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Theoretical study of the atomic structure of silicon (211), (311),and (331) surfaces
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The structural and energetic aspects of high-Miller-index Si surfaces were investigated by study-

ing the (211), (311),and (331) vicinal surfaces. Several types of new structural models for (211) and
(311) surfaces were examined. For (211) and especially (311) surfaces, dangling-bond densities ap-
preciably lower than on the (111) surface can be obtained. The calculated surface energies of the
ideal and reconstructed vicinal surfaces were, however, in all cases higher than that of the Si(111)-
2)& 1 m-bonded chain structure.

I. INTRODUCTION

High-Miller-index surfaces, even though less extensively
studied than the (100), (110), and (111) surfaces, are in-
teresting for several reasons. First, they exhibit combina-
tions of bonding configurations which do not normally
occur simultaneously on any given low-Miller-index sur-
face. The greater complexity of these surfaces is some-
times useful. For example, the "ideal" (311) surface has
equal densities of threefold- and twofold-coordinated sur-
face atoms. It can be viewed to be an average, in some
sense, of the (100) and (111) surfaces. The (311) surface
has several desirable properties that are absent on the (111)
and (100) surfaces. In a III-V material, such as GaAs, the
(311) surface would be nonpolar, in contrast with the oth-
er two surfaces. Superior crystal-growth properties have
been observed on the (311) surface rather than on the
(100), (111), or on nonpolar (110) surfaces. ' Similarly,
the Si(211) surface has been used for epitaxial growth of
GaP-Si interfaces to improve its electronic properties in
comparison with interfaces grown on other surfaces. The
study of the high-Miller-index surfaces is interesting also
from the structural stability viewpoint. The questions of
whether such surfaces can lead to lower surface energies
than can be realized on a low-Miller-index surface and of
phase transitions between different structures are impor-
tant."

In this paper the results of theoretical investigations of
(211), (311),and (331) surfaces are reported. In Sec. II the
structural aspects of vicinal surfaces, resulting from step
formation on (111) surfaces, are discussed. Results of
surface-energy calculations on (211), (311), and (331) sur-
faces are presented in Secs. III—V. The tight-binding ap-
proach used in the calculations is examined in Sec. VI.

Ri ——(1,0,0), (2)

R2 ——(0.55', (1.5p+1)/V 3, —2/V 6), p =0,1,2, . . . (3)

where

1 p = odd integer

0 otherwise .

The periodically stepped surfaces for different values of p
in Eq. (2) can be considered to be vicinal surfaces which
can be identified by the directions of the surface normal

n=(p+2, p,p) .

The angle of inclination 8 of these surfaces relative to the
(111)surface can be obtained from the relation

tan8= vZ
(6)1.5p+ 1

The (112) propagating surfaces are inclined from the

R+=(R„,+R~,R, ) of the 1X1 surface are given by

Ri = ( —,, +W3/2, 0)

in units of the surface hexagonal lattice constant.
Any periodic step array propagating along the cubic

[112] direction (e.g., see Fig. 2) with only one double
layer of atoms removed in going from one terrace to the
next is described by the translation vectors

II. GEOMETRICAL ASPECTS
OF STEPPED (111)SURFACES

A. Steps propagating along the [I12] direction
(111)SURFACE

= [110]

CUBIC AXES

The top view of the Si(ill) surface is shown in Fig.
1(a). By taking the cubic [110], [112],and [111]direc-
tions shown in Fig. 1(b) to be along the x, y, and z direc-
tions of the surface coordinate system, the lattice vectors

FIG. 1. Top view of the Si(111)surface is shown in (a). Solid
and dashed circles represent surface and second-layer atoms,
respectively. The relation of the surface coordinate system to
the bulk cubic axes is shown in (b).
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[iso

(112)SUR FACE
R,=(0.55~, (1.5p+ m)lv 3, —2m/v 6) .

The surface normals are given by

n =(p +2m, p,p)

(13)

(14)

and the angle of inclination with respect to the (111) sur-
face is

m~2tan0=
(1.5p +m)

(15)

(b) A
il

A
X C.' A

=Y

(1») SURF~C~
COORI3INATE SYSTEM

[iso]U = [$ $z]

BULK CUBIC
AXES

FIG. 2. Side view of the ideal Si(111) surface. The surface
unit cell contains two threefold-coordinated terrace atoms and
twofold-coordinated step atom. The coordinate axes are shown
relative to the bulk cubic axes.

