],
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energies and the transfer energy in the virtual-crystal ap-
proximation. The factor of 4, here and in Eq. (12),
occurs because each atom has four nearest neighbors in a
zinc-blende lattice. The upper and lower signs in Eq. (14)
arise because of the mixing of two bands; the upper sign
denotes the conduction band and the lower sign denotes
the valence band.

The single-particle relaxation rate v& is given by the im-
aginary part of E+/4 By evaluating Eq. (13), combining
Eqs. (11)—(14), and expanding Eq. (14) to second order in
the fluctuations, we obtain, for this quantity,

v —[x (1 x)(m*) E' /2' nerd ](bE)

bE=[(E, E, +E—, )b,e,

(E, E—,+E,—)be, +4Vbu]/2E, . (15b)

Here we have defined

[(E E )2+4V2]1/2 (15c)

III. RESULTS

In the last section an expression for the single-particle
relaxation rate or inverse relaxation time due to alloy
scattering was derived. The transport relaxation rate
which results from the single-particle rate is

v=[x (1—x)2' (m') E' /nvrfi ](bE)

where b,E is defined in Eqs. (15b) and (15c). As is pointed
out in Sec. II, the equations for cation and anion disor-
dered alloys are identical. The formalism used in that sec-
tion was based on the semiempirical tight-binding model
of VHD. For this model, the upper signs in Eq. (15) are
appropriate for the conduction band and the lower signs
are appropriate for the valence band. Equation (16) is the
scattering rate for a ternary alloy of two pure substances
where x is the fraction of substance 1 and 1 —x is the frac-
tion of substance 2. For the conduction band, the rela-
tionship of the alloy parameters to those of VHD for III-
V materials is

In Eqs. (15), m' is the electronic effective mass and E„
E„and V are the virtual-crystal cation, anion, and overlap
energies, respectively. The quantities Ae„he„and Au are
the differences between the cation, anion, and overlap en-
ergies for the compounds that make up the alloy. Finally,
since the scattering is isotropic, the transport relaxation
rate v is just twice v, . The relaxation rate for the case of
alloys with anion disorder (AB„Ci „) is obtained in a
similar fashion and results in an energy parameter && also
given formally by Eq. (15).

E, =xEi (s,c)+(1 —x)E2(s,c),
E, =xE, (s,a)+ (1 x—)E2(s,a),
V=x Vi (s,s) + (1—x) V2(s,s),
be, =Ei(s,c) E2(s—,c),
be, =Ei(s,a) E2—(s,a),
bu = Vi(s, s) —V2(s,s),

(17)

where the E's and V's on the right-hand sides of the
equations are tabulated in Table I of VHD. For the
valence band, Eqs. (17) are appropriate if E(s,c), E(s,a),
and V(s, s) are replaced by E(p,c), E(p, a), and V(x,x),
respectively. Equation (16) is very similar to expressions
derived by Brooks and by Harrison and Hauser. ' %e
believe that our Eq. (16) is somewhat more natural than
the corresponding expressions derived by these workers,
because with one-band diagonal disorder, AE would be the
difference in the diagonal energies.

Before presenting numerical results, we shall discuss a
number of points that are not particularly dependent on
the VHD model. First we note that the equations for the
relaxation rate for the conduction and valence bands, al-
though formally identical, are unrelated from a numerical
point of view because they depend on different input ener-

gies. This should not be too surprising because the wave
functions and energies of the states in the two bands are
very different. However, in an effective-mass picture
where the scattering is due to an effective localized impur-
ity potential, one would conclude that the energy parame-
ter bE should be the same for the conduction and valence
bands. The resolution of this paradox is simply that free-
electron-like effective-mass theory is valid only over re-
gions of a crystal containing many atomic cells. There-
fore, it will work for the long-ranged Coulomb potential,
but not for potentials whose length scale is of order atom-
ic dimensions. Note also that while Eq. (16) contains the
expected x(1—x) dependence, an additional composition
dependence is included in (bE) This point . has been dis-
cussed recently in the literature, and we only note here
that this additional composition dependence vanishes only
if two of the three disorder parameters be„be„and b,v

vanish and that (see Table I), with the notable exception of
the alloy InAs„Sbi „ the composition dependence of b,E
is very weak. It should also be pointed out that the effec-
tive mass m' is also composition dependent.

The three terms in Eq. (15b) for bE are proportional to
he„he„and Au, corresponding to disorder in the cation,
anion, and overlap energies. For a ternary alloy with ca-
tion disorder, A„B~ „C, these terms would thus corre-
spond to diagonal, redistribution, and off-diagonal disor-
der, respectively. On the other hand, for a ternary alloy
with anion disorder, AB„C~, these terms would corre-
spond to redistribution, diagonal, and off-diagonal disor-
der, respectively. As can be seen from Eqs. (5) and (16),
these three types of disorder do not contribute additatively
to the relaxation rate. Instead, there exist interference
terms between them that are a quantum-mechanical ef-
fect.

By using Table I and VHD with Eqs. (15) one can easily
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TABLE I. List of AE for the conduction band at x =0 and 1

for 18 III-V ternary alloys. The last column denotes the largest
contribution to hE where d, 0, and r stand for diagonal, off-
diagonal, and redistribution disorder, respectively. All energies
are in eV.

