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Study of localization in site-dilute systems by tridiagonalization
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A site-dilute model with nearest-neighbor interactions is examined by reduction to tridiagonal
form. The statistical behavior of the tridiagonal coefficients is argued to imply localization for
x, =0.05 and 0.62 in square and cubic lattices, respectively, with considerable ambiguity in the
former value. The limitations of the method are discussed, and the present study extends and
corrects an earlier one.

I. INTRODUCTION

The study of both localization phenomena in disordered
systems' and of the recursion method of converting a ma-
trix to tridiagonal form has attracted much attention.
The suitability of the latter method for the study of the
former has also been argued for.

In this paper I present the results of a study of the
behavior of the tridiagonal coefficients of the Hamiltonian
closely analogous to the problem of site percolation in
classical physics. In Sec. II the Hamiltonian and the
method of tridiagonalization are recapitulated. A brief in-
troduction is made to a connection between the effective
dimensionality of the tridiagonal form and the approach
to unitarity of the transformation. In Sec. III, a prelimi-
nary study is made of the difficulties of interpretation of
the tridiagonal coefficients. The points introduced in Sec.
II are amplified and the misleading nature of comments in
the literature, including our own previous work, are
pointed out. Nevertheless, the tridiagonal coefficients are
claimed to contain information on localization. This is
examined in the following sections. Sections IV and V
present the results for simple square and cubic lattices,
respectively, and it is concluded that localization occurs
earlier than classical percolation in both cases, as the frac-
tion x of sites absent increases. Estimates of x, are given.
Finally, in Sec. VI a few remarks are made to compare
with previous work and towards future problems.

P.+iVn+i=HVn &nV. P.V—.-—i (3a)

a„=(v„,Hv„—p„v„,)
and P„+i is determined by

(3b)

(3c)

Since (V„,V„ i) =0, Eq. (3b) contains a redundancy but
we use it in numerical computations. Also, throughout
this study Vo is chosen to be localized on a given site (the
central site).

When applied to Eq. (1), H becomes, in the basis de-

fined by the V s, a tridiagonal (TD) (infinite) matrix, i.e.,

percolation problems.
The I.anczos method for reducing an operator H to tri-

diagonal form, as is well known, starts with the (arbi-

trary) vector Vo and performs a Schmidt orthonormaliza-
tion on the sequence

Vo HVo H'Vo. , H"Vo, . . .

in that (left-to-right) specific order. When this is done,
the process requires only two vectors at each stage of the
orthonormalization. For symmetric H this becomes

The Hamiltonian studied is of the form

H= g I
1)(1'Ig-, g-,

where sites 1, 1
' are to be regarded as nearest neighbors

in a square or cubic lattice. g are site-occupation in-
1

dices, i.e., g =0 or 1 with probabilities x and 1 —x,
1

respectively, so that a fraction x of sites is absent in a
large lattice.

The above Hamiltonian has been chosen to compare the
results with those of classical site-percolation problems in
this case. A previous similar study was made of bond-

The diagonal elements are zero because of the special
form of (1): In general of course, a term

oa„ I V„)(V„
I

must be added to (4).
The use of the tridiagonalization method in studying

random systems is well documented. In particular, Hay-
dock has argued that the results expected in the strong-
disorder limit are well reproduced.

All previous studies (with the exception of Ref. 4) of
random systems by tridiagonalization have focused on the
"disorder" problem. That is the coupling coefficients in a
tight-binding-type Hamiltonian were regarded usually as
Gaussian random variables. %'hile the "dilution" problem
considered here is simply a particular bimodal form of the
distribution functions of g-, , it has its own special

features, especially with regard to the convergence of the
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coefficients P„,as Iiieiitioiied below.
We have stated HTD to be an infinite matrix. Obvious-

ly, for the dilution problem considered here P„could be
zero and HTD truncates. The statistics of this occurring is
directly related to classical results, but in discussions of
the convergence behavior of P„, we shall only consider
cases where HID does not truncate. This occurs in the
overwhelming probability of cases as one approaches the
classical percolation threshold, i.e., when the fraction x of
sites absent is less than at threshold.

