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Various experiments which involve the joint application of dc and ac driving fields,

V = Vd, + V„cos(~t), are reported for the charge-density-wave (CD%') state of the linear-chain com-

pound NbSc3. Steps RI'c obsclvcd ln thc dc I-V chaI'actcrlstlcs when ac d11vlng flclds RI'c appl1cd.
Thc complex ac Icsponsc 0' (6)) ls also stI'ongly influenced by thc appllcatlon of dc f1clds, with

sharp changes occurring in o„(co) for well-defined driving frequencies and bias fields. These phe-

nomena are the consequence of interference effects between the applied ac signal and the intrinsic

current oscillations. In both cases, the ac "interference" frequency is proportional to the excess

current ICD~ calrlcd by thc charge-density wRvc. Wc analyze oUr cxpcI'1IIlcnts 1n tcrH1s of R simple

nonlinear equation proposed previously to account for the field- and frequency-dependent response

and current oscillation phenomena. The equation is formally identical to the equation describing a
resistively shunted Josephson junction (Stewart-McCumber model). Analysis in terms of this equa-

tion leads to a highly coherent sample response where the specimen can be described by a single de-

gree of freedom. Our observations are also discussed in light of recent theories of CD% pinning

Rnd dynamics.

I. INTRODUCTION

It is by norv well established that the strong nonlinearity
of the dc conductivity trd, (E) observed in the linear-chain

h 1 g d NbSC3, orthoh b' d ol' '

TRSS, and NbS& (Ref 3) is due to the current-carrying
charge-density-wave (CDW) state. The CDW condensate,
which is a consequence of electron-phonon interactions, ~

is characterized by a complex order parameter and can be
represented in the familiar form

where x refers to the chain direction, kp is the Fermi wave
vector, and 3 and P are the amplitude and phase of the
CD% condensate. %ith a condensate characterized by an
amphtude and by a phase, both amphtudc and phase exc1-
tations are possible. The minimum energy for amplitude
cxcltatlons ls g1vcn by 0 =g Q)2k %'herc g 1s thc d1-

mensionless electron-phonon coupling constant and u2k
is the phonon frequency at 2kF. The period of the CDW,
A, =tr/kF, is determined by the band filling, and thus the
CD% may be commensurate or incommensurate with the
underlying lattice.

For an incommensurate CD%, such as develops in
NbSC3 in both charge-density-wave states, the phase can,
in the absence of various pinning mechanisms, be arbi-
trary with respect to t4e underlying lattice. In this case,
the energy of the system is phase independent. With an
arbitrary phase, arbitrarily small applied electric fields can
lead to a current carried by the CD% condensate. Vari-
ous mechanisms, however, lead to pinning of the CD%
and thus to a nonconducting state for low dc driving
fields. 6 In NbSCS and in TRS& (orthorhombic form) pin-
ning is provided by residual impurities in the specimens. '

Although the detailed mechanism of impurity pinning is

not clear, various estimates lead to pinning energies orders
of magnitude smaller than the energies which correspond
to the single-particle gap 5 in the electronic dispersion re-
lation or to the energy Q+ associated with the energy of
the amplitude mode. '

Thc plnncd mode displays strongly fl cqucncy"
dependent response and a very large dielectric con-
stant. ' '" Moreover, the CD% can be depinned by small
applied dc electric fields exceeding a threshold field ET
(Ref. I) leading to a current-carrying CDW state as origi-
nally suggested by Frohlich. ' In the current-carrying
state an oscillating component of the current is observed
for applied dc fields exceeding ET. These oscillations
have been investigated both in the frequency domain' and
in the time domain. ' ' The sharp peaks observed in the
forIIlcr CRsc Rrc referred to Rs "narrow-band-noise" peaks.
The dominant frequency f1 of the current oscillations is
proportional to the current carried by the CDW and re-

cent experiments' ' are in agreement with the expression

n (T)
CDW T ()

cf1 (2)

where n (T) is the number of carriers per unit length in
the CD% condensate and c is a constant.

Various models have been proposed to account for these
experimental findings; two models attempt to describe the
observations in detail. A phenornenological model' '
treats the CDW as a classical object of mass m and charge
e moving 1n a periodic potcntlal where thc pcI1od 1s glvcn
by the CDW period A, . The equation of motion is

2dx 1dx ~o . eE
1 +— + sin(Qx) =-

dt r dt Q trt

where r ' =y /rn, with y the damping constant,
6)o=k /fPl with k thc 1cstor1Ilg fol cc constant, and
Q=2m/A, . E is the applied electric field. Although the
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classical model does not account for the pinning mecha-
nism (a rigid COW is not expected to be pinned by ran-
domly dlstr1butcd lmpur1tles ln thc thcr1Tlodynamlc 11ID"

it ), it describes the overall qualitative features of the
frequency-dependent response of the pinned mode, and
also the observed nonlinear conductivity when E exceeds
the threshold field ET. It also accounts for the current os-
cillation phenomena, and predicts the linear relation be-
tween ICDw and f& as given by Eq. (2). In addition the
model accounts well for the results of various experiments
involving the joint application of ac and dc driving fields,
such as the low-field dc conductivity in the presence of an
app11cd Rc field. She IDodcl lcRds, howcvcf, to spurioUs
divergences if E~Ez from below. For example, the dif-
ferential conductivity dI/dV diverges if E~ET from
below threshold, althQUgh these divcfgc1'lccs have not bccn
obtained by experiment. The phenoIDenological classical
model is closely related to an electrical analog, the relaxa-
tion oscillator. This electrical analog also reproduces the
overall features of the experimental findings, with again
cxccpt1on to thc dlvclgcnccs pI'cdlctcd ncBI' Ey.

An Rltefnat1vc model pI'oposcd by Sardccn assumes
that the pinning can be represented by a gap in the
(pinned) CDW excitation spectrum. . Excitation of the
CDW across the gap by dc and/or ac fields leads to field-
and frequency-dependent transport phenomena. The
former is similar to (single-particle) Zener tunneling, and a
theory developed by Tucker for superconducting
insulating-superconducting (SIS) junctions is used to
evaluate the frequency-dependent response. Both o„(eo)
and oq, (E) can be described in detail by the postulated
formulas of Bardeen's tunneling model. Assuming a
coherent sliding CDW motion over the valleys and hills of
the pinning potential, the current oscillation phenomena
can also bc accounted fof, and energy-conscrvat1QB afgu-
ments lead to a pinning potential. in good agreement with
that obtained from the frequency-dependent response.
Hardeen's model also accounts for ac-dc coup1ing and
microwave harmonic mixing experiments. Predicted
quantum phenomena such as photon-assisted tunneling
have, however, not been observed to date, and reasons for
the failure of the tunneling model in these cases have been
summarized by Bafdccn.