(111)surface toward the (100) surface. The inclination is
largest for small values of p. The surface normals and
tilt angles for several values ofp are

p =0, n =(1,0,0), 8=54.74',

p =1, n =(3, 1, 1), 8=29.50',

p =2, n =(2, 1, 1), 8=19.47',

p =3, n =(5,3,3), 8= 14.42' .

(7)

(9)

(10)

These four surfaces have been seen in low-energy electron
diffraction (LEED) measurements. All show reconstruc-
tions and order-disorder transitions at elevated tempera-
tures. For the ideal structures considered in this section
the "terrace" atoms are threefold coordinated and the
"step" atoms are twofold coordinated. The number of ter-
race atoms n« „,per unit which is an indicator of terrace
width is simply given by

Ri ——(1,0,0),

n terrace

The ideal (100) surface which corresponds to p =0 in Eq.
(7) has no terrace (i e , threef. o.ld coo-rdinated) atoms. The
ideal (311) surface has one terrace and one step atom per
unit cell. In a III-V material the two atoms are of oppo-
site type. The reconstructions of the (311) and (211) sur-
faces are examined in the following two sections. The
reconstructions lead to a decrease in the density of dan-
gling bonds in most cases.

The steps seen in LEED are not always of a double-
layer height. The general expression for the translation
vectors of an unreconstructed periodic step array having
m double layers missing between terrace atoms is given
b 8

which for m =1 reduce to Eqs. (4) and (5), respectively.
The (511) and (711) surfaces seen in LEED correspond to
multilayer steps with

p =1, m =2, n =(5, 1, 1), 8=38.94',

p =1, m =3, n=(7, 1, 1), 8=43.31'.
(16)

(17)

The value of n« „,for the surfaces defined by Eqs. (13)
and (14) is still correctly given by Eq. (11). The number
of step (i.e., twofold sites) sites n,«~ per ideal unit cell is
given by

step =m (18)

B. Steps propagating along the [112]direction

Steps along the [1 12] direction discussed above are
characterized by threefold-coordinated (111)-like and
twofold-coordinated (100)-like terrace and step atoms,
respectively, in the ideal geometry. Steps propagating
along the [112] direction (Fig. 3) are characterized by
threefold-coordinated terrace and step atoms. For an
ideal structure, the general expression for the primitive
translation vectors for a periodic 1)& 1 step having m dou-
ble layers missing between neighboring terraces is given

8

Ri ——(1,0,0), (19)

3

w~ere S is defined by Eq. (4).

where m specifies the number of double layers missing be-
tween two adjacent terraces.

Equations (13) and (14) show that when m and p are
both multiplied by a constant integer q, which physically
corresponds to a simultaneous increase of terrace widths
and heights by a factor of q, the surface normal does not
change direction. For example, for m = 1 (i.e., one double
layer missing between terraces) and for p =2, we get a
(211) surface. Similarly, for m =2 and p =4, we again
find a (211) surface. The two surfaces, however, are quite
different in atomic structure even though they have the
same inclination to the [111]axis. By measuring the split-
ting of the primary order LEED spots, it is possible to
distinguish between the two surfaces. The (211) surface
seen experimentally is found to correspond to the first
case. Interesting reversible order-order transitions (at
T-800'C) have been reported to occur between the two
types of surfaces. '
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(331) SURFACE

[oisj

QL~+k

FIG. 3. Side view of the ideal Si(331) surface resulting from
step propagation along the [112]direction of the (111)surface.

The surface normal (relative to the bulk cubic axes) is
given by

n=(p+m, p+m, p —m), p &m &1 (21)

and its inclination away from the [111]axis is obtained
from

nisms. This mould be consistent with indirect experimen-
tal evidence' '" for the presence of 1X1 regions at terrace
atoms near a step.