In the basis of the V„s the Hamiltonian matrix is that
of a one-dlmenslonal nearest-neighbor system. Unless we
know how the V„'s are related to the original basis func-
tloQs, l.c., thc site-localized I s, this docs not help us to
infer the behavior of the eigenfunctions of the original
system if we known the behavior of the corresponding
eigenfunctions of the one-dimensional system. The prob-
lem is related to the unitarity of the transformation. If

+ +
one writes U =(Vo,Vi, V2, . . . ) where the V's are as usual
regarded as column vectors, then

HID ——U~HU .

If H is a finite-dimensional matrix, then U is obviously

unitary. If H is infinite dimensional, then the vectors V,
while being complete in the space spanned by (2), may not
be so in the original space of (1): In particular, if Vo has a
special symmetry of the Hamiltonian, this will be respect-
ed by the recursion vectors. Of course, in a disordered

system, if Vo is chosen to be a particular site
~

lo) one
may expect that

~

1 o) has no special symmetry so almost
all members in an ensemble of Ig-I will be such that the

1

corrcspoQding recursion vector's wiB apploac4 a complctc
set, however, slowly, for all lattice points with g =1.

1

This fact, i.e., the lack of any point-group symmetry, is
often used to justify the application of the tridiagonal
method to disordered systems. Any site is statistically
equivalent to another so that the projected density of
states, for example, will be the same (with probability
one).

When the transformation U is not unitary, as in a
periodic system, and the V„'s are spherically symmetric,
one can reasonably infer that the V„'s may be labeled by
radial coordinates in the original space. If this is so, any
given behavior of the eigenfunctions in the one-
dimensional system may be directly interpreted for the
original lattice. In the disordered system, however, U is
unitary in the full space, as is argued in Sec. III, and the
Hamiltonian (4) retains the full dimensionality of the orig-
inal problem. The nature of the V„'s is more problematic,
and they are not localized on a given shell. Then the tridi-
agonal matrix of coefficients a„,P„cannot be used
(without additional knowledge) to correctly determine the
nature of the eigenfunctions of (1) and (4). This will be
clearer froin Sec. III below. Despite the problems of in-
terpretation, which constitute an important theoretical
problem, the statistical behavior of the P„s is used in the
following sections to infer localization.

Wc conclude this scctlon by stating that wc shall not bc

concerned with the spectral distribution (density of states)
of II in this paper. The tridiagonal form can be used to
obtain the density of states projected on to the central
site, but our concern here is entirely with the nature of
the eigenfunctions. A more detailed study would use the
spectral density to infer the behavior of eigenfunctions at
different energies: Here we can only infer grosser
features, e.g., the onset of localization for all energies. A
more detailed study as a function of energy is a subject for
the future.

III. PRELIMINARIES
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FIG. 1. Cumulative total of the square of thc projcctioll of
successive I'ccUI'sioI1 vectors oIlto a sltc IlcighboAIlg t4c ccIltral
oIlc. CUTvcs RI'c foI' R sqURI c 1Rttlcc RIld thc fractio11 of 81tcs
H11881Ilg 18 de110ted X.

We may begin our study of the quantum-percolation
problem by looking at questions of dimensionality and
completeness. %eaire has in particular pointed out some
of the difficulties in the interpretation of the tridiagonal
form and I am indebted to him for stimulating discussions
on this subject.

In Fig. 1 a plot is given of g"„,
~

( 1
~

V„)
~

as a
function of the iteration index n in a square lattice for
zero, 5% and 50% of sites absent and for 1 —Vo ——(0, 1).
The results are not surprising. The perfect lattice displays
the sum to be 4 (equal amplitude on the four neighbors of
the central site) for all n. This is a reflection of the sym-
metry of the square. The 5% case shows a very slow
completion and 50% case a fairly rapid completion and
would undoubtedly be complete for practical purposes by
n =100. It may be mentioned that no boundary effects
occur anywhere in this study: The lattices are always tak-
en large enough so that the iterations do not reach the
boundary. Also, choosing a different 1 would display
qualitatively similar r'esults.

