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"Direct" evaluation of the inverse dielectric matrix in semiconductors
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The stat1c 1nvcl'sc d1clcctrlc matrix 1s a g1ound-state propcI'ty and, as such, can bc calculated dlrcctly, us-
ing the local-density-funct1onal theory, 1n a s1m1lar way as cnerg1cs of "frozen phonons" have been deter-
mined recently. The present method includes quite naturally the exchange-correlation effects and applies
to both linear and nonlinear screening. Results are presented on Ge and GaAs and arc compared with pre-
vious random-phase-approximation calculations,

The local-density-functional (LDF) scheme has in recent
years proved to be an efficient method for precise deter-
mlnatlon of IYlany glound-state pl'opcltlcs of solids, sUch as
crystal structure, phonon energies, forces, stresses, etc.'
We show here that also the static microscopic (nonlocal)
dielectric response of a solid, particularly the linear (but also
the nonlinear) response, can be derived in a similar way,
starting from first principles, with a local form for exchange
correlation as the only essential approximation.

The linear response of a crystal to an external perturba-
tion V'"' is given by the inverse dielectric matrix ~ ' as

v'"( +6)= Xe '( +6 +6') v'"'( +6')

where V"' is the (electrostatic) potential change actually felt
by a classical test charge; G, G' are reciprocal-lattice vectors
and the wave vector q lies inside the first Brillouin zone.
Thc very general usefulness of ~ ' for calculating pho-
nons, 3 7 and other local-field properties, 89 has in the past
prompted a considerable amount of effort towards its calcu-
lation. So far, calculating accurately ~ ' has been possible
only within the simple random-phase approximation (RPA),
through the Adler-Wiser formula. ' This method is based
on cxtcnslvc and cumbersome sums ovcl' band stluctUfc, to
be performed individually for each dielectric matrix elc-
Qlcnt; ln pflnclplc, thc cxchangc-corrclatlon cffccts then can
be incorporated as corrections. " In spite of simplifying
mean-value techniques that have been introduced, ' this ap-
proach is very time consuming and has convergence prob-
lems concerning both the number of conduction bands to be
included and the dimension of the ~+' matrix to be invert-
ed. Also, unless the exchange-correlation corrections men-
tioned above are included (which can readily be done only
in. tight-binding formulation, and is performed only rare-
ly"), it totally misses any exchange-correlation effects other
than those —averaged and trivial —that are already con-
tained in the starting band structure.

Yet, any self-consistent band-structure scheme allo~s a
straightforward evaluation of the dielectric response directly
from the definition (I). All one needs to do is to consider
two distinct crystal potentials, differing by just the chosen
V'"', and to bring them to self-consistency. Achieving self-
consistency merely expresses the fact that the electron

gfound state has adapted to thc glvcn sltUatlon, whether
pcI'tuI'bcd of Unpcl'tul'bcd. Spcclflcally, ln thc I DF scheme
one solves for the states of an electron in an effective po-
tential

[—~&'+ [v;,.(r )+vH( r )+v„,(n( r ))1)0;=E;P&, (2)

where n ( r ) = X;~P;( r ) ~
is the self-consistent charge den-

sity, v„, the exchange-correlation potential, and

the Hartree potential. Changing v;,„ into (v;,„+Av;,„) with
Av;,„=V'"', and achieving 8 new self-consistency, changes
the effective potential felt by an electron by (Av;, „
+ AvH+ 4v„,), and that felt by a (classical) external charge

by (4v;,„+b, vH) —which then equals the sought V'".
Using a plane-wave expansion for the solution of (2) then

makes it particularly easy to extract the e ' matrix elements
through the definition (I). If, in that case, we take

Av;,„( r ) = V'"'( r ) = Vo exp [ + i ( q + 6') r ]

the resulting linear response wi11 generally be of the form

a,.„+a „=V"'(r)= QV(q+6)exp[ (q+6) r], (4)

whence the whole column e '(q+ 6, q+6') = V(q +6)/
Vo is directly obtained.

The major problem is that a perturbation of the form (3)
leads to a new, increased lattice periodicity dictated by the
commensurability between q and the G's. It has already
been shown in other contexts, however, '~'6 that for simple
enough choices of q, e.g., q a zone boundary point or even
8 simple ffaction of thc zone-boUQdaf y dlstancc, 8 sclf-
consistent supercell calculation is still feasiMc, whence

'(q+6, q+6') at those particular q values can also be
calculated. One merely has to choose a (nonelementary)
unit cell in such a way that both q and G are vectors of' the
(new) reciprocal lattice. Especially, for q = (q, 0, 0)2m/a,
the cell must be doubled (q = 1,X point), quadrupled
(q = ~), or octupled (q = ~).