As far as the relaxation of step atoms is concerned, the
issue of dimerization along the [110]axis has been contro-
versial. Evidence for 2X1 reconstruction along the edge
is seen in some LEED studies ' but not in others. ' Gl-
shanetsky et al. find temperature-induced order-disorder
transitions at the surface. Kaplan finds no evidence for
a reconstruction along the edge atoms. Pandey has recent-
ly suggested a model that, when applied to the (211) sur-
face, would explain this result. The model is created by
separating the two halves of a crystal along the dotted line
shown in Fig. 4(a). Rebonding of terrace atoms as shown
in Fig. 4(b) leads to a structure that is very stable against
reconstruction along the [110] direction. In addition, the
dangling-bond density is appreciably reduced. By denot-
ing the dangling-bond density on the ideal Si(111)-IX1
surface by no with

no ——2/(v 3a )

(where a is the hexagonal lattice constant), the correspond-
ing dangling-bond density n for the (211) surface in Fig. 4
is only =71% of no; in fact

(22)

For m =1, corresponding to steps of one double-layer
height, the surface normals and tilt angles for some values
Of P Rl'C

The large drop in the dangling-bond density has raised the
question of whether the (111) surface, ideal or recon-
structed, is stable against surfaces such as the (211). On
the basis of simple bond counting and strain energy argu-

p =1, n=(1, 1,0), 8=35.26',

p =2, n=(3, 3, 1), 8=22.00',

p =3, n=(2, 2, 1), 8=15.79

(24)

(25)

BULK Si

The total number of dangling bonds per unit cell is p+1
for each structure.

III. (211) SURFACES

L

L

The "ideal" (211) surface resulting from cleavage at an
angle of 19.5' from the [111]axis is shown in Fig. 2(a).
The unit cell of the 1 X 1 surface contains two threefold-
coordinated terrace atoms and one twofold-coordinated
step (or edge) atom. For this structure the edge atoms are
expected to dimerize leading to a doubling of the lattice
vector along the x (i.e., the cubic [110]) direction. We
have previously examined the atomic and electronic struc-
ture of the dimerized (211)-2X1 surface. ' At the time
only buckling distortions of the two terrace atoms were
examined. In the present study the calculations were ex-
tended to m-bonded chain-type reconstructions of the ter-
race atoms similar to that occurring on the Si(111)-2X1
surface. "' The small w'idth of the terrace is found to
strongly inhibit this type of reconstruction. Since recent
theoretical studies indicate that a buckling distortion is
also not energetically favorable, "' one must conclude
that thc tcrracc atoms are csscnt1ally 1n thc1r 1deal pos1-
tlolls ill thc absence of other IdcntlfllRblc rclaxatlon IilccllR-

(»2) SURFACE

kk~P~ QL QI

(»2) SURFACE

FIG. 4. Side view of the Si(111)surface is shown in (a). The
dashed hne passes through bonds broken in the process of form-
ing a (112) surface with a low dangling-bond density. The atom-
ic relaxations occurring after cleavage are shown in (b).
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ments, Pandey has suggested that the (111) surface is in
fact unstable with respect to the reconstructed high-
Miller-index surfaces. Our total-energy calculations for
the (111)-2X1 m-bonded chain structure and for ideal and
relaxed (211) surfaces show that the surface energy of the
(111) surface is appreciably lower than that of the (211)
surface despite the fact that the latter has a significantly
lower dangling-bond density. The surface energy is calcu-
lated to be'

(eV/unit area) for the (211) surface as compared to a value
of 1.06+0.06 CV/unit area for the (111)-1X1surface. '

The primary reason for the larger value of y21 i is that the
bonding in Fig. 4(b) cannot be achieved without substan-
t1al boIldlcngth Rs well as angular stIRIQs. Thc cncI'gy-
minimized structure is found to have bondlength expan-
sions as large as 5.7%. The lower surface energy of the
(111) surface compared to the (211) surface is consistent
witI1 experiment.

