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Clausius-Mosotti limit of the quantum theory of the electronic dielectric constant
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It is shown that an unambiguous discussion of the limit of independent atoms in the theory of the
dielectric constant has to be formulated in terms of asymptotic series in the ratio of the Bohr radius

to the lattice spacing. In this sense, a derivation of the classical Clausius-Mosotti (or Lorentz-
Lorenz) formula is given, starting from the quantum-mechanical theory including "local-field"
corrections, at the self-consistent Hartree-Fock level. Our approach clarifies the origin of the many

diverging results on the subject and eliminates most of the unnecessary approximations and/or as-

surnptions.

I. INTRODUCTION

The classical Clausius-Mosotti (or Lorentz-Lorenz, for
nonzero frequency) relation for cubic crystals (and gases)

between the dielectric constant e and the atomic polariza-
bility a' (eo is the permittivity of the vacuum) was de-
rived before the advent of quantum mechanics, from the
model of independent neutral atoms assimilated to point
dipoles whose magnitude is proportional to the local elec-
tric field. This field is given by the sum of the external
field and the field of all the other atomic dipoles. In the
textbook derivations the latter is evaluated in a hybrid
manner, i.e., it is done microscopically within a finite
sphere while the rest of the system is treated as a continu-
um. More recent treatments' perform the discrete sum-
mation over the whole lattice of atoms and compute the
macroscopic field by taking the long-wavelength limit.
Thcsc derivations contain again thc essential ingredient of
uncorrelated atoms, i.e., there is no overlap between the
wave functions of electrons on different atoms.

On intuitive grounds one expects that as the ratio ro/0,
of Bohr radius to the lattice spacing tends to zero, one
should approach the limit of uncorrelated atoms. On the
other hand, it was known for a long time that the well-
known quantum-mechanical linear-response Kubo formu-
la, which for crystals in the one-electron frame is
equivalent to that derived in Refs. 3 and 4, leaves no
hopes of recovering (1.1) fol very large lattice spacing.
Only after the refining of the quantum theory of the
dielectric constant of crystals, due to Adler and Wiser
the possibility of a deeper understanding of this problem
evolved. They remarked that since the translational in-
variance is only discrete (and this is precisely the way the
atomic structure enter the theory), specific "local-field"
corrections appear.

Nevertheless, until now there has been a wide contro-
veI'sy in the literature with arguments both for and against
the Clausius-Mosotti (Lorentz-Lorenz) limit. Some of
these papers ' use unnecessarily restrictive assumptions

and approximations, being at the same time mathemati-
cally nonconvincing. Other works, ' under similar con-
ditions obtain alternative results disagreeing with (1.1). A
typical source of misunderstanding was the ambiguous
definition of the atomic polarizability, as it was pointed
out recently in Ref. 13. Generally speaking, most of the
discussion was within the frame of self-consistent theories
with I'espect to Coulomb interactions, however, it was felt
that self-interaction is dangerous and therefore exchange
and perhaps correlation effects should be essential.
Another ingredient which is often used to simplify the
calculations 1s some varIant of R factorIzatlon assumption.
Whereas there is a general agreement as to the necessity of
taking the atoms sufficiently far apart, this idea is imple-
mented in a mathematically imprecise manner, differing
from author 'to author.

In this paper we will show that the Clausius-Mosotti
problem must be formulated as an asymptotic series prob-
lem in the parameter ro/a. This is the only mathemati-
cally reasonable formulation. It means that one should
neglect only terms that vanish faster than any power. We
restrict the discussion to the self-consistent potential or
HRrtfcc-Fock approximations and will pI'ovc that, in thc
above-mentioned sense, the Clausius-Mosotti formula is
recovered in both cases. The only ingredients are the in-
clusion of local-field effects in the manner of Adler-
Wiser ' and certain assumptions about the asymptotic
behavior (in roia) of the wave functions and spectrum.
These plausible assumptions coincide with the commonly
used ones.

In Sec. II the quantum theory of the macroscopic
dielectric constant is described together with the basic ap-
proxirnation schemes. The quantum theory of the atomic
polarizability is outlined in Sec. III in a way that facili-
tates our purposes. Our basic statement and its proof on
the asymptotIc valIdIty of the ClausIus-MosottI relatIon,
are contained in Sec. IV. The last section is devoted to the
discussion of the results.