Foi the perfect la'ttice tlie i'ecui'sioii vectors liave splieri-
cal symmetry. A pararnetrization used by Weaire is that
of the center of gravity of V„. One may define (with 10
as the origin)

R(n)= g i
V„(1)

i
R(1)
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and

p (n)= g i
V„(1)

i
R (1),

where R(1) is the radius of the site 1 . For the pure case,
Weaire has calculated these. I obtained R(n)-0. 648n
and p(n) 0-65.5n This shows that the mean radius, the
root-mean-square radius, and the standard deviation are
all proportional to n so that the recursion vectors pro-
pagate radially outward in step with the shell number. If
we choose to parametrize R (n) =Cn so that 5 is a mea-
sure of the effective dimensionality of the propagation of
the fronts of the recursion vectors, then Table I lists ap-
proximate values of this as a function of the dilution frac-
tion. Actually, the relation R (n) =Cn is not well obeyed
for x&0; both C and 5 fluctuate quite a bit: Nevertheless,
some (expected) trends are apparent. Also (R ) —(R )
continues to increase with x, and even for small values of
x the recursion vectors are spread over many shells and by
no means confined to a thin spherical shell. The above
parametrization is really inadequate except in the ordered
limit. Although one would imagine the results for the
periodic lattice to be derivable analytically, I have not
been able to do so.

From the foregoing we may conclude that the tridiago-
nal form can be interpreted as a one-dimensional chain

only for x=O (because the spherically symmetric V„'s
propagate along one-dimensional channels). This interpre-
tation becomes increasingly untenable as x increases from
zero, and rigorously speaking, no one-dimensional
theorems on disorder can be invoked for x&0. Weaire
and others have been vigorous in pointing out such diffi-
culties of interpretation. Nevertheless, I disagree with
him on an apparent paradox. He has stated that if
R(n)-n then exponential localization on the chain im-

plies an e ' localization on the original lattice. The ar-
gument is that a length unit on the chain corresponds to
the 5th power of the length unit on the original lattice.
This is not so: For a disordered system, U in (5) is unitary
(with probability 1) and, of course, unitary transforma-
tions do not change dimensionality. The argument that u
is unitary is based both on empirical (Fig. 1) and symme-
try considerations [following Eq. (5)]. In particular if x is
the position operator in the original space and q= U~xU,
(x ~q) is rather delocalized and merely using the ex-
ponent 6 to guess the behavior in the original space would

TABLE I. Some values of the effective dimensionality 5 of
propagation of the center R of the recursion vectors for various
dilution percentages x. Amplitude A defined by 8 =An is also
given. See text for explanation.

IV. TWO-DIMENSIONAL SITE DILUTION

The perfect-lattice results are well known and the recur-
sion coefficients display oscillations related to the van
Hove singularities. In Fig. 3 is displayed the mean [over
18 realizations of (1)] of P„as a function of n for x =0.05,
0.25, and 0.50. It may be seen that for small values of x
the mean P„decreases in its fluctuations as a function of
n and then settles to a more or less constant-amplitude
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be incorrect. The V„'s are spread throughout the lattice
even in the strong-disorder limit. There is no paradox but
a difficult analysis must be employed to reveal the nature
of the eigenfunctions in the original space. So, one cannot
in any rigorous way infer localization from a disorder in
the recursion coefficients a„,P„as n~ oo. This was
pointed out at the end of the preceding section.

The common way out of this dilemma is to look at the
eigenfunctions and not just the coefficients. It is incorrect
to examine only the eigenfunctions of the tridiagonal ma-
trix formed by the a's and P's since information has been

lost in the process (assuming we do not know the V's):
This is simply the one-dimensional interpretation all over
again. In the following two sections I show in a frankly
experimental way that the statistical behavior of the P's
alone (a„=O in the work here) does display clear trends
that allow us to infer the onset of localization. I do not
have a rigorous justification for this and such theoretical
considerations are for the future. Also, it is important to
compare the tridiagonal method with brute-force-
diagonalization schemes.