We have carried out the calculation outlined above for Ge
and for GaAs, chosen as convenient reference systems
whose dielectric response has been thoroughly studied, '
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and for which a reasonable LDF ground state is obtainable
with a locRI pscudopotcnt1al plUs Slatcl' cxcllallgc (wc Usc
a=0.8). This and other details of the ground-state calcula-
tion underlying the present determination are the same as in
previous studies of phonons"4 and of macroscopic dielectric
properties. ' In particular the band gap is reproduced fairly
for GaAs (—20'/0) and rather badly in Ge (—50'/0 for the
direct gap at I and —80% for the minimum indirect gap I"-

L). Plane-wave expansions include waves with kinetic ener-

gy up to 9.2 Ry, of which only those up to 2.6 Ry are treat-
ed exactly, the rest by I.owdin perturbation. Symmetry is
used to reduce the size of the integration over reciprocal
space and thc Brillouln-zone sampling thus 1'Uns ovc1' spcc1al
point sets which are characterized, in the Monkhorst-Pack
notation, "

by indices (2,2,2) (simple cell, q = 0) and
(4,4,2) [double, quadruple, and octuple supercells,

q = (100), (~, 0, 0), (~, 0, 0), respectively]. We note,

however, that crystal plus "perturbation" hv;, „has lower
symmetry than the crystal alone, so that the actual number
of special points can be up to six times larger than in the
unperturbed case. The perturbation (3) is exerted by apply-

ing separately Vocos[(q+6) r ] and Vosin[(q+6) r ] and
compounding the response with coefficients 1 and i,
respectively. The result is real in Ge and complex in GRAS
due to lack of inversion symmetry. The amplitude Vo is
choscI1 to bc 1 111Ry 111 slIlglc-cell calclllRtlolls (q = 0) alld 5

mRy in the supercell ones [q= (100), (~, 0, 0), (~, 0, 0)l,
after checking (particularly in Ge) that even for 10 mRy the
response was still essentially linear.

All elements of a large-size dielectric matrix are calculated
very efficiently with this direct method. Besides symmetry,
which of course relates many e ' matrix elements as ex-
plained in Ref. 12, the increased efficiency has two origins:
(1) double summations over all valence and typically 90
conduction bands are replaced by single summations over
the valence bands only, in evaluation of the charge density;
(2) for a fixed q a calculation with one given 6' yields all

' matrix elements of that column e '(q+6, q+6') at
once. The only exception is for q=0, G'=0; in particular,

'(0, 0) cannot be obtained at all with the present method.
This is precisely the macroscopic screening, for which
separate methods of "direct" determination have already
been developed. "'6 An example of a very favorable situa-
tion is the point I:for q = 0 and with the size of e ' limited
to 113& 113, the gain in efficiency can bc estimated by a
factor —,6 & ~= 113. [Instead of 201 symmetry-inde-201 90

pendent matrix elements only 16 independent perturbations
(i.e., eight independent columns in e ) have to be treated;
rather than dealing with & 90 conduction bands and invert-
ing a matrix, the self-consistency has to be achieved, which
requires & 10 iterations. ] For larger sizes of dielectric ma-
tr1x thc advRQtagc becomes cvcn morc p1'onouQccd; on thc
contrary, for g A 0 the cfflc1cncy 1s 1cduccd duc to thc Usc
of supercells. Nevertheless, we are still gaining a factor of
about 10 when q is at the zone boundary (point X).

%C present some of our results Rt q=0 in Table I, in
terms of the Hermitian "symmetrized" inverse dielectric
matrix defined by Baldereschi and Tosatti 2

.--'(q+6, q+6') =— ~q ~ .-'(q+6, q+6') .
q+G'

(5)

Comparison with the ear1ier RPA results of Rcf. 12 sho~s
general overall agreement, with some differences of detail.
These differences originate in principle from two distinct
facts. The first is that the empirical-pseudopotential (EPS)
band stl'ucturc Rnd gap of Rcf. 12 Rlc Qot 1dcnt1cal to ou1
LDF band structure and band gap. However, wc can argue
that this origin does probably not account for the largest
fraction of the differences of e ' with Ref. 12. In fact, thc
direct band gaps are quite different in Ge (0.5 eV in LDF,
1.2 in EPS) but not so different in GaAs (1.3 eV in LDF,
1.4 eV in EPS), while the relative differences of, e.g. ,

'(111,111) are about the same in Ge and GaAs. [Note
that the Adler-%iser virtual transition formulation of dielec-
tric response indicates that the response at q = 0 is dominat-
ed by thc dII'ect gap; on thc contrary, thc 1nd11cct gap 1Q Gc
is expected to be dominating at q= ( 2, —,,~).]