II. QUANTUM THEORY OF THE MACROSCOPIC
DIELECTRIC CONSTANT

With the use of linear-response theory with respect to
an external potential V'"' of frequency co, in the
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quantum-mechanical problem of the motion of electrons
in a periodic potential at T=O K one may define the
dielectric matrix [e'(k, co)]- -, [k belongs to the firstKK'
Brillouin zone (BZ), while K and K' run through the re-
ciprocal lattice] as relating the Fourier transforms of the
total potential (created by the external and internal none-
quilibrium charges) to the external one

e( k, co)

Ep
y (O~u„(k))

epvk r r'

1
E(k, co) =

[e '( k, co) ]00

Use of Eq. (2.2) here gives

(2.4)

X R( k ~)l- -„,I'"'(k+ K ', ~)=~,V'"'(k+ K,~) .
K '

(2.1)

» terms of the perturbation theory diagrams (see, for ex-
amPle, Ref. 14) with respect to the electron-electron
Coulomb interaction it can be shown that [e(k, co)]- -, isKK'
related to the so-called polarization part H:

[e(k,co)]

2

X(u, (k)
~

0), (2.5)

where a matrix notation is used with respect to the indexes

I,t" with

(ur(k) i
K)(K i

ur, .(k))
(2.6)

~e are interested in the k —+ 0 limit of Eq. (2.5)

The existence of this limit is assured due to the fact that

the polarization part has no singularity at k = 0 and obeys

the identities

=ep5 K, K'
v

I
k+K /'

g [II(co,O)] . . .= g [II(co,O)] . . .=0,
n', p

'

where

X X ( K
I

u r ( k ) ) lit r (co, k ) ( u r ( k ) K ' ),
(2.2)

[II(co,k)] =0,

(2.7a)

(2.7b)

(K~u~(k))= J dxe'"+~'"(P* (x)q -„(x)

(2.3)

with y (x) being the Bloch functions [of band index nnp
and quasimomentum p EBZ (Brillouin zone)] of the self-
consistent Hartree-Fock (HF) problem in the absence of
the external potential. (The self-consistency being
achieved for the ground-state. ) Here I denotes the ensem-
ble of indexes (n, m, p) and v is the volume of the elemen-
tary cell.

According to Alder and Wiser the macroscopic dielec-

tric constant E( k, co) is defined as

which are a consequence of the charge conservation.

ing these identities, the expansion in powers of k

II(co, k) =II' '(co)+k"II„("(co)

+k "k 'll„'„'(co ) +
(0

i
u(k) ) —=v(k) =v' '+k"v„'"+

g(0)+. . .

and also that

(p)
v =5

nmp nm

one can derive

e(O, co)

Cp

2e ~ -+ (]) 1 (p)e v„ (0)1 —II (co)g 1 —II '( )g' '
(p)Q

+vr II "( )e
1 —g(0)il(0)(~)

+ vt. ' e II' '(co) e+e. iI"'(co)g' ' e II"'(co)
II(0)( )g(0)

(p)Q
vr

rr'
(2.8)

where

ke=-
/k(

In the following sections we will restrain the generality
of the discussion by resorting to approximations for the

polarization part II; nevertheless some comments will be
made also with regard to these general formulas.

The time-dependent, self-consistent Hartree-Fock ap-
proxirnation in the presence of the external potential is
equivalent to the summation of all ladder diagrams for H
giving



I.. BANYAI AND P. GARTNER

[II (k co)]rri= —2 Pi"( k, a) )
1 —M(k 0I)&'(k) rr

6(p —E ) —e(p E— -„)
E —E -+%co—iO~p m, p —k

f~(k ~)]rr = —5rr

(2.10)
where E ls the band-energy, p ls thc chemical poten
and

[pe(k)]rr — f dx f dx p„(x)p ~(x ), g„p (x)P ~

p
~ I,

(x
4&Eo p ppf p x x

js a type of exchange Coulomb matrix. [The factor of 2 ln Eq. (29) comes from the spin]
Introducing Eq. (2.9) in Eq. (2.5), one finds

(2.11)

e "(k,al) —1=
co , g (0

~
ur(k)) — M(k, (u) (ur (k)

~
0) .