%c believe that in the classical liIDit both formalisIDs
should give an overall qualitative account of experiments
for R broad paraIIletcf fangc. Both thc classical Rnd tUn-

neling models should, for example, describe phenomena
associated with the intrinsic oscillations produced by the
moving CD&.

In th1s papc1 thc basis Qf analys1s for QUI' cxpcr1IHcntal
data will be the classical model, Eq. (3)„which can be
solved UndcI' a number of parameter co1ld1tlons applied
experi, mentally, allowing a direct comparison with experi-
ments. We st1ess, however, that thc semiconductor or
tunneling mo«Iel is also expected to give a good account
Qf QUI' cxpefIIDcntal flnd1ngs.

The substitution 0=-Qx allows Eq. (3) to be recluced to
the dimensionless form

where I'=(copr) ', ET (——A, /2m). mcop/e, and time t is
measured in units of mp . Equation (4) is formally identi-
cal to the equation which describes the behavior of resis-
tively shunted Josephson junctions, '

where p is the phase difference across the junction, I is the
current through the junction, 6 =(Rcrpj ) ', where R and
C are the resistance and capacitance of the junction, and
rpq ——-2eIq/CR. IJ is the dc critical Josephson c:u'rent, and
time is measured in units of co& . This formal analogy,
also I'ecognized by others, suggests a close correspon-
dence Mtwe~ phenomena observed in Joscphson junc-
tions Rnd in materials displaying CD& transport. For ex-
ample, the current oscillations described by Eq (2) co. rre-
spond to the ac Josephson effect.

In this paper we report observations of the COW
response 1n ~Sc3 1n thc prcscncc Gf joint dc Rnd ac df1v-
ing fields,

V—-- Vd, + V„cos(cot) .

Var1ous types of cxpcr1IIlcnts have bccn performed RIld

analyzed in detail, and most correspond to experiments
weH known in the Josephson literature. According to
the nature of the excitation and mode of detection, we
may classify these experiments Rs foHows.

(i) The effects of ac field on the dc I Vcharacte-ristics:
V„and ~ are held constant, Vd, is varied, and Id, is
detected.

(ii) The effect of dc field on the ac response: Vz, and
V„are held constant, ~ is varied. , and I„offrequency ~
is detected.

(iii) The effect of swept dc field on the ac response:
V„and m are held constant, Vd, 1s var1ed„and I„., 1s

detected.
In experiments (ii) and (iii), from the measured I„and

applied V„. the real and imaginary parts of the conduc-
tivity are evaluated using

I„(~)
o „(tp)=Reo.„(co)+i Imo„(co) =

V„
It should be mentioned that due to the inheI'ent nonlinear-
ity of the problem, «n applied sinusoidal voltage does not
lead to a sinusoidal response for finite V„values. The
linear approximation is, however, appropriate for small
applied ac fields in the V„—+0 limit, and our experiments
were performed in this limit. The dc conductivity is de-
fined as o.d, ——Id,. /Vd, .

The broad variety of experimental observations can
(perhaps somewhat arbitrarily) be classified into two
groups: first, the overall modification of the dc or ac
response by the joint application of ac or dc driving fields,
Rnd second, interference phenomena between the intrinsic
current oscillations and the externally applied ac field.
Although we shall briefly comment on the overall depen-
dence of the ac and dc responses as functions of the exci-
tat1GIl amplitudes Rnd ffcqGcncy, 1n this papc1 wc shRll
focus on thc interference phenomena j.n the current-
carfying CD+ State. A CQYDparlson Gf ouf experimental



PHASE COHERENCE IN THE CURRENT-CARRYING CHARGE-. . .

The experiments were performed both on NbSei sam-
ples provided by Fleming (Bell Laboratories) and NbSe3
samples prepared by ourselves. Typical crystal dimen-
sions were 1 mm & 10 pm & 1 pm with the long dimension
corresponding to the highly conducting chai~ axis. Our
conductivity measurements are with respect to this axis.
All experiments were carried out in the lower COW state,
i.e., below the second phase transition which occurs at
T2 ——59 K. In all experiments the applied voltages were
smaller than those needed to depin both COW's and con-
sequently our experiments are described in terms of the
dynamics of one CDW. Although we performed experi-
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FIG. 1. dc I-V traces foi NbSc3 at 42 K 1n thc prcscncc of an
applied If field at frequency ~//2m= lOO MHz and of amplitude
V . Step height 6V 1s dcf1ncd 1n thc figurc. No Shap1ro steps
are seen for V„=O, while the maximum step height is at ap-
proximately V„=1OO mV. Arrow indicates the dc current
which yields a noise frequency f &

——100 MHz. n is the step in-
dex (see text).

findings with expressions worked out originally for
Josephson junctions suggests a highly coherent response
and demonstrates the development of long-range phase
coherence in the sliding CD% mode, in agreement with
conclusions drawn from our previous analysis of current-
oscillation phenomena' in NbSC3.

Experiments concerning interference effects have been
performed previously by Monceau et al. ' who have re-
ported sharp steps in the differential resistance d V/dI due
to the application of ac fields. Some of our experiments
are the extension of these studies to larger applied ac
fields and frequencies. Also, the effects observed by us
are approximately 2 orders of magnitude larger than those
reported by Monceau et aI. ' We believe that this is due
to a higher sample quality and more well-defined sample
geometries for our samples. Some of our experiments
have bccn reported earlier.

ments at various temperatures below Ti, most of the ex-
perimental data reposed here were taken at temperature
T=—42 K, which is near the temperature where the Ohmic
resistance has a local maximum and the threshold voltage
VT attains its minimum value. '

Both the real and imaginary parts of the ac conductivi-
ty, Rea„(co) and Imo„(n~), were measured with an HP
8754A network analyzer. The technique involved ter-
minating a 50-Q coaxial cable with an NbSC3- crystal, and
then measuring the complex reflection coefficient of the
cable termination. Both the ac driving frequency cu and
the dc bias field Ed, could be swept continuously during
the measurement process; co/2n could be varied between 4
and 500 MHz and Ed, between zero and approximately 20
times E~. For larger dc bias fields, self-heating of the
sample became apparent. For the experimental results re-
ported here, the amplitude V„of the ac driving field was
held at a value substantially smaller than Vg, the thresh-
old voltage for nonlinear dc conductivity, measured in the
absence of an ac driving field. Our measurement setup
also allowed Us, during thc same experimental I'Un, to
measure thc rcsponsc of thc sample to pUlscd dc electric
fields. With the use of a pulse method, ' we were able to
observe directly on an oscilloscope the amplitude and fre-
quency Qf the coherent current oscillations as functions of
the applied electric field. Measurements of od, (Vd, ) by
pulse method also verified that heating effects were unim-
portant up to 20VT for continuously applied dc fields.