The surface energy of the (211)-2X1 surface which has
twofold-coordinated step atoms in the ideal structure and
diIIlcnzcd atoms 1Q thc reconstructed gcoIQctry %'as also
calculated and found to be'

(CV/unit area) for the latter. The small 0.2-CV difference
between the values of the surface energy for the two dif-
ferent (211) structures suggests that either geolnetry could
occur at the surface depending on surface preparation.
This would explain the observation of twofold and four-
fold periodicities along the [110] direction in one set of
LEED experiments ' (indicative of dimerization) and not
in the other. ' The geometry of the (211) surface is an im-
portant coIlsKlclatloll ln cpltRxlal growth of polar surfaces
on nonpolar surfaces. ' The arguments of Wright er al. '
suggest that optimal interface properties are expected for
the higher dangling-bond density (211) surface.

IV. (311)SURPACE

The ideal (311) surface is unique among the vicinal sur-
faces of Si in that it contains equal numbers of step and
terrace atoms; in fact, there are just two atoms per unit
cell which are twofold and threefold coordinated, respec-
tively, as shown in Fig. 5. On a III-V material, such as
GaAs, there are two (311)surfaces which differ only by an
ln'tcl'c11allgc of Rll Ga RIld As Rtollls. Thc two surfaces
have Ga and As surface atoms at twofold- and threefold-
coord1nated sites» Icspcct1vcly» G1 vlcc vcI'sa. As Incn-
tioned above, very good III-V crystal-growth properties on
(311) surfaces have been observed. ' The neutrality of
these surfaces together with the very different atomic
coordination of the surface atoms may provide an ideal
solution to thc dual pI'oblcIIls Gf chRI'gc QcUtI'Rllty RIld sltc
selectivity fGI cp1taxlal growth of polar-Donpolar 1ntc1-
faces.

The translation vectors of the (311)-1X1 surface with
respect to the coordinate axes [shown in Fig. 1(a)] are

(&&3j SURFACE

v~
'~AM@'- W~kQ'

FIG. 5. Side view of the ideal Si(113) surface. The unit ceH
contams one threefold- and one twofold-coordmated atom.

Rl ——(1,0,0),

R,=(-,',2.5/I/O, —2/v 6) .

The orientation of these vectors with respect to the bulk
cubic axes is shown in Fig. 5. The Si(311) surface is 3X2
reconstructed. The reconstructed surface has a threefold
periodicity along Rl (i.e., along the cubic [110]direction)
and a twofold periodicity along R2. The threefold periodi-
city along Rl also occurs for the (511) surface

The reconstruction of the (311) surface was examined
by taking slab geGIIletrics vrith 1+1, 3+1, and 3+2
pcriodicitics %'ith Up to 120 atoms pcI' UQ1t cell. 01IQcr,
trimer, and a reconstruction leading to a large decrease in
the surface danghng-bond density [similar to that dis-
cussed for the (211) surface] were examined. The total en-
ergy and surface energy per unit area was calculated in
each case for comparison with other Si surfaces. A
description of the surface structures and the results of the
calculations for Si are described below.

The relaxation and/or reconstruction of the (311) sur-
face can lead to an extremely low dangling-bond density.
Thc rcbonding HlcchanisI]tl at steps, sUggcstcd by Pandcy
and shown in Figs. 4(a) and 4(b) for the case of the (211)
surface, when applied to the (311) surface leads to a
dangling-bond density only 52% of that on the ideal
Si(111)-1X1surface. This rebonding leads to a onefold
periodicity along Rl in disagreement with the threefold
periodicity seen experiIIlentally. 5 The structure is interest-
ing nonetheless for studying the energy-structural aspects
of surface reconstruction The u.ltralow dangling-bond
density (311) surface is calculated to have a surface ener-
gy Gf

(cV/unit area), wlllc11 ls appreciably hlghcl thall tllc corlc-
sponding figure for the (211) surface or, in fact, for the
ideal Si(111)-1X 1 for which'

(eV/unit area). The energy-minimized (311) structure
shows both large bond-length (=6%) and angular strains.
To check %'hcther thc sIQR11 s1zc of the UIlit cell vfas rc-
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'F311= 1.53 (34}

(eV/unit area), which is not significantly lower than that
for the (311)-1X1surface was calculated. These results
indicate that this type of dangling-bond reducing recon-
struction considered here is very unlikely to explain the
Si(311) surface structure.