&OUk F,F' 1+Xi (k,al)[2$(k) —4'(k)] rl-
(2.12)

The tjme dependent self consjstent potentjal approxjmatloI1 ls eqlllvRlcllt to OIIllttlIlg all 'thc cxcllRllgc cffccts, l.c., Ig-
norin 4 in Eq. (2.9) and considering the Bloch functions p as solutions of the unperturbed self-consistent potential

problem. This is nothing but the random-phase approximation (RPA) for the polarization diagram, not to be confused
with the RFA approximation for the dielectric constant itself, winch implies ignoring also g. The appearance of g, due
to the inversion procedure (2.4), is often referred to as the "local-field" correction.

~jthjn the HF apploxjmatjon we are interested again iI1 tile k —+ 0 llIIllt. It CRIl bc sllowll tllR't Eq. (2.8) becomes

ue. ,„, " 1+~(0)(~)(2g(0)—X'")

m ")(~) e u"'
1+~")(~)(2g(0)—@'"))

~~(1)(
)
~ 1 ( J )g

1+~(0)(~)(2g(0) g e(0))

+ur(') e.S"(2)(al) e —2e Xi" ")(0I)g(0) e K")(0))
1+~(0)()(2g(0) g e(0))

.FF'

(o)*
UF»

~(0), ~(",~(„)are the corresponding terms from the k

expansion of ~(0),k ), or explicitly

[~' )(0I)]rr ——5rr [M(0)(0I)]r,
e(p —E„-)—e(p —E -)

[~(0)(~)]
E —E +Ac@—io

ll p pal p

(2.14)g c'[M (07)]rz-Ur = g Ur c [A (co)]r~r
FP

"p 5(p E), —
II p

p
BE

e
'

5(p E) . —
a p

pf p
F,F'

(o) (2) (o)~
VF CA FF~CU F~

(Iruu)

t

Eq. (2.13) survives; the others appear only in the case of
metals, carrying a typical 1/0) singularity at (U=0.

Although we are interested mostly in the insulator
problem, whclc 8 static dlclcctrlc constant 81so cxlsts, wc
cannot a priori ignore these spurious terms. Indeed, the
gap of most real dielectrics is a so-called Bloch gap, i.e., it
is not related to the atomic gap. %'hen the lattice constant
is increased, the gap disappears, reappearing later as an
atonlic gap. Correspondingly, thc system may undergo
several metal-insulator transitions (the chemical potential
being in the band or the gap). Since we are interested in
the study of the limit a —+ ac, we must keep all the terms
and consider 0)&0. Nevertheless, as we shall see later,
other arguments help to eliminate these complications.

In the follovnng sections we shall base our discussion on
Eq. (2.13). On the other hand, since as we shall see, no
specific role is played by the exchange terms, all the re-
sults hold also 1n thc simple self-conslstcnt potcnt181 ap-
proxlmatlon.

(2.14)

In thc case of the Insulators, %'hcI'c thc chemical poten-
tial p is situated in an energy gap, only the first term of

III. QUANTUM THEORY OF THE ATOMIC
POI.ARIZABII. ITY

If one considers the linear response of thc system of jn-
teracting electrons belonging to a given atom with respect
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to a homogeneous monochromatic external field 8'e'"' at
T=0 K, onc IIlay coIIlputc thc 1ndUccd dlpolc Illoment

Pp =e 1X X~

One defines then the atomic polarizability x' through the
coefficient of proportionality between the density of in-

duced d1pole moments P=—p/U, where v 1s the volume at-
tributed to one atom (in the crystalline arrangement of the
atoms in a Bravais lattice it ~ould correspond to the
volume of the cell), and the external field

P(t) =tote(cu) 8'e'"' .

Thc rcsUltlng formula 1s

2

tc(co) = — f d x f d x '( e x )( e.x ')
6'OU lA

Xy';(x ')g'(x ') (3.5}

is the direct Coulomb matrix. (Actually the Feynman
graph technique applies only for the non-degenerate
ground state—tn the atomic case 1t means full shell occu-
pation. )

The time-dependent, self-consistent Hartree-Fock ap-
proximation in the presence of the external potential is
given, similarly to the crystalline case, by

with q&;(x) being the atomic wave functions of the self-
consistent Hartree-Fock problem in the absence of the
external potential (the self-consistency being achieved for
the ground state). Here y denotes the ensemble of atomic
indexes (ij ), and

2

f dx f dx 'rp;(x)qj(x)
4+co

/
x —x'f

X ([n(x, t)H, n(x ')])o,
[II"""(~)],„.= —2

1
A "(cu)~at( )g ate

.yy'