Wc shall first discUss expel imcnts which fall into thc
first category as outlined earlier, i.e., a modification of the
dc I-V characteristics of the sample by an applied ac field.
Figure 1 shows several dc I-V traces for NbSC3 at T=42
K. The excitation applied to the sample was of the form
V= Vd, + V„cos(cot) with co/2m= 100 MHz. For V„=O,
a smooth, nonlinear I-V curve is observed with a well-
defined threshold voltage Vr where the conductivity starts
to be nonlinear. At higher values of V„, well-defined
steps, which we shall index with an integer n, appear in
the nonlinear region. The step height 5V, as defined in the
figure, in general first increases with increasing V„and
then decreases. The position of n= 1 step (identified in
the figure) corresponds to a dc current Id„. which, in the
absence of ac fields, yields an intrinsic oscillation of fre-
quency fi ——1(X) MHz=—ro/2m. . This has been established
by measuring the oscillation frequency directly with the
method described in Ref. 15. We also note the presence of
harmonic steps corresponding to n=2 (where fi ——200
MHz) and smaller subharmonic steps corresponding to
n =—,

'
(where f, =50 MHz). The steps are thus clearly an

interference effect between the intrinsic current oscillation
and the externally applied rf excitation. In Fig. 2 we show
the results of the same experiments on a second sample
with ac applied frequency co/2+ =210 MHz. In Fig. 2 the
n =1 steps are clearly visible.

The definition of the step height, as indicated in Fig. 1,
is straightforward and we shall strictly adhere to it in the
analysis section of this report. However, for steps corre-
sponding to n ~ 2 the steps in the I-V curves become diffi-
cult to observe directly. A morc sensitive test for higher
harmonic steps is to detect the differential resistance
dV/dI of the sample (using a very-low-frequency ac
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FIG. 2. dc I-V traces for NbSe3 at 42 K in the presence of an
appllcd I'f flcld at frcqucncy 6)/2%=210 MHX and of aInplltudc
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FIG. 4. Differential resistance dV/dI of NbSe3 at T=42 K
fol' varloUs amplitudes V~, of an applied rf signal at frequency
m/2+ =56 MHz. dc threshold voltage V~ goes smoothly to zero
with lncrcaslIlg V

modulation of small amplitude) in the presence of a dc
bias field and rf radiation. This is shown in Fig. 3 for
again a different NbSe& sample at T=42 K. Figure 3
shows data for several different values of V„with

/2m=5 MHz. In this plot, steps corresponding to
Values Rs high Rs Pl = 15 Rrc RpparcIlt» RloIlg with subhar"
monic steps. Similar to the step-height observations of
Figs. 1 and 2, the n =1 peak (identified with an arrow) in
general first increases and then decreases with increasing
V~, . It should be noted, however, that the heights of the
peaks in dV/dI do not correspond directly to the height

5V as defined in Fig. 1. Rather, the peak heights in Fig. 3
reflect the "sharpness" of the steps in the direct I-V
charactcrlst1cs.

ExpeflmcIlts sUch Rs those sho%'Il 1Il Figs. I—3 werc
performed at various applied ac frequencies between
~/2m. = 1 and 210 MHz. Owing to instrumental limita-
tions, we did not extend our experiments to higher fre-
quencies, although (as discussed later) such higher-
frequency measurements are desirable.

IIl Rddlt1011 to 1Ilduclng steps oIl thc dc I-V charRctcrls-
tics of the sample, the application of an ac field also
changes VT, the threshold voltage for the onset of non-
linear conduction. Although this effect is observable in

04—

I

20 50-20 —t0 0 t0
dc vaftage Vd, (mV)

FIG. 3. Differential resistance dV/dI of NbSC3 at T=42 K
in the presence of an applied rf field at frequency m/2+=5
MHz. n = 1 Shapiro step is identified with an arrow (see text).
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F1G. 5. Real and imaginary parts of thc conductivity
Rco (N) and Imo' (N) 8t 42 K in thc absence of applied dc
field. ac test signal amplitude V~c was much smaller than tbc dc
threshold. voltage Vz.
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Figs. 1—3, it is shown more dramatically in Pig. 4, which
shows the differential resistance dV/dI of a NbSei sample
for various values of V„and for co/2n. =56 MHz. These
data mere obtained by sweeping the dc bias current Id,
and measuring dV/dI (again ~sing a low-field and low-
frequency ac modulation) in the presence of rf radiation.
Figure 4 shows clearly that in the presence of an ac field,
VT smoothly goes to zero with increasing V„.

We now turn to experiments of the second type as
categorized above, namely the effect of a dc bias field on
the ac conductivity o„(co). The experiments which in-
volve the measurement of the ac response in the presence
of dc fields were performed after experiments on the field-
and frequency-dependent conductivity were completed.
The threshold for the onset of dc nonlinear conduction VT
was established by measuring the dc I-V characteristics.
In Fig. 5 we show for zero dc bias the real and imaginary
parts of the ac conductivity, Reer„(co) and Imcr„(co). For
the data displayed in Pig. 5 the applied ac amplitude V„
was more than an order of magnitude smaller than VT,
therefore, Reer„(co) and Imo„(co) as shown correspond to
the ac response in the small amplitude "linear" regime of
the pinned CDW mode where both Reo„(co) and
Ima„(co) are independent of V„.

Figures 6 and 7 show as a function of applied dc bias
the real and imaginary parts of the complex conductivity,
Reo„(co) and Imcr„(co), measured at co/2n =3.2 MHz. It
is evident that neither the real nor the imaginary part of
the frequency-dependent response is strongly affected by
an applied dc voltage as long as Vd, & VT. However, for
Vde ) VT'e Reo'eee (co/2& —=3.2 MHZ) s'troiigly iilci'eases
and the ac dielectric constant e (co/2m =3.2 MHz) strong-
ly decreases for increasing Vo, . The dielectric constant is
related to the ac conductivity by

4m ImcT„(co)
e(co)—

The dielectric constant approaches zero above Vd, -3VT,
showing that there is no appreciable out-of-phase com-
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FIG. 7. ac dielectric constant e(~) measured at ~/2~=3. 2
MHz as a function of applied dc bias voltage. Threshold field
E~ for the onset of nonlinear conduction is indicated by an ar-
row.

ponent at high apphed dc voltages. Reer„(co), on the oth-
er hand, approaches the high-frequency limit obtained
from the frequency dependence of Rea„(co) as shown in
Fig. 5.

