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Quadratic Pade approximant method for calculating densities of states
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We suggest that the use of quadratic Pade approximants is a superior method of calculating the local
density of states from a knowledge of the corresponding moments of the Hamiltonian. As a demonstra-
tion, very accurate values are obtained for most energy values in the cases of a bcc lattice and a binary al-

loy on a simple cubic lattice using the tight-binding model,

The calculation of the electron or phonon density of
states (DOS) n (E) is fundamental to many problems in the
theory of condensed matter. ' In inhomogeneous systems a
more basic quantity is the local density of states correspond-
ing to the site

~
r ),

p( r,E) =J dk( r ~f-„) (Q-„~ r )5(E—E-„), (1)

where ~Qk) are the eigenstates of the Hamiltonian H with
energy E-„. The density of states is obtained by integrating

p( r,E) over r.
One way to calculate the local density is through its rela-

tion with the local Green's function

(in this case) and n, respectively, so that

g„(E)—G( r,E)P„(E)= 0(E '"+") E=~ (7)

To calculate g„(E) and P„(E) the first 2n moments are
needed.

Equation (6) may be written as

G( r,E) = X v, (E—E~)

where E& E S are the zeros of P„(E), which leads to the ap-
proximation

G ( r,E) = ( r I (E H) 11 r —)

dE'p( r,E') (E E')—
& S

In practice, n is often around 30. Thus, p( r,E) is
represented by a weighted distribution of 30 or so 5 func-
tions. Physical features in the true local density of states
comparable to or finer than the spacings of these 5 func-
tions are obscured. Various methods have been suggest-
ed to smooth out this crude approximation, but none of
them converges very fast when n ~. Very often addi-
tional information is needed to help in carrying out a
smoothing scheme, the more so when S consists of more
than one band. 7

The more familiar method of expressing the Green's
function in the form of a truncated continued fraction' is
mathematically the same as the Fade approximant summa-
rized above.

For all periodic systems (including alloys), p( r,E) will be
an analytic function of E except possibly for certain branch
points, some of which may be in S (at band edges and inter-
nal Van Hove singularities). Thus, G( r,E) will have an
analytic continuation in E to another Riemann sheet by
passing S either from above or below. There may well be
similar properties in systems for which the requirement of
periodicity is removed.

The purpose of this Rapid Communication is to point out
that, in these circumstances, an extension of (6), the qua-
dratic Pade approximant8 (QPA), may be a much superior
method of estimating G( r,E) near S and so finding
p( r, E) much more accurately 9.

In the [ n, n, n] QPA to EG ( r, E) three polynomials
P~(E), P2(E), P3(E), of degree n, are constructed from the
first 3n + 2 moments so as to satisfy

where S is the spectrum of eigenvalues E-„of H lying on
the real axis in the energy plane. It is obtained from
G( r,E) by means of the formula

EeS .

In practical calculations, especially when periodicity is ab-
sent, we often replace the infinite system by a finite cluster
or terminate an approximate scheme at a certain stage. ~ In
either case, the continuum spectrum of the infinite system
is replaced by a set of discrete poles in the usual available
methods. Numerical evaluation of G( r, E) at or near these
poles becomes inaccurate.

Several evaluation methods involve a knowledge of the
moments. 3 4 Now G( r,E) may be expanded as

G( r, E) = g pkE "+'
k 0

(4)

where the moments are given by

p, k= JI dEp(E)E"= ( r iH"i r )

The problem is to extrapolate the function G( r, E), ana-
lytic in the complex E plane cut along 5 from the expansion
(4) about E=~ to values of E near S. One approach is
equivalent to using the [n/n] Pade approximant5 to
G( r,E) P)(E)+EG( r, E)P2(E)+ [EG( r,E)] P3(E)

=O(E ""+") E= (10)

Equating to zero the coefficients of E", E"

G ( r, E) = [ n/n] = g„(E)/P„(E)
where g„(E) and P„(E) are polynomials of degrees n —1

p ( r, E) = (2m i) lim [ G ( r,E+ i e) —G ( r,E i e)], (3)—
e~ 0+
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R (E) = P2 (E) —
4Pt (E)P3 (E)

will be negative so that, using (11), we have

E I [-R(E)]'i'
m E 2P3 (E)

(12)

(13)

Unlike (9), this is a continuous function of E.
As a test case we have applied the method to the elec-

tronic local DOS for the bcc lattice in the tight-binding ap-
proximation with nearest-neighbor interaction only. ' As in
this case all sites are equivalent, the index r will be omit-
ted. We have evaluated (13) for values of n up to 15. It is
found that the only two real zeros of R (E) lie very close to
the band edges E= + 8, where E is given in units of the
nearest-neighbor interaction energy. Even for n=5 these
points are given to nine significant figures. The result of
the calculation of p(E) using n = 15 is shown in Fig. 1.