(3.2)

where e is an arbitrary unit vector (e =1). The retarded
Green function in Eq. (3.2) of course can be related to the
Coulomb operator and the polarization diagram, giving
risc to

e(p —e; ) —e(hatt —e, )[~"(cu)]—:—5
Eg' ——EJ +AQ) —10

(3.6)

(3.7)

1 II"(cu)
IIRt( )g Rt cf

. yy'

(]) ~X(e vr )', (3.3)

[])«' (cu) =-
UFO yy

whcrc 6; 1s thc atoITl1c cncrgy and

f d x f d x 'p; ( x )ttu*( x ')
4m@0

X p';( x)y,'(x')

J
x —x'/

where

vr =i f dxq*;(x)xqj(x)
1s thc Coulomb cxchangc IIlatrlx.

Introducing Eq. (3.6) into Eq. (3.3) gives

at HF
2

1 "(cu)
e u, 1+% "(cu)(2@" —@"')

f)

~ ~(l)
C'vier

. yy'

(3.9)

A comparison of the formulas of this section with those
of thc pIcccd1ng onc shows much similitude Undcll1ncd by
our choice of the notations. We were careful of course to
introduce similar entities with simtiar (HF) approxima-
tions. This is a very important point to be emphasized.

In our opinion, in comparing crystalline entities with
atomic ones, one must stick to the same approximation.
A striking example is given by the case of the monoelect-
ronic atom. In this case we know exactly the atomic po-
larizability as given by the dipole formula

2

g e v
& [M (cu)]&~ e'v

I
AU y y

(where, however, the true one-electronic wave functions
and energies appear). The time-dependent HF approxima-
tion Eq. (3.9} for this problem as can be shown, would
give the same result for spinless electrons (in spite of the

3

K
0 -at

g
(3.10)tc"(co)=

e /47TE'ohio

where 17"(x) is a universal function (not depending on any

t

formal differences), but it introduces a spurious Coulomb
interaction for spinning electrons. The same approxima-
tion may become quantitatively a good one in the crystal
(where no exact solution is available), but from our point
of view these qualities are irrelevant for our discussion. It
would be meaningful, of course, to compare the exact re-
sults, but it is meaningless to compare entities from dif-
ferent approximation schemes and levels.

An important feature of the atomic polarizability is
that 1ts dcpcndcncc on thc avcragc distance between thc
atoms is only through the factor 1/u in front of Eqs. (3.3)
or (3.9). It can be shown through a dimensional analysis
that
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plemented with some assumptions about the properties of
the unperturbed (equilibrium) Hartree-Fock solution,
which is not explicitly known. These assumptions (gen-
erally accepted in the literature) are the following:

(a) The bands tend to the atomic levels faster than a
power law.

(b) The restrictions of the Bloch functions on the cell
tend to the atomic functions faster than a power law.
Under this form they are acceptable for those bands that
colrcspond to thc ncgat1vc paft of thc atomic spcctlUITl
(bound states). The analysis of simple Kronjg-Penney
models shows that they hold for the negative spectrum,
while for the positive part of the atomic spectrum these
statements are meaningless. For these states a much more
sophisticated IIlathcIIlatlcal pfopcrty shoUld hold, which
we are unable to formulate. We are compelled therefore
to ignore that part of the spectrum. In this respect, how-
cvcl, oui s'tR'tc of tllc art ls 1(lclltlcR1 with tllat of Rll tllc
othcI apploRchcs, where thcsc assumptions arc bfought 1n

under the form of the tight-binding scheme.
Under the assumptions (a) and (b), for our asymptotic

purpose we may consider By /Bp and BE /Bp as van-

ishing. As a consequence Eq. (2.13) reduces to the first
term. Therefore, irrespective of the position of the Fermi
level, for nonvanishing frequencies, we remain only with
the expression that is typical for insulators.

We may also replace the crystal energies E and wave

fllnctlons (p„(x) by tllc corresponding atomic energies
RIld wave fu11ctlolls E„and q7„(x). (It is understood that,

ready so big that we encounter no
applying this procedure we must

ut the expression under a form in
of the wave functions on the ele-
erefore we must rewrite the defi-
2.11)] in the form

physical constant except Z—the number of electrons per
atom).

Here the case of a simple cubic arrangement of atoms
was cons1dered where v =a and ro denotes the Bohr ra-
dius. Equation (3.10) shows that increasing a or decreas-
lIlg ro Rl'c cqlllvRlcllt, ollly fol' thc zclo-flcqucllcy case. In
what follows, we shall vary the parameter ro/a only
through the increase of the lattice constant a.

