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Self-consistent calculations are presented for the electronic structure of 3d, 4d, and some sp im-

purities in Cu. The calculations are based on density-functional theory in the local-spin-density ap-
proximation and on the Korringa-Kohn-Rostoker Green s-function method. The muffin-tin poten-

tials of the impurity and of the neighboring atoms are calculated self-consistently. The use of the

proper host Green's functions guarantees the correct embedding of this cluster of 13 muffin-tin po-
tentials in the ideal Cu host. One shell of perturbed neighbor potentials is sufficient for a good
description of the electronic properties. While the results considerably improve the previous single-

site calculations, they nevertheless confirm for most impurities the qualitative results obtained in

these calculations. Charge-transfer effects are most pronounced for some 4d impurities and the va-

cancy. The magnetic moments of the 3d impurities are only slightly changed compared to the

single-site calculations.

I. INTRODUCTION

In the last ten years dramatic progress has been
achieved in understanding the electronic structure of ideal
crystals, which is essentially due to the development of
density-functional theory and linearized band-structure
methods. For inhomogeneous problems such as point de-
fects or surfaces, similar progress is to be expected as soon
as methods analogous to and as efficient as the present
band-structure methods are developed for these systems.
Whereas for concentrated alloys the development of the
Korringa-Kohn-Rostoker (KKR) version of the coherent-
potential approximation has been an important step in this
direction, for dilute alloys the Green's-function method
proposed and applied by different groups has shown con-
siderable potential.

The advantage of the Green's-function method com-
pared to other methods such as cluster calculations is that
due to the introduction of the host Green's function, the
embedding of the defect in the ideal crystal is described
correctly. All band-structure effects are taken into ac-
count. Furthermore, only the perturbed potential b, V(r)
enters as a perturbation, contrary to usual cluster or super-
cell calculations, where the total potential had to be al-
ways considered. This has some important practical ad-
vantages. The change b, V of the potential is strongly lo-
calized near the defect, so that very often only a perturba-
tion in the impurity cell is sufficient. We will discuss this

point in detail in this paper. Furthermore, the self-
consistency process is divided into two natural steps: first
the ideal-crystal problem leading to the self-consistent
Green's function 6 and second the defect problem where
all defects and all self-consistency cycles can be calculated
with the same G.

The Green's-function method was originally proposed
by Koster and Slater. ' However, only recently have self-
consistent calculations based on a linear combination of
atomic orbitals (LCAO) expansion been performed for de-
fects in semiconductors. For metals a Green's-
function method based on the KKR band-structure
scheme has been proposed by Dupree, Beeby, and others.
Detailed calculations along this line have been performed
by Terakura and more recently by Katajama-Yoshida et
al. 9 We have improved this method by doing self-
consistent calculations within the density-functional
scheme. ' Detailed calculations for magnetic impurities
in Cu (Refs. 11 and 12), nonmagnetic impurities in Cu
(Ref. 13), impurities in Al (Ref. 14), 3d and 4d impurities
in Mo and Nb (Ref. 15), as well as d impurities in Ni (Ref.
16) have been presented. These calculations are all based
on a muffin-tin assumption for the atomic potentials.
Moreover and more essentially, only the impurity muffin-
tin potential was allowed to be perturbed and calculated
self-consistently; a possible perturbation of the neighbor-
ing host potentials was neglected.

A variant of the KKR Green's-function method based
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on an expansion in linear muffin-tin orbitals (LMTO) has
been recently given by Koenig and Daniel. ' Calculations
for sp impurities' and 3d impurities' in Fe have been
performed by this group, which are also based on the as-
sumption of a single perturbed muffin-tin potential. Re-
cently Klein and Pickett have published calculations for
H in transition metals. A quite different Green s-function
approach has been recently given by Inglesfield. ' Here
the embedding is described rigorously by an energy-
dependent complex surface potential surrounding a given
cluster.