In this example there is a logarithmic Van Hove'' singu-
larity at E =0. In the complex E plane this is indicated by
the position of the zeros of R (E) and P;(E), i = 1, 2, 3.
They all [except for the two real zeros of R (E) ] lie on the
imaginary axis or extremely close to it. The zeros of R (E)
(except for the two real ones) are found to occur in pairs,
the members of each pair separated by a very small amount.

The DOS has an accuracy that varies gradually to nine

E "+' gives 3n+ 2 linear equations for the coefficients in
the polynomials. Alternatively, the polynomials may be
found with less work with the help of a four-term re-
currence relation. '0" The QPA to G( r,E) is obtained by
solving (10) with O(E t2"+2l) replaced by zero, so that we
have

—P, + (P,' -4P,P, )'i'
2EI'3

Mathematical analysis suggests that, in the present case,
(11) will give a good approximation to G( r,E) throughout
the plane cut along S, including points on S itself, except
near to the branch points in S. The limiting values of
G( r,E) as S is approached from above and below are dif-
ferent, and this is to be accounted for by using both signs of
the square root in (11). Thus, it is predicted that on S

significant figures as one moves away from the band center.
Even at a distance as close as E=0.4 to the logarithmic
singularity at E = 0, the density of states is better than four
significant figures. We have been using as a comparison the
accurate results of Morita and Horiguchi' obtained using
numerical evaluation of a multiple integral representation of
the DOS. The difference between QPA results and the
Morita-Horiguchi results is too small to be seen in the fig-
ure.

For a second example we chose a binary alloy which con-
sists of atoms of types A and 8 placed alternately on a sim-
ple cubic lattice. In the tight-binding model the site ener-
gies of the A and B types were taken to be Eq =8 and

E~ = 10 and the energy of interaction between nearest
neighbors was unity. Such a system has two bands:

S=2.91723747& E& 8, 10& E & 15.08276253 . (14)

There are Van Hove singularities at E = 6.7639, 11.2361.
For n = 15, zeros of R (E) occur which represent the

outer band edges to nine figures and the inner edges [one
of which is (E —a) 'i2 in nature] to four figures. The
result of the calculation of p(E) for an A-type site using
n = 15 is shown in Fig. 2.

The local DOS for the binary alloy (at either site) may be
generated from the DOS for the simple cubic lattice, ' and
thus exact values can be calculated for comparison. It ap-
pears that the QPA results are most accurate in the part of S
outside the Van Hove singularities, say E & 6.4 or
E) 11.6, where the error is in the range 10 —10 . The
Van Hove singularities are signaled by the presence of
spurious oscillations. In between these singularities, say
7.4 & E & 10.6, the error is of order 10 2 or less.

We have also calculated the density of states of other cu-
bic lattices, the diamond lattice and the two-dimensional
square lattice in the tight-binding model with results of
similar accuracy.

QPA is not restricted to the tight-binding model. It is
based on the knowledge of the lower moments. The latter
can be obtained by direct matrix multiplications in the gen-
eral case, but to make use of the full advantage of the
scheme, it is best applied to systems with a sparse Hamil-

p(E) 0 ~ &- p(E)

~ 1--

—8
I

~ ~ ~ I 1 I ~ ~ ~ I I—4 0 4 8
5 13 17

FIG. 1. Local density of states computed using the QPA
method with n =15 for the bcc lattice with a tight-binding Hamil-
tonian with nearest-neighbor interaction of strength 1, site ener-
gies of zero.

FIG. 2. Local density of states at a site of type A computed using
the QPA method with n = 15 for an AB binary alloy on a simple cu-
bic lattice. The tight-binding Hamiltonian with nearest-neighbor in-

teractions of strength 1 has been used, with site energies Eq =8,
E& =10. Exact results are represented by dashed lines.
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tonian matrix, or systems with certain symmetry. We know
of no other method based on moments for calculating the
DOS which can produce results of accuracy at all compar-
able with those reported here, especially in the case of mul-
tiband spectra, where, without special efforts, the band-gap
edges are fairly precisely determined.
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