With the use of Eq (3..10), the Clausius-Mosotti formu-
la for crystals of cubic symmetry can be written as

(ro/a) (7"—1= (4.1)
eo 1 —

3 (r()/a) &

Then one is confronted with the dilemma of how to
reconcile the idea that this nonlinear relation supposedly
holds for ro/a ~ 0, with the obvious relation

CM —at
lim

po/g ~0 Eo P"0

forbjds thc djsccrnjbjhty of tllc 110111111cRrlty 111 thc
same 111Tllt.

Thc only concclvablc con)ecturc 1s that thc quantum-
mechanical expression of the dielectric constant of a sim-

ple cubic crystal has the same asymptotic series in the pa-
rameter ro/a as that given by Eq. (4.1). Otherwise stated

~CM

(4.2)

where —stands for equality up to terms that decrease fas- the lattice constant is al
ter than any power of ro/a. This is a meaningful more band crossings. ) In
mathematical statement that we shall try to prove in the be careful, howeverto ,p
frame of the approximations described in the previous sec- which only restrictions
tlons. mentary cell appear. Th

Unfortunately, the straightforward proof must be sup- nition of K'o) [see Eq. (

2 ~

(
~ ~ t

)
Kz'I'—= g f dx f dx'y (x)(p* (x') y', ,(x)(p, ,(x') .

v v
r

e2
~

[
~

g a(0) C y f d» f d» I Kt(») ata(» i) C ata()at»(» i)4-0, '" '-
ix x +ri%'n ™

2
g(0) y 1 f d» 1 lc ~ a af(») ate(») f d» It —1K x a't(» lt)a af (» &) —pat

EOU
K +0
- at*-- at-

vl -i f dx y'„"(x)xI(()~(x)—:vr

(4.4)

(4 5)

Here after the introduction of the atomic wave func-
t1ons thc IntcgI'ation ovcI' thc cell has bccn extended to thc
whole space. SUch RIl cxtcnslon 1s allowed duc to the
faster-than-power-law decay of the atomic wave functions.

Now we see that the dependence on the quasimomenta
survives only in K' ' according to Eq. (4.3). On the oth-
er hand, since the summation symbol is

f dp. . (4.6)
(2')

while

dp= I
(2m. )

3- f dpe'"''=5 (4.7)

wc may replace the summation symbol (in all the matrjx
manipulations) with
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2

Kr'P= f dx fdx'q'„'(X)q"*(x') g'„"*(x)p"(x') .
4m eo

Therefore we arrive at the formula

(4.8)

e "(O,co)
1

2e I E I)a
e'vy co e'v ~

I+~at(~)(2g tag ate) r (4.9)

which resembles Eq. (3.9) for the atomic polarizability.
Thc oIlly difference ls thc appearance of p Instead of thc
dtrcct CouloIIlb matrtx 4 . On thc otlml hand, It, Is ob-
vious from the inspection of its definition Eq. (4.4) that

lim g"=Ã"

A hasty superficial conclusion would be then, that actu-
ally we obtained a linear relationship between the dielec-
tric constant and the atomic polarizability. However, this
is not so. Equation (4.10) says nothing about how fast is
the limit achieved and this is crucial for the discussion of
the Clausius-Mosotti limit. Actually we shall prove the
foHovving lemma,

(4.11)

which says that P' tends toward Ã"" faster than any
power of ro/a only after the subtraction of a term that
falls as (ro/a) .

From the Poisson formula

I

ly if g(k) is continuous, indefinitely differentiable, de-
creasing together with its derivatives faster than any
power. On the other hand, we have for g'r an expression
of the form

1/g

F(K)
Q K(+0) K

where F( k) is continuous, indefInttely diffcrcntiabic In k,
decreasing together with its derivatives faster than any
power and vanishing quadratically at the origin. Owing
to the singularity of the summand in the origin, we cannot
apply directly Eq. (4.13). Let us subtract the behavior
kA k of F(k ) around the origin in the following way:

k A. k ~k 2 [F(k)—k A k]ee
—ak

k 2 k
-2

F(k)
(1 k'2)

k

, gg(K)= ———,gg(r)
a (2Ir)

g(x)—= f dke '"'"g(k)

(4.12)
where a is an arbitrary positive number. Only the first
term does not satisfy the required conditions. However,
due to the cubic symmetry,

KAK ~K~ 1
( A)

3Q
K (~0)

1/a
gg(K)- —f dkg(k)

Q -+ (2m)
(4.13)

if g( x ) decreases faster than any power law, or equivalent-
]

and the limits on the summation signs mean that the sum-
mations are performed over the lattice of constant a and
the reciprocal lattice of constant 1/a) we may conclude
that

—aK ~=—(trA) ge
3Q

K

trA,
3Q

where the function under the sum again satisfies all the
cond1tlons.