A completely different type of reconstruction involving

trimerization along R& (i.e., along the cubic [T10] direc-
tion} was also tested. This reconstruction inherently leads
to a threefold periodicity along Ri. For the trimer struc-
tures

&3I &
= 1.37

(eV/unit area) is also large as the result of large strains. '6

sponsible for the large surface energy, the calculations (for
the Pandey-type reconstruction) were also performed for
3)&1 and 3&2 cells using slab geometries with up to 120
atoms. The surface energy for the 3X1 cell (where the
periodicity is threefold along R, ) was found, as might be
expected, to be the same as for the 1X 1 surface. For the
3 X2 surface a surface energy'

VI. METHOD OF CALCULATION

A. Comments on the tight-binding method

The use of the empirical tight-binding method in total-
energy calculations has been previously discussed.
The method was originally designed to give information
on the variation of the total energy as a function of atomic
displacements that did not lead to any change in the total
number of bonds in the system. Studies of rotational-
relaxation models for GaAs(110} and of the energy
difference between symmetric and asymmetric dimers on
the Si(100) surface ' were made using this method. The
method was later extended in a very simple manner to
deal with situations involving changes in the number of
bonds within the system. In this way, the change in ener-

gy in going from the ideal (100)-1X1 surface to the
dimerized 2X1 surface could also be calculated. These
ideas are discussed below.

The nearest-neighbor tight-binding model used in the
calculations on Si is specified by the following parame-
ters ' (in eV):

V. (331) SURFACE

A side view of the ideal (331) surface is shown in Fig. 3.
As can be seen, the surface can be obtained as a result of
steps propagating along the [112] direction of the (111)
surface. Periodic arrays of such steps are formed upon
laser annealing after cutting the Si(111) surface along the
[112] direction. ' Steps of single- or double-layer height
are seen, ' similar to the case for (1 1 2) steps. '

Steps propagating along the [112] direction do not re-
sult from cleavage. Our calculations show that this does
not occur as a result of a higher surface energy for these
steps. In particular, the surface energy

&3II= 1.09

(eV/unit area) for the relaxed (331)-1X1surface is found
to be lower than yz». The tendency of the surface not to
form (331}-type steps during cleavage is, therefore, not re-
lated to a high surface energy but is connected with the
reconstruction of the Si(111)-2X1 surface in the process
of cleavage. The occurrence of the n.-bonded chain struc-
ture during cleavage requires surface atomic displace-
ments along the [1 1 2] direction. This and the very small
activation barrier in going from the 1X1 to the 2X1
chain structure together with the small surface energy'

(37)

(eV/unit area) for the latter geometry is what causes steps
to propagate along the [T12] direction while suppressing
(112)-type steps during cleavage. On annealed surfaces,
both types of steps are, in fact, observed in vacuum tun-
neling microscopy experiments. The I.BED pattern of the
annealed Si(331) surface indicates a 13X 1 reconstruction
with the translation vector along the [110] direction
becoming very large.

~qp =3.050, Vpp ———1.075,

and with atomic" s and p energies equal to

(40)

This choice of E, and Ez sets the zero of energy at the
bulk valence-band maximum. The parameters provide a
reasonable description of the bulk occupied bands and an
approximate description of the conduction bands. The
valence-conduction band gap is indirect (=1.14 eV) and is
I +I. instead o—f I —+X in character.

The variation of the total energy with atomic displace-
ments was originally expressed as

hE„,=

+ATE„(k)+

g(Uieg+U2e;), (41)

U2 ——55.60

were obtained. ' In determining UI and U2, the tight-
binding interaction parameters in Eqs. (39) and (40) were
assumed to have a d dependence on nearest-neighbor
distance d. In practice this approximation gives reason-
able results for the total energy because of the presence of

where the sum in the first term is over occupied one-
electron states, and where the second term represents a
semiempirical correction for the double counting of
electron-electron interactions in the first term and in-
cludes the ion-ion interaction energy. The subscript i in
Eq. (41) denotes a bond, and e; denotes the fractional
change in bond length from its reference value in bulk Si.
The two empirical "spring" constants UI and Uq, there-
fore, have the units of energy. From a fitting to bulk elas-
tic modulii and phonon frequencies the values (in eV)