In addition to the overall behaviors described above,
Figs. 6 and 7 also show that for NbSei both RecT„(co) and
e(co) have sharp anomalies for well-defined values of Vd,
in the nonlinear conductivity region. SpecificaQy, Reo'„
shows steps to 41ghcl conductlv1ty values at Vdc = 1.6~
2.3, and 3.3 mV. At these same values of Vd„e shows
well-defined inductive dips. The dip at Vd, ——2.3 mV is
especially dramatic, and at this field Reer„also shows the
largest conductivity step. It is important to clearly distin-
guish the steps and dips shown in Figs. 6 and 7 from the
steps in the I-V characteristics discussed before. The
steps shown in Pigs. 1—3 are steps in thc dc I-V charac-
teristics due to applied large amplitude ac fields (i.e.,
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FIG. 6. Real part of the ac conductivity Reo„(cu) measured
at m/2m=3. 2 MHz as a function of applied dc bias voltage,
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indicated by an arrow.
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FIG. 8. ac dielectric constant e(ru) measured at various ac
frequencies as a function of applied dc bias voltage. Negative
dielectric constant indicates inductive response. Threshold field
E~ for the onset of nonlinear dc conduction is indicated by an
arrow.
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V„~~VT). In Figs. 6 and 7 we are dealing with
anomalies in the low-field ac response due to an applied
dc field.

The position of the steps in Reo.„and corresponding
dips in e, as seen in Figs. 6 and 7, are sensitive functions
of to, the ac driving and detection frequency. As co is in-
creased the steps and dips move progressively to higher
Vd, values. This is shown in Fig. 8 where e has been plot-
ted for several values of co. For a given ac frequency co,
the strong step in Reo.„and large dip in e appears at a
value of Vd, which by itself produces a coherent current
oscillation of fundamental frequency fI ——nI/2n. . This is
illustrated in Fig. 9 where the position of the strong in-
ductive dip has been plotted as a function of co. Instead of
labeling the position of the dip by Vd„ the excess CDW
current ICDw has been used. ICDw is a well-defined func-
tion of Vd, obtained from the dc I Vcharact-eristics of the
sample. From Fig. 9, we see that a linear relation exists
between co and ICDw up to cu/2m = 100 MHz. Beyond 100
MHz it was not possible to resolve the inductive dip in the
e(to, Vd, ) data. Figure 9 also shows, for the same sample,
the fundamental frequency fI of the coherent current os-
cillations. fI was determined from direct observation of
the oscillating component of IcDw on an oscilloscope and
is seen to be proportional to ICD~. What is important
here is that in Fig. 9 the data points for co/27r and fI fall
on the same line, clearly indicating that the steps in
Reer„(nI, Vd, ) and inductive dips in e(nI, Vd, ) are the result
of a direct coupling between the ac driving field at fre-
quency nI/2~ and the current oscillations at fundamental
frequency fI. The smaller steps and dips, as shown at
Vd, ——1.6 and 3.3 mV in Fig. 7, indicate subharmonic and
harmonic interference effects. These anomalies occur at
dc bias fields where fI equals —, X(to/2') and 2X(co/2n ),
respectively. In short, for a detection frequency co/2n. , in-
terference effects are observed whenever the fundamental
noise frequency fI ——tu/2n or is a harmonic or subhar-
monlc of co/2%.
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FIG. 10. Real and imaginary parts of the ac conductivity
a„(co) of NbSe3 as functions of frequency in the presence of ap-
plied dc bias. Fundamental noise frequency corresponding to
this bias field is indicated in the figure.

The interference effects shown in Figs. 6 and 7 have
been observed by detecting the ac response for a fixed fre-
quency ~ and a varying dc bias Vd, . Clearly, the same ef-
fects should be observable if Vd, is fixed at some value
above VT, and the ac response is measured as a function
of nI. This is shown in Fig. 10, again for NbSe3 at T=42
K. The sample has been biased at Vd, ——5.7 mV, which
yields an intrinsic oscillation frequency fI

——14 MHz. In-
terference effects in Reer„(co) and Imo„(co) are clearly
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FIG. 9. ac interference frequency co/2~ as a function of ex-
cess CDW current IcD~. Interference frequency is defined as
the frequency which leads to the inductive dip at Vd, in
e{~,Vd, ). Vd, is related to ICD~ through the dc I-Vcharacteris-
tics of the sample. Also plotted is f&, the fundamental narrow-
band noise frequency.
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FIG. 11. Icow/f& for NbSe3 at various temperatures below

T2 ——59 K. This ratio reflects the CDW order parameter h(T).
Also plotted are the BCS gap expression for 5 and the x-ray su-
perlattice amplitude as determined by Fleming (Ref. 42).
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seen at co/2@=7 MHz= —,fi, 14 MHz=f1, and
28 MHz=2f 1, as indicated by the arrows in Fig. 10. An
experiment of this type falls into the third category of ac-
dc coup11ng experiments Rs dcflncd car11cr.

The interference effects reported above have been ob-
scrvcd Rt VRI'1QUs tcIYlpcI'RtUI'cs 1Q M3Sc3 Rnd also 1Q

TRS&. In dealing with the temperature dependence of
the phenomena, we shall, however, consider here only the
temperature dependence of the f, -vs-IcDw relation. This
ratio is of fundamental importance to the theory of CDW
transport.

As shown in Fig. 9, the fundamental oscillation fre-
quency f &

in the nonlinear conductivity region is directly
proportional to Icow, the excess current carried by the
CD%'. Data similar to that shown in Fig. 9 have been ob-
tained at various tcnlperatures in NbSC3, and Fig. 11
Sllows tllC latlo ICDw /f 1 Rs R fUIlct1011 Of tCIllpC1 RtU1C Ob-

tained from this data. Figure 11 clearly indicates that the
latlo ICDw/f I Smoothly RpploacllCS ZCIO RS T Rppl'ORcllCS

T2 ——59 K from below. As we have mentioned earlier, this
ratio can be interpreted as reflecting the concentration of
carriers condensed in the CDW mode, n (T).

nonintegral values of n are also predicted under certain
conditions. The step height 5I for the nth step can be
obtained by exphcitly solving Eq. (5). In the high-
freque~cy limit (co &&2eIqR /A), computer simulations
and analytic approximations show that the height of
thc nth step 1s glvcn approximately by

VT/VT(co =o)=
I
Jo( VeII) I

with

(12)

The critical current I& thus displays R dependence on the
Rpp11cd Rc CUITcnt g1vcn by

Ig(co)/Ig(co=0) =
i Jo(II (co)/coGIg(co=0))

i
. (10)

In Eqs. (9) and (10), J„ is the Bessel function of order n.
The corresponding equations for a CD% system are, by
direct analogy to Eqs. (9) and (10),

5V=2VT(co =0)
~

J„(V,II)
~

In this section we analyze our experimental findings in
terms of the simple nonlinear expression, Eq. {4). As
remarked before, this equation is formally equivalent to
tllc cqllatl oil whlcll describes tllc bcllRvlol of rcslstlvcly
shunted Josephson junctions. ss Our experimental findings
have close analogies to experimental results widely known
and discussed in the Josephson literature. Consequently,
we will rely heavily on the theoretical predictions of
models which have been worked out to interpret experi-
ments performed on Josephson junctions.