Despite the fact that the above calculations have been
quite successful in explaining trends and experimental
data, in general the assumption of a single perturbed po-
tential seems to be a rather restrictive approximation be-
cause it limits a possible response of the host atoms. We
will also demonstrate in this paper that clusters of per-
turbed potentials can be treated with the Green's-function
scheme, i.e., perturbed potentials at neighboring sites of
the defect can also be included and calculated self-
consistently. Since this is a much more involved problem
than the single-site perturbation, we have developed spe-
cial methods in order to reduce the necessary computing
time. For instance, by using the method of complex-
energy integration the Schrodinger equation need only be
solved for a small number (20—50) of complex energies
rather than about 1000 real energies. We found it neces-
sary to use group theory in our calculations, and we have
used improved iteration schemes in order to reduce the
number of self-consistency iterations. These technical
points are described in Sec. II.

In the following sections we present detailed calcula-
tions for impurities in Cu. Section III deals with 4d and
nonmagnetic 3d impurities, Sec. IV with magnetic 3d im-
purities, and Sec. V with some sp impurities such as H, He
(both in a vacancy), Mg, Si, and Ag. A communication
about a calculation for the vacancy in Cu has already been
published elsewhere. An important result of these calcu-
lations is that for most impurities the qualitative results
obtained by using a single perturbed potential are con-
firmed. The effect of the perturbed neighboring potentials
is, in general, small but quantitatively nevertheless impor-
tant if such details as charge transfer, induced host mag-
netization, or Friedel oscillations are described. There are
also, however, exceptional cases like Co in Cu or the Cu
vacancy where the inclusion of the perturbed host poten-
tials changes the situation qualitatively. Recently, the
LMTO Green's-function technique has been studied in de-
tail by Gunnarsson et al., who also presented with this
method test calculations that include potential perturba-
tions at neighboring sites.

II. SOME TECHNICAL POINTS CONCERNING
THE KKR CREEN'S-FUNCTION METHOD

In this section we summarize some technical problems
related to the application of the KKR Green's-function
method "For .a lattice of muffin-tin potentials
U„(r —R") centered at positions R", the Green's function
can be expanded in each cell n, n' into eigensolutions of
the local muffin-tin potentials U„and U„.

6(r+R",r '+R",E)
i—5„„VE g Yl(r)R t(r&,E)H~"(r,E)YL(r ')

+ g YL(r)R&"(r,E)GLT (E)Rt" (r', E)YL, (r ') .
L,L'

Here Rydberg units (e=1, fi /2m =1) have been used.
The vectors r, r ' are restricted to the %igner-Seitz cell,
and r& and r& are the smaller and larger of r=

~

r
~

and
r'=

~

r '
~. Yl is a real spherical harmonic and Rt"(r,E)

is the regular solution of the radial Schrodinger equation
for the potential U„(r) and the energy E. Furthermore, L
stands for L = (l, m ). Outside the muffin-tin radius,
Ht"(r,E) agrees with the spherical Hankel function
ht j——t+int, and Ri (r,E) is given by a combination of
spherical Hankel and Bessel functions

Ht (r E)="t(r~E),

Rp(r, E)=j,(rVE ) iv E—tp(E)ht(rv E ),
(2)

Note that here the deviation b, tt" = tt" tt of the t m—atrix tt"

from the ideal crystal va-lue tt enters as perturbation.

A. Determination of the structural host
Green's function

One major problem of the KKR Green's-function
method is the determination of the structural Green's
function 6 I"I (E) of the host. The imaginary part can be
evaluated by a numerical Brillouin-zone integration, simi-
lar to density of states integrals. The real part can, in
principle, be obtained from the imaginary part by a
Kramers-Kronig integration:

-(m —m') $ + Oo

att (E)ReGIL (E)=
'7T

dE'P, atI (E')

~ ImGLT™(E'). (4)

For convenience we have integrated out the radial depen-
dence leading to normalization coefficients atI (E).

In actual calculations the E' integration in (4) requires
the knowledge of the band structure up to infinite ener-
gies, which is impossible to obtain. For the diagonal part

tor r & RMT, where t~"(E) denotes the usual on-shell t ma-
trix for the potential v„.