Ga„In) „Sb
Al I„) „Sb
Al„Ga( „Sb

0.59
1.66
1.12

0.50
1.65
1.09

Ga„In~ „As
Al„In) „As
Al„Ga) „As

1.18
2.64
1.44

1.06
2.57
1.49

1.60
2.28
0.73

1.30
2.08
0.71

EnAs„SbI
InP„Sb)
InP„As)

0.27
1.29
0.98

0.12
1.06
0.98

GaAs Sb)
GaP„Sb)
GaP„As~

0.84
2.14
1.34

0.70
2.06
1.32

1.18
1.73
0.56

compute the energy parameters b,E for a wide variety of
substances. This parameter for the conduction band at
x=0 and 1 is tabulated for 18 alloys in Table I of the
present paper. The values of hE at intermediate values of
x are reasonably well fit by a constant term and a term
linear in x. In addition, Table I relates which of the three
terms in Eq. (15b) is largest in magnitude, although rarely
can one of the terms be said to dominate the other two. It
should be noted from the table that, for the conduction
band, typical values of the paramter b.E are in the range
=0.5—2 eV for all compositions and for all alloys con-
sidered here. Furthermore, we find that ~ is positive in
all such cases. A similar calculation for scattering in the
valence band of these alloys yields. results which are very
different from those of the conduction band. In particu-
lar, we find that in this case, the values of b,E at the end
points x =0 and 1 are typically of the order of only a few
milli-electron-volts and thus almost 3 orders of magnitude
smaller than the corresponding quantities for the conduc-
tlo11 band. Wc fuIthcI fllld tllRt thc slg11 of kE challgcs
between the end points and thus, at x near 0.5
(0.4 &x & 0.6) this parameter and the relaxation rate van-
ishes for all 18 alloys considered here. The individual
contributions from the three terms in Eq. (15b) are of the
order of 100 meV in this case, and the resulting very
slnall values of AE are due to an almost complete canccl-
lat1on bctwccn thc terms. As dlscusscd 1n Scc. I, thc
values of the input energy parameters from VHD are un-
certain to within about 0.1 eV. The vanishing of AE for

the valence band near x =0.5 may thus be an artifact of
the fitting procedure used by VHD. We feel, however,
that our calculations are a step towards predicting the
chemical trends or relative ordering of both the
conduction- and valence-band scattering rates in the alloys
considered. This view is consistent with that of previous
calculations using the VHID parameters. '

We have also computed all of the energy parameters EE
for the alloys in Table I using the universal model dis-
cussed by VHD. VA'thin this model, the above-discussed
cancellation for the valence band does not occur. Further-
more, with these universal model parameters wc find AE's
for the valence and conduction band differing by only
about an order of magnitude, with typical values of the
order of 0.1 eV for the valence band and of the order of 1

eV for the conduction band. The results for the conduc-
tion band in this case are not particularly well correlated
with the results of Table I in their prediction of the rela-
tive ordering of the hE's for the alloys considered. Even
within the universal model, however, different types of
scattering dominate in different materials and the interfer-
ence terms are often important.

Wc have also attempted to estimate the energy parame-
ters b,E from the band theory numbers computed by Chen
and Sher in their tight-binding model. Strictly speaking,
their tight-binding parameters are not compatible with our
formalism because of overlap and second- and third-
neighbor effects which are included in them, but excluded
in our theory. It is clear from our estimates, however,
that redistribution and off-diagonal disorder effects and
interference between the three types of disorder are still
important with their numbers.

In summary, us1ng a ncarcst-nc1ghbor Bom-approx-
imation formalism which takes into account the fluctua-
tions of the alloy tight-binding energy parameters about
the virtual-crystal approximation, we have derived a for-
mula, Eq. (16), for the contribution of alloy scattering to
the scattering rate in ternary semiconducting alloys. In
our formalism, we have included the effects of diagonal,
off-diagonal, and redistribution disorder in these parame-
ters. We believe that we are the first to discuss redistribu-
tlo11 dlsordcl' RIld thc flist to lllcludc off-dlagollal Rlld

rcdlstrlbutlon disorder 111 all alloy scattering formalism.
The scattering rate we derive is expressible in terms of an
energy AE, Eq. (15b), which we have numerically evaluat-
ed for both conduction-band and valence-band scattering
in 18 III-V ternary semiconducting alloys using the sern-
iempirical tight-binding parameters derived for the alloy
const1tucnt scIIl1coIlductols by VHD.

The explicit results of our calculations show the follow-
ing: (1) for the parameters of VHD and for all 18 alloys,
the energy parameter AE, and thus the scattering rate, is
much greater for conduction-band than for valence-band
scattering, (2) the composition dependence of this parame-
ter is very weak, and (3) for compositions near x =0.5 this
parameter vanishes for valence-band scattering. Since the
VHD tight-binding energy parameters which we have in-
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put into our calculations have uncertainties of the order of
0.1 eV, the absolute magnitudes of our numbers cannot
be taken too seriously. However, even viewed on such a
coarse scale, we believe that our predictions of the chemi-
cal trends or relative orderings in the alloy scattering rates
should be valid for the alloys considered here.

The results of our calculations furthermore show that
all three types of disorder —diagonal, off diagonal, and
redistribution —can make important contributions to AE
and thus to the scattering rate. Furthermore, there can be
quantum-mechanical interference effects between these
three types of disorder which can make the resulting
scattering rate very small. %e thus believe that any

correct theory of alloy scattering in semiconducting alloys
must necessarily include the effects of all three types of
d1sor der.
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