First, the effect of the applied ac field on the dc non-
linear behavior will be discussed. Analogous effects are
obscrvcd 1Q Joscphson )unctions, Rnd 1n part1culRr thc
steps observed in the Josephson case are called Shap1ro
steps. Effects analogous to the modification of the ac
response {Figs. 6—8) have also been observed in Josephson
junctions by measuring the changes in the properties of
microwave resonant cavities. ""Ho~ever, due to limita-
tions related to the calibration of microwave detecting sys-
tems, only qualitative analyses have been previously per-
formed. We also interpret our experimental findings of
the modification of the ac response by a dc bias in a
phenomenological semiqualitative way. Finally, the rcla-
t1011 bc'twccn 'thc fuIidalllcIltR1 ilolsc fl'cqUcIicy fi RIld tllc
excess current Icow is discussed with regard to various
theories of CD%' transport.

A. sc induced steps in the dc I-V curves

In the Stewart-McCumber model of Josephson tunnel-
ing, as described by Eq. (5), a driving current of the
form I=IS,+I„cos(cot) will produce steps in the dc IV-
characteristics of the junction whenever the junction volt-
age ( V) equals nero/2e, where n is an integer and co/2m.

is the frequency of the ac component of the driving
current. Thcsc steps Rrc R d1I'cct coQscqucncc of thc Rc
Josephson effect. Subharmonic steps corresponding to

The above equations have been derived in the high-
frequency limit for a strongly damped system where the
capacitive term (Josephson-junction case) or inertial term
{CDW case) can be neglected. We note that Eq. (11)
prcd1cts thRt the max1mum step height 6Vm, y dcpcnds
only on the maximum value of J„and is thus independent
of frequency ~. In the low-frequency hm1t, st111 neglect-
ing the junction capacitance or COW inertia, computer
calculations" "have yielded solutions for the step heights
in the I-V characteristics which closely resemble Bessel
functions. In this low-frequency limit the maximum step
height 5V,„ is a strong function of frequency co.

Equations (11)—(13) are appropriate to a coherent
I'cspoIlsc with thc who1c specimen I'cspoIKhng to thc Rc
and dc driving fields as one coherent unit in the current-
carrying state. If we assume that (due to either a distribu-
tion of the parameters which represent the CDW response
or inhomogeneities such as phase boundaries, etc.) only a
fraction cI of the sample responds collectively to the exter-
nal field, then Eq. (11)becomes

5V=2cI VT(co=0)
i J„(V,II)

~

(14)

while Eq. (12) remains unchanged.
In QI'dcI' to pI'opcr1y cvaluatc thc data shown ln F1gs.

1—3, in terms of Eq. (4), we must determine if we are in
thc high- or low-frcqucllcy regime. From Flg. 5, wc scc
that the zero-bias ac conductivity 0.„(co) indicates a cross-
over frequency mow/2m=100 MHz. Thus, to evaluate
data above approximately 200 MHz, we may use Eqs.
(11)—(14), while for lower-frequency data the low-
f1cqucncy computer solUt1ons ' Qf thc I'cs1st1vcly-
shunted-junction (RSJ) model ' are most appropriate.

In Fig. 12 we have plotted the step height of the n =1
steps of Fig. 2 as R function of the ac amphtude V„. This
data is for co/2m =210 MHz, and thus we compare this
data to Eq. (14). The solid line in Fig. 12 is Eq. (14), with
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FIG. 12. Step height 5V vs amplitude V„of the applied rf
signal. rf frequency is 210 MHz and the step index n =1 (see
text). Solid line is Eq. (11) with parameters given in the text.
Dashed line is a guide for the eye for the experimental data.
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FIG. 13. Maximum step height 5V,„attained vs rf frequen-
cy. Solid line is the prediction of the RSJ model of Josephson
tunnel junctions (Ref. 37). Data of Figs. 2, 12, and 13 are for
the same NbSe3 sample.

chosen parameters coo~——503 MHz and +=0.17. Vz- is
fixed by experimental conditions at 24 mV. The positions
of the maxima and minima of the Bessel function of Eq.
(14) are in remarkably good agreement with the experi-
mental data. The value of the crossover frequency
floor/2m deduced from this fit is 80 MHz, in good agree-
ment with the value of 100 MHz obtained from the fre-
quency dependence of the low-field ac conductivity alone
(see Fig. 5). Equation (14), however, underestimates 5V
near the second peak in Fig. 11 and overestimates 6V near
the third peak. These peak heights are, however, quite
sensitive to the pinning potential in Eq. (4), and a different
choice of potential would distort somewhat the amplitudes
of the peaks in the solution of 5V. The value of a=0. 17
indicates that a large fraction of the sample is responding
coherently to the external perturbation. Analysis of simi-
lar data for another sample yielded an even higher value
of a=0.60. Assuming that 5V at the peak, as given by
Eq. (14), is off at most by a factor of 2 (possibly arising
from the relative closeness of the ac frequency co/2ir =210
MHz to the crossover frequencies c007/2m=100 MHz), a
value of a=0.60 indicates that between 30% and 100%
of the sample volume is phase coherent. The high coher-
ence is in agreement with other studies of the current os-
cillations' and switching phenomena of NbSei.

From data similar to that shown'in Figs. 2 and 12, we
find that the maximum height of the n =1 step, 5Vm, „, is
strongly frequency dependent. This is shown in Fig. 13
where 5V,„ is plotted as a function of ~. Since most of
this data falls into the low-frequency solution regime of
Eq. (4), we have in Fig. 13 plotted 5V,„as calculated
for the RSJ model in the overdamped low-frequency limit.
The value of coos/2m =50 MHz obtained from this fit is in
good agreement with the result ~o~/2~=80 MHz de-
duced from the analysis of Fig. 12.

Equation (11) indicates that the n =0 step height, i.e.,
the threshold voltage VT, should also display a Bessel-
function oscillatory behavior. Such oscillations are not
apparent from the data in Figs 1or 2 or .from the more

sensitive differential resistance data of Fig. 4 which shows
that VT goes smoothly to zero with increasing V„. This
failure of Eq. (4) to predict the correct form of the I V-
characteristics near threshold has been noted previously in
studies of the differential conductivity dV/dI, even in
the absence of an applied ac field. We, however, remark
that Eq. (4) appears to describe well the behavior of a
CDW system below and above VT, and fails only in the
immediate vicinity of VT. We shall return to the diver-
gence problem of the classical model at threshold shortly.

On the basis of the analysis in Figs. 12 and 13 we con-
clude that the simple nonlinear Eq. (4) describes both the
ac frequency and amplitude dependence of the dc
response. The analysis also shows a highly coherent
response where the whole specimen responds to ac and dc
driving fields as nearly one coherent unit. This observa-
tion is highly suggestive of long-range phase coherence in
the current-carrying CDW condensate.