To conclude this section, Fig. 2 shows how the recur-
sion vectors proceed to complete I =Vo+(0,0, 1) in three
dimensions. It is obvious that the procedure is slower in
three dimensions, a fortunate occurrence for localization
studies that proceed from the extended-state regime.
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FIG. 2. Curves analogous to Fig. 1, but for a cubic lattice.
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FIG. 3. (P„) as a fuuctioil of n. P„ ls 'tile nth off-diagolla1
coefficient [Eq. (4)j and ( ) is an average over (18) different
realizations of a square lattice with a given fraction (x) of sites
absent.

fluctuation. This is in contrast to the results of Stein and
Krey in which, in fact, they infer localization in a disor-
der problem according to how rapidly thc mcaQS app1oach
a hypothetical asympototic value. We shall return to this
point later, but here we point out that the behavior is nei-
ther the result of computer error nor a question of not
having gone sufficiently far in n. In Figs. 4 and 5 are
displayed the results of double-precision calculations of
the means over six realizations of a larger lattice. We note
that the variation persists out to large n; furthermore the
variation is not enhanced by V'l8/6 as one might expect
from sampling errors. It is hard to infer localization from
these results (and here I retract the "one-dimensional"
thlllklllg displayed 111 callicr work), ulllcss wc usc the cri-
terion that for x & 0. 1 the means do not approach regular
oscillations as fast as the recursion vectors fill up the
space (with exponent 5).

If we proceed to a study of the variance, i.e.,
&p„)—&p„&, where the & & refer to averages over l8

a I ~ I ~ I a I a I ~ I a I * I a I a
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FIG. 5. (P„) up to n =175, x =0. 1 (six realizations). Again
the existence of lim„„(P„)cannot be inferred.

realizations most of the time, the results are shown in Fig.
6. Clearly the variance does not approach zero as n ~ ~,
in agreeInent with the result on the means. Again the
variances for a large lattice, but fewer (six) realizations are
shown (Fig. 7) to demonstrate that the results are not sim-
ply a sanlpl1ng error. From onc-dlmcnslonal thlnklng OIlc
would suggest localization for x &0.1. The results seem
ambiguous for x =0.05.

A more revealing picture is obtained by plotting the
variances averaged over iterations as a function of the di-
lution percentage (Fig. 8). There is a plausibility argu-
ment connecting these variances to a weighted average of
the inverse participation ratio. An extrapolation of the
initial slope of the curve (from the region of larger x to
smaller x) would indicate an x, =-0.25 while the final
slope indicates x, &0.05. Since the bend of the curve is
gradual we can only infer 0 &x, & 0.3. Nevertheless, there
is a clear indication of the onset of localization before the
classical limit.

Thc large varianccs encountcrcd aIld their pcrs1stcncc
for large n may be connected with the percolation problem
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FIG. 4. Amplified picture of (P„),x =0.05, up to n =200.
No limiting value is apparent. Here the average is over only six
rea11zations.

FIG. 6. &arP„(—:(P„')—(P„)) as a function of n for vari-
ous x. Symbols are defined in the caption of Fig. 3 and in the
text.
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FIG. 7. VarP„ for x =0.1 up to n =175 and for six realiza-
t1ons. Variance 1s not approaching zcI'o noI" 18 lt 1ncrcascd for
the same n by V'l8/6 over the corresponding case for 18 reali-
zations.

and associated localized states in the infinite cluster.
Such behavior has not been encountered in studies on
disordeIed' as opposed to dilute lattices.

The coefficients of the tridiagonal form are incapable of
estimating the fraction of localized states for x &x, in the
present form. Whether estimates can be made by examin-
ing the changes of the density of states (which may be
directly computed from a„,P„) under differing boundary
conditions is a matter for future investigation, but the
problem is expected to be difficult.

The fact that the curve of variance bends over and does
not vanish for finite x is an inevitable consequence of not
examining states lIl a small cncfgy Iallgc. Weighting
functions for such purposes may be constructed but have
not been used here.