Therefore

F"(K)
Q -+ -+3

K (~0)
Pdk F(k) —k A. k ~t, z F(k) k2 t I, I

3 f — e + 1 —e +-, trAe'F k ,-i' .
3Q

But due to the spherical symmetry of integration

f dk " =—(tA) f dke
k

I /tt

Q ~ -+
K (+0) (2Ir) 3Q

(4.14)
whtch gives immediately Eq. (4.11).

Now let us use Eq. (4.11) in Eq. (4.9). To this end it is
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important to observe that the asymptotic difference be-
tween P' and g ""is a factorized matrix, therefore the
formula expanded in formal powers of this matrix gives
rise to products of the 3 &(3 matrix

at HF 2e (1)p
PV

O rr'
1

1+~at( )(2@atd gate)

(p, v=1, 2, 3) .

But, owing to the spherical symmetry of the atom

atHF g atHF
PV PV

and therefore we have after resummation

HF(p ) &at HF

EO l ——K3

which is exactly the proof of our conjecture.

(4.15)

V. DISCUSS ION

We have seen how the formulation of the problem in

terms of asymptotic series in ro/a leads in a natural way
to the Clausius-Mosotti formula. While the plausible as-
sumptions about the asymptotic behavior of the Bloch
functions and band widths are the same as generally ac-
cepted in the literature, a crucial point of our proof is the
lemma [contained in Eq. (4.11)] about the asymptotic
behavior of a certain lattice sum. In the absence of the
guiding criterion of asymptotic equivalence, one could
derive the most contradictory results, since ignoring terms
that vanish only as a power law would modify completely
the results. Therefore, those papers that accidentally ig-
nored only terms that according to our lemma decrease
faster than a power law have obtained the Clausius-
Mosotti relation, while the others have not. Of course, in
the identification of the Clausius-Mosotti relation it was
important also to use the appropriate definition of the
atomic polarizability. As we have shown, one must corn-
pare similar approximations for the crystal dielectric con-
stant and atomic polarizability.

Our discussion was limited to the self-consistent, time-
dependent Hartree-Fock and the simple self-consistent po-

tential approximations. All the results hold in both ap-
proximations, irrespective to the presence or absence (in
the spinless HF scheme) of a spurious self-interaction. We
think that this is natural since only for pointlike charge
distributions is self-interaction dangerous.

We expect that the Clausius-Mosotti relation in the
above described asymptotic sense holds also between the
exact crystal dielectric constant and the exact atomic po-
larizability, however no proof of such a general statement
seems available. Moreover, an order by order perturbative
argument for the irreducible polarization diagram H leads
to immediate difficulties. Indeed, a succesion of second-
order photon self-energy diagrams (electron loop with two
external potential lines) within will give rise to crystal
convolutions of the exchange Coulomb terms and not
products of atomic exchange Coulomb terms.

A weak point of our discussion is that it ignores the
part of the spectrum that tends toward the positive atomic
spectrum (not bound states). This is a serious shortcom-
ing, but again it is common for all approaches in the
literature. The inclusion of this part of the spectrum
would require an adequate formulation of the asymptotic
properties, which obviously will be less intuitive and even
harder to prove.

We would like to mention here also our results on the
analysis of the Clausius-Mosotti problem within an exact-
ly solvable hopping model with self-consistent potential. '

In that lattice problem the role of the atoms was played by
the elementary cell to which were confined the "bound
electrons. " The Clausius-Mosotti relation (for zero fre-
quency) was obtained in the limit, when the dimension of
the cell goes to zero, while the total electronic charge on
the cell increases, in such a way that their product is con-
stant. (The existence of this limit unfortunately implied a
regularization of the Coulomb interaction at the origin. )

It can be shown however, that the result of the present
paper about the asymptotic validity of the Clausius-
Mosotti relation holds exactly also within the above-
mentioned model, eliminating the need of any artificial
regularization procedure.
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