Our analysis also leads to a strongly damped CDW
response in the nonlinear, sliding CDW region. This ob-
servation is in accordance with the behavior. of the
frequency-dependent conductivity IT„(co) when analyzed
in terins of the classical equation. Although these experi-
ments indicate an overdamped response always, we note
that recent analysis of the coherent current oscillations'
indicates that inertial effects may be important at driving
fields well above the threshold field. Whether this ap-
parent discrepancy is related to the differences in the mea-
surement methods (pulse measurements were used to ob-
serve the current oscillations, while the present experi-
ments are steady-state measurements), or reflect the devia-
tion from a sinusoidal potential, or are due to an inherent
deficiency of the classical model, remains to be seen.

B. Effect of dc fields on the ac response

As is evident from Figs. 5—8 the ac response of the
CDW condensate is strongly modified by the application
of applied dc bias fields. Broadly speaking, two effects
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are important: First, the ouerall modification of the ac
response (such as the overall decrease of the dielectric con-
stant with increasing applied dc fields such as shown in
Fig. 7), and second, the sharp interference effects observed
at well-defined frequencies and (related) applied dc fields.
The latter effects are clearly related to the coherent
current-oscillation phenomena, and to the "Shapiro" steps
described in the preceding section.

Both of these features are expected to be recovered by a
calculation which is based on Eq. (4) and in which the ac
response is evaluated. Owing to the inherent nonlinearity
of the problem, analytic solutions are expected to be ob-
tained only in certain limits, but not for the general case
with a broad parameter range. We are also not aware of
computer simulations of the phenomena displayed in Figs.
6—8. We proceed therefore with a semiqualitative
analysis of our experimental findings. We first describe
the overall dependence of Reo.„(co) and Imo„(co) on the
applied dc field and then proceed to discuss the interfer-
ence phenomena.

In the absence of dc driving fields, Eq. (4) predicts an
ac response to a small amplitude ( V„«VT) ac driving
field given by

Reo.„(tu)= pie v 1

1+ (Gag'7/dl )

evident from Fig. 7, a divergent dielectric constant is not
observed in our experiments on NbSe3, but rather e is
nearly independent of Vd, below VT. In the sliding CDW
region e decreases with increasing electric field and tends
to zero for V~ ao. We remark that e( Vd„co), as calculat-
ed for the classical model assuming a harmonic potential,
is independent of the bias Vd, .

To account for the decrease in e with increasing Vd,
above VT, it is suggested that, for a moving CDW, there is
a critical velocity u, for the CDW above which an ac po-
larization at frequency co/2m cannot be built up. Letting
ud denote the time-averaged drift velocity of the sliding
CD%, the dielectric constant will be given by

e(co, Vd, )=e(co, Vd, ——0)[1—(udlu, )] .

A reasonable estimate for the critical velocity is
u, =A,co/2m, where A, is the wavelength of the periodic pin-
ning potential and co is the frequency of the ac driving
field. Again assuming a harmonic potential, the drift
velocity is given by

2e&VT

m ln[(Vd, + VT)/(Vd, —VT)]

By incorporating this result into the expression for
e(co, Vd, ), Eq. (19), we ftnd

2
ne ~~o& 1

Imcr„(co) =
m ri) 1 +(~ or~/) 2

and a low-frequency ac d1electrtc constant,

(16)
-(~, Vd. )

exVT4m
=e(co, Vq, ——0) —1

m ln( Vd, + VT )/( Vd, —VT )

4m.ne
e(co—+0)=

mo
(17)

e(co, Vd, ——0)
e(co, Vg, ) =

[1 ( V /V )2]ll2 (18)

Thus the dielectric constant e measured in the presence of
a dc bias Vd, should diverge at the threshold VT. As is

Equations (15)—(17) are for an overdamped system where
inertial terms can be neglected. This limit is here ap-
propriate since inertial terms lead to a decrease of
Reo„(a&) at moderate frequencies and to a negative dielec-
tric constant, neither of which are observed in NbSe3 up to
microwave frequencies.

The solid and dotted lines in Fig. 5 are Eqs. (15) and
(16) with parameters ruor/2m=100 MH. z and
ne r/m =0.85od, . Combining these parameters with Eq.
(17) and the measured low-frequency dielectric constant
q =2 X 10s leads to a classical pinning frequency
ao ——2)& 10 sec

In the presence of a dc bias Vd„ the m-dependent ac
response is expected to be modified in both the pinned
( Vd, & Vr) and in the depinned (Vd, & VT) CDW states.
In the pinned CD%' state an important parameter in the
classical model is the restoring force constant k for the
CDW. This parameter characterizes the ac dielectric con-
stant e(co). For a sinusoidal pinning potential as in Eq. (4)
the depinning process at VT is the consequence of the res-
toring force going to zero. This is reflected in the dielec-
tric constant, and from Eq. (4) we find

Thus, neglecting interference effects, e decreases with in-
creasing applied bias Vd, above VT and approaches zero
for an applied Vd, which corresponds roughly to a noise
frequency

2&6)ovfi=
ln[( Vd, + VT)/( Vd, —VT)]

as observed. Figure 14 shows Eq. (21) plotted for two
values of co along with the experimental results of

I

2 3
dc bias voltage (mV)

FIG. 14. Field-dcpcIldcnt ac dielectric constaIlt E(N ) of NbSc3
for t~o different values of the applied ac frequency m/2m. Solid
11Ilcs arc thc prcdict10Ils of Eq. (21).
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V= Vd, + V„sin(cot)

will be

(22)

I=It. sin(cot+11)+~g(-2Iff It+/), (23)
whcI'c thc time-averaged coIIlponcnt has been sUbtI'acted.

Approximating the coherent current oscillation by a
slllusoldal fllllctloI1, RIld RssllIDIIlg co/2&= fI fof stl"oIlgcst

interference, we obtain a response

I=8 sin(cot+5)+% sin{cot+/) . {24)

As discussed earlier, thc stI'ong lnduct1vc d1p 1Q E corre-
sponds to a bias voltage Vd, where, in the absence of in-

terference effects, e is approximately zero. Thus to
analyze this dip we may set 6=0 in Eq. (24). The total
phase difference between the Rc driving field and the
Icsponsc 1s then g1vcn by

r

P= tan
X Simb

R+ItI cosg

e(co, Vd, ) for NbSe3 at T=42 K. Reasonable agreement is
found between the predictions of Eq. {21)and experiment.

We note that the low-frequency dielectric constant has
recently been calculated by Tucker4o using Bardcen's tun-

neling theory. Tucker's calculation also reproduces the
main features of our experimental findings. The calcula-
t1on docs not lead to a d1vcrgcncc 1n 6 as V~ VT, 1n agrcc-
ment with the experiments. However, in its present form
the calculation does not include the contribution of the
pinned COW mode. Whether this mode would also lead
to R divergent rcsponsc Rt VT remains to bc scen.