It may also be mentioned that variances for individual
iteration numbers are remarkably similar for x ~0,25.
The averaging over iterations serves primarily to smooth

FIG. 9. (P„) for the cube. See caption of Fig. 3 for defini-
tions. Here lim„„(P„)for x & 0.60 seems more apparent.

the curve for small x where the bending over becomes
more pronounced. Also, the results for small iteration
numbers is not markedly different: One would arrive at
Similar conclusions by looking at 50 Q n Q 75. This ls a
worthwhile point to bear in mind: There is probably not
much necessity to use very large lattices except for refine-
ments that are questionable, to say the least, at the present
state of the theory.

The conclusion is that localization does not occur below
x=0.25 and perhaps below x=0.05. Unlike in earlier
work, we cannot infer localization for all x ~ 0.

V. THREE-DIMENSIONAL SITE DILUTION

The three-dimensional (30 in figures) case shows in-
teresting differences. Both the curves of mean and vari-
ances (Figs. 9 and 10) taken over nine samples show a
smoothing for small x not exhibited by the two-
dimensional (2D in figures) case. One may suspect from
the curves that the onset of localization is between
x =0.60 and 0.65; certainly the latter curve looks strongly
disordered. Figurc 11 shows thc x =0.5 case pushed out
to n =30, i.e., the number of sites involved is

0.50

4J
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0
0 10

D ILU TION PERCENTAGE

40
0
0 10 15 20

ITERATiONS

30

FIG. 8. VarP„averaged from n = 100 to 125 as a function of
x. O~ing to the gradualncss of the curve, x, can lie anywhere
between 0 and 0.25 according to the interpretation in the text.

FIG. 10. VarP„ for the cube. Again lim„„VarP„=O and
x, &0.60 seems justifiable by extrapolation.
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FIG. 11. VarP„np to n=30 for x=0.50 showing that the

vanancc continues to dccfcasc some%'hat.
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4 g m +2n =38000,

and the variance continues to decrease. Figure 12 demon-
strates, I believe, the most convincing evidence for locali-
zation at or near x=0.62 from an extrapolation of the
curve for x &0.62. The fluctuation for smaller x will, I
am sure, be smoothed out if more samples were to be tak-
en. (This is analogous to the two-dimensional case where
18 samples were taken. ) On the basis of these curves
x, =0.62.

It is amusing to note that by keeping count of the per-
centage of terminations (in the sense p„=0 for n ~ 12) in
the recursion procedure and extrapolating the (quite
linear) curve from large x, one obtains a good estimate of
the classical percolation threshold. This classical thresh-
old x,t is 0.5 for the square and approximately 0.68 for
the cubic lattice. " This is shown for the cubic lattice in
Fig. 13 where the count was kept in 15 runs of length

FIG. 13. Fraction of cases for which p„=0, n & 10, as a
function of 1 —x. Plot is terminated above x,1. Extrapolation of
the curve leads to x,1-0.68 for the cube, in good agreement
with standard results.

%=12. In fact, one out of the 15 recursions terminated
even at x =0.68, but the extrapolation of the curve from
x &0.7 intersects quite closely to the classical value.
Similar results were obtained for the square lattice. This
characterization of the classical percolation is quite dif-
ferent from that of the quantum localization phenomena
described above, i.e., it has nothing to do with the statisti-
cal behavior of p„except for keeping track of when
p„=0. Such terminations of course were not included in
the statistical averagings shown in the earlier figures.
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FIG. 12. VarP, averaged over the region n =20—25 as a
function of x. Culvcd foI' x Q x~ —. Q. 62 1s stccpcl than ln two dI-
mensions, leading to greater confidence in predicting the locali-
zation limit.

In an earlier publication on a bond-dilute model, the
claim was made that in two dimensions x, =0.0. While
the present model and method is a little different, I do not
believe that the claim can be sustained. It was partly
based on an incorrect one-dimensional analogy already
discussed. What is interesting, however, is that the en-
semble variances used in this work, which one might
suspect to bc morc sophisticated, glvc roughly s1milar 1c-
sults to variance with shell number used in the earlier
work. The different definitions seem to be in approximate
col 1cspondcncc.

Recently, Shapir, Aharony, and Brooks Harris have ex-
amined the bond-dilute model and obtained results for
various dimensionalities. ' It would be fruitful to work
out the consequences of theiI' technique on the site-dilute
case as a check on the present calculations and perhaps a
mutual check on both.
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