UI ———16.36

and
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the semiempirical terlns ( Ul e+ U2e ) in Eq. (41).
An 111lpllclt RssllInp'tlo11 111 wrltlllg Eq. (41) ls tha't tllc

RtoImc dlsplaccments do Qot lead to 8 change ln thc QUQ1-

ber of bonds in the system. This condition does not cause
any problem for many systems of interest; however, in
comparing surface energies for structures having different
numbers of bonds or when calculating bond-breaking en-
ergies, it becomes necessary to modify Eq. (41). This can
bc done ln 8 vcI'y slQ1plc way~ Rs sh0%'n by Vanderbilt Rnd
Joannopoulos, zz by adding a term of the form UOXb, „d, to
the expression for the total energy, where Xb,„d, is the
number of bonds ln thc Unit cell Rnd Uo ls 8 parameter
that can be determined from the cohesive energy of the
solid. The term UOXb, „~, represents essentially the repul-
sive ion-ion interaction. The variation of this repulsive
tcr111 wltll atonllc dlsplaccIIlcllts ls lllcllldcd 111 Eq. (40) fol'
situations in which the number of bonds is conserved.
Thc cxprcsslon

(in eV). The inclusion of this term in the total energy
makes surface geometries accompanied by large charge
transfers less favorable energetically. Significant charge
redistributions can occur primarily on surfaces in which
the hopping matrix elements are small. (111)-type sur-
faces, on which the dangling bonds interact via weak
sccolld-Ilclghbol' ln'tcI'actions (l.c., V~0. 1 cV, V/Uc ((1 ),
instead of strong first-neighbor interactions (V=1—3 CV,

V/Uc 0 1 ), I'cprcscIlt lnlpoItallt, cases 111 which tlM 111-

elusion of the Coulombic terms are essential for obtaining
thc correct atomic geometry.

The energy term Uc is also important in comparing the
energies of ideal and dimerized (100) surfaces. Denoting
the two sp dangling-bond orbitals on a given atom on the
ideal surface by q&I and q2, respectively, we can construct
two new orbitals gl and g2

(46)

AE„,= QKE„(k)+ g(UIe;+2c;)+h(UONb, „d, )

generalizes Eq. (41) to situations where bond breaking or
bond formation takes place as a result of the atomic
motions. The value of Uo in Si is calculated to be (in eV)

The wave functions pl and p2 are sp and p in character,
rcspcctlvcly. Thc energy reduction 1Q puttlQg an clcctI'on
ln QI lllstcRd of 111 pl ls

(48)

This value is obtained from the cohesive energy, i.e., from
thc change ln total cncx'gy ln going from thc free RtoIQ to
a bulk atom. The necessity of the last term in Eq. (43) is
seen from the fact that in its absence the electronic energy
(and, therefore, the total energy) would decrease monoton-
lcally &1th lncl casing atomic coordlnatlon. Thc lncluslon
of 6( UOXb, „q, ) makes the occurrence of fivefold-
coordinated Si atoms less energetically favorable, in most
situations, than the optimal fourfold-tetrahedral coordina-
tion.

The expansion in the fractional bondlength change e in
Eq. (43) can be carried out to higher orders than e if
desired. For the purposes of most calculations the
hlghcr-Gr'dcr terms make 8 Qcgllglble contribution to thc
total energy because @& 0. 1 in nearly all cases (one impor-
tant exception is C). For Si the coefficient US of e was
estimated, from comparisons of the total-energy variation
to results of other calculations, to be approximately —166
eV.

The last component of the total energy missing from
Eq. (43) is the Coulombic part. The intra-atomic
Coulomb energy for placing two electrons in a dangling-
bond orbital and the Madelung energy are, in situations
involving large charge transfers, important in determining
the nature of the surface reconstruction. For Si, the
Hubbard-type repulsive Intra-atomic Coulomb energy Uc
for placing two electrons in a dangling bond isla

(45)

(49)

where E, and E~ are the energies of the atomic s and p or-
bitals. From Eq. (49) the change in energy from rehybrid-
lzatloIl ls 1Rlgc and ls aboUt —1.6 cV. By placing both
dangling-bond electrons with opposite spins into QI the
gain in energy will be (in CV)