Turning to the observation of sharp steps in Reef„(co)
and strong inductive dips e(co), we shall employ argu-
ments adapted from standard rf circuit theory. We shall
attribute the steps in Reef„{co) and the inductive dips in

e(co) observed in NbSCI as due to a classical phase locking
between the applied ac excitation at frequency co/2If and
the coherent current oscillations at frequency fI (and 2f I,
etc.). Direct observations of the coherent current oscilla-
tions in NbSC& have shown' that the phase of the current
oscillations can always be synchronized to the start of a
rectangular voltage pulse. The phase of the oscillating
response is found to be If/2 with respect to the start of the
pulse, regardless of the amplitude, width, or repetition rate
of the pulse. It is therefore suggested that whenever the
ac driving signal {which acts as a perturbation on the sys-
tem) is at a frequency which equaLs a harmonic or subhar-

monic of f„ the fundamental noise frequency and the
phase of the coherent current oscillation locks on to the ac
driving field with a phase difference of If/2.

Thc sRIDplc I'csponsc to R pUIcly Rc low-amplitude driv-

ing field V„sin(o~t) can be approximated by 8 sin(cot+ tI),

where R is a constant and 5 reflects the out-of-phase

component of the response. A purely dc driving field

with Vd,. ~ Vg will produce a current response

C+Ng(2Iff It+/) where C is the time-averaged response

and g is a periodic function of time with period (2~f & )

Rnd of Unit Rmphtude. X I'cp1escnts thc osc111at1on amp11-

tude. Assumiing independent behavior, the current
I'esponsc tG R comb1ncd Rc + dc d11v1ng f1cld

Setting the phase-locking angle P equal to the empirically
determined value If/2, and using for R and N the mea-
sured response amplitudes E =0.7 mV and %=0.1 mV,
we obtain P= —0. 14, which corresponds to a 4-MHz
value of the dielectric constant e= —7.66&10, in good
agreement with the measured 4-MHz value of
e= —5.5 X 10 at the center of the inductive dip in Fig. 7.
A similar analysis for the real part of the conductivity
Reo.„(co) predicts a step height Acj/cro 1.5 f——or the 4-
MHz step at ud, ——2.3 mV which again agrees favorably
with the measured step height hcr/cfo 1——.3 obtained from
Fig. 6.

The finite widths of the steps in Rect„(co) and of the in-

ductive dips in e(co), as seen in Figs. 6 and 7, indicate that
the interference effects are obtained over a small but finite
I'RIlgc of Ilolsc fl'cqllcllclcs fol flxccl co/2'If. In R cllscussloI1

of related synchronization effects in the differential resis-

tivity of NbSCI, Richard et ctl. ' have calculated the fre-

quency width for which frequency locking will occur in a
single domain. They obtain the model-independent ex-

pression for the extreme Vd, value

Vd. —V~ = VT{V-. /-2V~ » (26)

where V~ is that dc bias field which yields a fundamental
noise frequency equal to co/2m. , the external ac frequency.
Equation (26) predicts a width of the strong inductive dip
in e(co/2m =4 MHz, Vd, ——2.3 mV) of 2( Vd, —Vz )
= VT(VI/V~)=0. 27 mV, in excellent agreement with the
observed width of 0.26 mV from Fig. 7.

T11c stfoIIg 1ntcI'fcfcncc cffccts observed 1I1 NbSc3 Rfc

thus Rdcq Uatcly cxplalncd In tcrIIls Gf class1cal clcc-
tromagnetic interference phenomena. Whether such in-
terference effects are intrinsic to the tunneling model
Icmains to bc scen.

ICDw eAAn(T)f——1 . (28)

FroID thc d1scuss1on 1Q the prcvlous scct1ons 1t 1s clcRI'

that in NbSC3 the coherent current oscillations play B fun-
damental role in the dc and ac response char'acteristics of
the sample. We shall further investigate here the relation
between the fundamental noise frequency fI and the ex-
cess COW current I&0.

In the nonlinear conductivity region of NbSC3 the
curIcnt rcsponsc duc to Rn Rpp11cd dc voltage conta1ns an
ac component. We define the dominant oscillation fre-
quency of this component as fI, the fundamental noise
f1cqucIlcy. F10111 Flg. 9 wc scc 'tllat R Plot of fI vs Icow
yields an absolutely linear relationship, i.e., Icow kf1, ——
where k is a constant of proportionality. In a very general
scnsc wc Hlay write tile time-averaged cxccss current as

IcDw =n( T)eu+rA

where n(T) is the density of electrons condensed in the
COW mode, Ud is the COW drift velocity, and 3 is the
cross-sectional area of the sample. Setting ud =fIA, , where
A, 1s R charactcr1st1c d1stancc, wc cas11y Obtain B 11near I'c-

1Rtlon between Icow RIld f1,
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This relation was first proposed by Monceau et al. ' on
experimental grounds, and it is also predicted by the clas-
slcR1 lllodd of CDW tI'Rnsport, Eq. (4). EquR'tloll (28) Rl-

lows us to determine directly n (T), and hence also the or-
der parameter A(T) from the experimentally determined
slope Icow /f1 Rs shown ln Fig. 11. Also sllown ill Fig.
1II is the order parameter as determined from the BCS gap
express&on and from the x-ray amplitude as dete~lned by
F1CIIl lllg er Q l. Altllougll tllC SCRttC1 111 Icow /f I ls
somewhat large at lower temperatures, this ratio is in gen-
eral agreement with n(T) as determined from structural
data and theoretical considerations.

it should be noted that the 11near relat1on between ICD~
and 1, ls Ilot always observed IB NbScI. Fol. sonic NbSc3
SRBlplCS a SlopC IcDW/f1 IS found Wlllcll Increases Wltll

increasing bias field. This field has also been observed by
Richard et ah. ' I NbSe3 and also by ourselves m. TaS3.
The effect appears to reAect the extent to which the sarn-

ple volume is phase coherent; for samples with visible
structural defects such as stranding near the contacts or
nonuniform cross-sectional areas, the nonlinearity of
Icow/fl is especially dramatic. The highly linear rela-
tloll bctwccll IcDW alld fI observed 111 Fig. 9 ls RgR1I1

strong evidence that in this high-quality ~Se3 specimen
the sample volume is acting as a single coherent unit with
a single degree of freedom.