TABLE I. Some elements of inverse dielectric matrix e (6, G'} Eq. (5} calculated by the present direct
method for Ge and GaAs. The origin of coordinates is chosen between the two basis atoms, with Qa on the

site + 8 (111)a and As on —
8 (111)a; imaginary part of Fourier coefficients refers to the choice of + sign

in Eq. (3).

Present
work

Present work
Real Imaginary

RPA'
Imaginary

000
ill
200
200
222
022
111
200
311
020
200

000
111
200
111
111
111
111
111
200
200
200

+0.517
+0.570
—0,048
+0.049
—0.048
+0.077
—0.014
+0.050
+0.023
+0.015

+0.063
+0.610
+0;669
—0.045
+0.043 ~

—0.043'
+0.048
—0.007
+0.041'
+0.013
+0.011

+0.528
+0.592
—0.049
+0.045
—0.045
+0.060
—0.009
+0.045
+0.015
—0.010

0.0
0.0

+0.011
—0.008
—0.006
—0.037
+0.004
—0.010

0.0
0,0

+0.087
+0.619
+0.681
—0.046

+0,040
—0,003

+0.010
0.0

0.0
0.0
0.0

+0,013

—0.026
+0.003

0.0
0„0

'After R. Resta and A. Baldereschi, Ref. 12.
bA. Baldereschi and E, Tosatti, Ref. 12.

R. Resta (private COIHIxlunlcation).
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TABLE II. Sample elements of inverse dielectric matrix e (q+0, q) Eq. (5) for GaAs, as derived from
self-consistent calculations on supercells. q in units 2m. /a.

q= (1, 0, 0)
Real Imaginary

q= (—,', 0, 0)
Real Imaginary

q=( —,', o, o)
Real Imaginary

0
ill
200
311
202
002

+0.293
+0.045

0.0
+0.016
+0.010

0.0

0.0
—0.013
—0.060

0.0
0.0

+0.011

+0.137
+0.037

0.0
+0.015
+0.014

0.0

0.0
—0.015
—0.025

0.0
0.0

+0.008

+0.081
+0.028

0.0
+0.010
+0.014

0.0

0.0
—0.013
—0.010

0.0
0.0

+0.004

The other origin of the difference is in the fact that our
approach includes exchange-correlation effects in e which,
of course, are absent in eRp'A of Ref. 12. These corrections
can qualitatively be seen as due to a certain amount of exci-
tonic red shift of the main interband excitation energies,
thus resulting in an enhanced diagonal dielectric screening,
leading to smaller values of e '( q + 6, q +6). We note
that, indeed, this is brought out systematically, with a de-
crease of order 15% for e '(G, G) in both Ge and GaAs;
the nondiagonal elements, on the contrary, are (in absolute
value) systematically larger than in RPA. We, therefore,
can interpret these differences as largely due to genuine
exchange-correlation corrections, evaluated within the LDF
approximation. It may be worth noting that this increased
screening, sizable as it is, is probably still an underestimate,
smaller than that predicted by other forms of exchange,
like, for example, that of Hanke and Sham. '

Some of our results for q =1, ~, ~ are summarized in

Table II. At present, very little comment is possible, except
that they seem again generally similar to the RPA values
that are presently being calculated for GaAs by Fleszar and
Resta, ' following an alternative "direct" route which can
provide the e in random-phase approximation.

In conclusion, we have shown how the full static inverse
dielectric matrix of a solid, including "screened-exchange"
corrections, can be straightforwardly and simply extracted as
a ground-state property from a standard self-consistent
local-density ground-state calculation. This method is one
to two orders of magnitude faster and more accurate than
the best previous methods, exemplified by Ref. 12. The
possibility of calculating the full nonlocal screening in such a
simple way should soon find useful applications, that so far
were prevented by the difficulty of calculations based on the
Adler-Wiser formula.
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