(50)

In calculations where Uc is neglected, the erlcrgy of the
(100)-1&&1 surface comes out lower by the amount Uc per
unit cell. The energy reduction resulting from dimeriza-
tion, in going from the 1X1 to a 2X1 surface is, there-
fore, underestimated by Uc. The dimer bond strength in
Si, for Uc ——0, was calculated' to be approximately 0.67
eV when compared to a 1.82-CV value for Uc ——1.15 eV.
The latter is much closer to the typical bond strength in
crystalhne Si of 2.35 eV, and to the 1.5-CV result of ab ini
Iio self-consistent pseudopotential calculations.

The comparison of different surface geometries for the
purpose of finding the lowest-energy atomic configuration
ls fRclll tatcd by consldcring thc surface cncI'gy pcr Unit
aI'ea y. For a system containi. ng X atoms and total energy
E„,(X) the surface energy E,„~ is defined here as the
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difference between E„,(N) and NEp where Ep is the total
energy per atom in the crystalline (diamond-structure)
solid:

E,~=E„,(N) N—Ep . (52)

For the surfaces studied in this paper the total energies
were calculated using the expression

E„,= g E„(k )+ UpNb, „d,+ g ( Ui F.;+U2e; } (53)

discussed in Sec. VI A. The surface energy per unit area y
defined as'

(per unit area) is a very useful index for comparing sur-
faces with different atoms per unit cell and with different
periodicities. The calculated surface energies per unit area
for several surfaces are discussed in Secs. III—V.

(56)

where the sum j is over occupied levels EJ with eigenfunc-
tion gI. For periodic systems, the sum over j is replaced
by sums over the band index and wave vector. Since the
tight-binding matrix elements are analytic functions of the
atomic coordinates, the gradients t}H/Br„can be easily

evaluated. The calculation of F„ involves a sum of the
OH11

C. Hellmann-Feynman forces

The calculations of Hellmann-Feynman forces within
the tight-binding scheme can be done easily. A knowledge
of the spatial character of the s and p basis functions used
in the calculations is not required. In fact, only the expan-
sion coefficients A,~ „ofthe eigenfunctions

(55)
m, n

in terms of the basis functions f~ are needed. In Eq. (55)
f~ represents s, Ii„, ps, and p, functions and ~„denotes
atomic positions. The force on atom i arising from the
first term of E„,in Eq. (53) is given by

where H „„is the hopping matrix element between
basis functions f~ and f~ localized at sites r„and r„',
respectively. The d dependence of the tight-binding
matrix elements on distance as well as the gradients of the
( Ui e+ U2e ) components of the total energy are also easi-
ly taken into account in calculating the total force on each
atom. The optimal atomic coordinates for each structure
can be determined by an iterative process in which atoms
are displaced by an amount proportional to the forces act-
ing on them and the new wave functions are calculated.
The use of Hellmann-Feynman forces simplifies enor-
mously the determination of complex structures with
many degrees of freedom. The relaxed and reconstructed
geometries examined in this paper were all determined via
a minimization of Hellmann-Feynman forces.

The force acting on an atom can sometimes vanish as a
result of symmetry (e.g., when the structure has inversion
or mirror-reflection symmetry). In such cases it is often
necessary to break the symmetry to find whether the re-
sulting forces restore the symmetry or lead to a new
equilibrium configuration. Two examples of structures
with broken mirror symmetries at the surface are the
asymmetric dimer model ' for Si(100) and the dimerized
sr-bonded chain structure for C(111)surfaces.

VII. CONCLUSIONS

In conclusion, the surface energies for several structural
models of Si(211), Si(311),and Si(331) surfaces were deter-
mined. The surface energies of the vicinal surfaces were
always found to be higher than for the Si(111)-2)&1
cleavage face even for structures with very low dangling-
bond densities. The lower surface energy of the (331) sur-
face, as compared to the (211) surface and the absence of
(331)-type steps, i.e., (112) propagating steps on cleaved
surfaces, indicates the importance of the (111)-2&&1 m-

bonded chain reconstruction, occurring in the process of
cleavage, in determining the type of step geometry that
can occur at the surface
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