From Eq. (28) we see that if A and n(T) are known
along with IcDw/f, , the characteristic length A, can be ex-
plicitly determined. Since the density of electrons con-
densed in the CDW state is given by n(T=O)=2k' le',
we may rewrite Eq. (28) as

Icnw n (T)
fI n(T=0) (29)

per chain. Equation (29) applies to charge transport by
CD%'s. It has, however, recently been suggested by Bak
that the narrow-band noise observed in NbSe3 is not due
to sliding CD&'s, but rather due to motion of a soliton
lattice. In Bak's model the peaks in the oscillating corn-
Pollcnt of Icow 1'cPI'cscllt, 11lotloll of lndlvldual soli'toIls

past the current detector at the end of the sample. For
NbSe3 the assumed so1itons are predicted to carry a frac-
tional charge e*=-e/2, and thus Eq. (29) must be modified
to read

IsoI e n(T)
fi 2 n(T=O)

per chain.
Another theory of CD& transport by 8 ames and

Zawadowski which treats the left- and right-going com-
ponents of the incommensurate CD& as two macroscopic
quantum states, suggests that quantum oscillations may be
responsible for the narrow-band noise. For various
choices of sample parameters, this theory predicts an ef-
fective charge unit e =e, which leads to

Icnw n (T)
e

f1 n (T=0)

pcI chain.
One should clearly be able to determine which of Eqs.

(29)—(31) is most appropriate to NbSC& by careful mea-
surements of IcDW/fl. However, this must be done on a
per-chain basis, and also n(T) must be well established.
Although the ratio IcDw /f, has been measured quite ac-
curately in NbSe3 at selected temperatures (see, for exam-
ple, Fig. 9), the exact number of chains participating in
the conduction process is not well defined for a particular
sample due to ambiguities in the sample dimensions. This
is in part due to the rather fibrous morphology of the ma-
terial, which makes an accurate measurement of the
cross-sectional area of a sample difficult. In addition a re-
liable absolute value of n (T =0) has not been determined,
due to the two-dimensional character of NbSCI, which
prevents complete Fermi-surface destruction at TI Ow.-

ing to these uncertainties, we are at present not able to
unequivocably establish which of Eqs. (29)—(31) is most
appropriate to NbSe3. However, experiments on
orthorhombic TRS3, where n ( T =0) and the absolute dc
resistivity are less ambiguous, have indicated that
Icnwlf, ==2e n(T)ln(T=0), as predicted by Eq. (29).
In this case then A, corresponds to the wavelength of the
CD&„and rules out soliton-domit. nated transport.

IV. C(DNCI. USIQNS

Experiments reported in this paper indicate that in the
CDW stRtc of NbSc3 Ill thc IlolllillcRI conductivity I'cgloll
the specimen responds to joint ac and dc driving fields in
a highly coherent manner. The analysis of the ac-induced
steps in the dc I-V characteristics leads to an effective
volume which is between 30% and 100% of the volume of
the specimen, and a similar highly coherent response is
obtained from the analysis of the ac conductivity in the
presence of dc applied fields. These observations, together
with the direct observations of the current oscillations
which show that just above threshold the total CD&
current is oscillatin. g, " strongly suggest that long-range
phase coherence exists in the current-carrying COW state.

A simple nonlinear equation representing the CD% as a
classical particle moving in a periodic potential' describes
well the various types of ac-dc interference effects, and
also the overall behavior of the frequency-dependent con-
ductivity both in the presence and in the absence of ap-
plied dc fields. An electrical analog, the relaxation oscilla-
tor, has rather similar features and is also expected to
describe our experimental findings. Both models, howev-
er, lead also to spurious divergences, which are not ob-
served by experiment. The simple nonlinear equation, Eq.
(4), leads to a divergence in the differential conductance,
and the differential dielectric constant also diverges at the
threshold field ET for the onset of nonlinear conduction.
Although different forms of the periodic potential lead to
different power laws near ET, the divergent dI/dV and
de/d V is a universal feature of all such models.

A distribution of pinning potentials within the sample
would lead to the removal of the divergences near ET.
Such models that would, however, do not lead to a highly
coherent response at applied voltage close to VT, in con-
trast to the experimental observations. Recent computer
simulations of the CD& depinning process which in-
clude internal degrees of freedom of the CDW have led to
the removal of ihe divergence with narrow-band noise
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VT ETl+ Vo ——ET(l+lo——), (32)

where lo is the intrinsic length scale. Figure 15 shows VT
vs / measured at temperature T=32 K. The overall
behavior of VT(l) is roughly described by Eq. (32), and a
least-squares fit of our experimental data leads to lo ——0.2
mm. Similar experiments performed in TaS3 (Ref. 47)
lead to values of 10 of similar magnitude. The experi-
ments reported in this paper have been performed in ma-
terials where I &la, and we believe therefore that finite-
size effects do not play an important role here.

We conclude that long-range coherence is an important
factor in CDW transport and accounts for a broad variety
of experimental observation in the presence of joint ac and
dc driving fields. Other observations, such as a finite-
threshold field observed in long samples with concentra=

peaks still observed. Whether such calculations lead to a
quantitative account of the experimental findings remains
to be seen.

%'e also note that a tunneling model proposed by Bar-
deen leads to frequency- and field-dependent transport
phenomena with the overall behavior of cr„(E) and cr„(co)
similar to that observed experimentally. Although the
model in its original form does not account for the current
oscillations, the assumption of highly coherent motion of
the CDW over the hills and valleys of the pinning poten-
tial leads' also to current oscillations, with the relation
between IcDw and f~ as given by Eq. (2). We expect that
any model which accounts for od, (Ed, ) [and o„(co)] and
for the current oscillations will also account for experi-
ments performed in the presence of joint ac and dc excita-
tions. We believe therefore that a description of our ex-
periments is also possible within the framework of the
tunneling model.

With a highly coherent response including the total
volume of the specimen, the effects of the sample size and
the boundaries associated with the contacts have to be ex-
amined in detail. It is expected that such effects play an
especially important role in samples with a small volume
or short length. We have therefore measured the thresh-
old voltage V~ for a sample where the distance between
the contact leads was reduced after each successive experi-
ment. For UT determined by an intrinsic length scale one
expects that the threshold field ET VT/I is n——o longer in-
dependent of l, where I is the length of the sample. Only
when the intrinsic length scale is much smaller than the
sample length is ET independent of l. In a phenomenolog-
ical way we may write

50—
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T= 32K

40
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FIG. 1S. Threshold voltage VT vs distance l between the volt-

age leads for NbSe3 at T=32 K. Full line is Eq. (33) with

lp =0.2 mm.
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tion dependence either linear or quadratic and broad-
band noise in the current-carrying state, ' point to the im-
portance of the local deform ations. Both long-range
coherence and local deforrnations appear to play an im-
portant role in the statics and dynamics of CDW's. The
most likely explanation for this behavior is that the
characteristic length scales which determine the decay of
the phase correlations is not much smaller than the size of
the specimens. If this is the case, the samples can be re-
garded as containing a finite number of domains. De-
tailed studies of the phenomena reported here as a func-
tion of volume of the specimens may clarify this point.
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