The first term in Eq. (1) represents the solution for the
single muffin-tin potential U„ in free space. Of central im-
portance is the so-called structural Green's-function ma-
trix Gt".t (E), which contains all the information about the
multiple scattering between the muffin-tin potentials of
the specific ensemble. It can be related by an algebraic
Dyson equation to the structural Green's function
6 I,"L, (E) of the ideal crystal:

GLT (E)=GtT'(E)+ g GLt, '(E)htp" (E)Gt""i» (E) .
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m =m' one can choose a cutoff energy E,. ' This means

that above E, one replaces G(r+R, r '+R;E') by the
solutions Gi(r+R, r '+R;E') for a single muffin-tin
potential. For the nondiagonal terms m&m' a simple
cutoff in Eq. (4) is not satisfactory. Instead we replace
G(r+R, r '+R;E') for E'~E, by the solution

Gi(r+R, r '+R;E') for two muffin-tin potentials in

free space, located at R and R . Then we obtain from
Eq. (4) for m&m'

(E) R [ G (ttl —m')(E) G (m —m')(E)]

E
dE'P at( (E')

06

-(Ptf —W'}
X Im[ GLI. (E')—Gp t L, (E')], (5)

s1ncc also 62 obeys a Kramcrs-Kron1g 1clatlon. Thc sen-
sitivity of the results to the choice of E, is discussed later.
It should be pointed out that in other Green's-function
methods basd on I.CAO or I.MTQ expansions, this prob-
lem of integrating over infinite energies does not ostensi-
bly occur. Here a corresponding cutoff assumption is
made just at the beginning by taking only a finite basis set
1nto account.

B. Solution of the Dyson equation

The structural Green's function of the imperfect crystal
is obtained from that of the host crystal by solving the
Dyson equation (3). In general, this requires the inversion
of the matrix

The rank of this matrix is determined by the number of
perturbed potentials and the number of nonzero elements
Att"(E), respectively. When only the impurity site is con-
sidered as perturbed, one must invert a matrix of rank
9X9 for / & 2. For cubic symmetry the impurity structur-
al matrix GII is diagonal in angular momentum, and the
Dyson's equation reduces further to four scalar equations
(s,p, d tzg and d es representations) that are easily solved.
However, in the present cluster calculation, for an impuri-
ty in a fcc material with perturbed first neighbors and for
/ & 2, matrices of rank 117X 117 must be inverted for each
energy since 13 atom. s and nine angular mornenta are in-
volved (117=9 X 13). In addition to requiring self-
consistency, this clearly is an enormous numerical effort,
especially since the entire energy range must be con-
s1dered.

Group theory can be very useful here. It allows for a
quasidiagonalization of the matrix to be inverted, such
that, in this case (fcc for / & 2), the largest submatrix has a
rank of 9&9. The total amount of submatrices equals 10,
corresponding to the different irreducible representations
« the point group. The quasidiagonalization is accom-
plished by the unitary (orthogonal) matrix S such that the
submatrices are given by

p, (1),Q 1')

I
0 A p

~nlm, P lm, l'm'~n &

1 ~
nEs

If,m, pFE

where N, is the number of atoms in shell s and a is merely
a specific column in the set y =1,2, . . . , di. The method
of Ries and Winter uses the site index no in shell s fixed
for all basis functions, although of course the choice of no
depends on the shell index used.

The fact that a summation of the atoms is equivalent to
a summation over their counterparts allows for an addi-
tional reduction factor of 4. Lastly, the structural matrix
of the perfect crystal needs to be symmetrized only once
for each energy and can be stored on tape instead of calcu-
lating it again in each iteration cycle. This gives an addi-
tional reduction factor of about 3 so that the use of group
theory is altogether very valuable, because a large factor
of about 70 can be gained in the very time-consuming step
(95%) of inverting huge matrices at a rather large amount
of energy points.

C. Energy integration for obtaining charge densities

The charge density p(r) is obtained by an energy in-
tegration

2p(r)= ——J dEImG(r, r;E) . (9)

Owing to the strong structure in the Green's function
G(E) induced by the d electrons, reliable charge densities
can only be obtained by using about 400 energies for the
charge density in the impurity cell, while the charge densi-

ty in the neighboring cells requires even more than 1000

Gp(1), v(l') ~ ~n1m, IJ, Gbn, l'm'~n'1'm', v '

nEs
n'Cs'

lPl, P7l

This mell-known symmetrization procedure requires that
at both sides of the structure matrix the elements S„l
are needed for all sites n in shell s and all m values belong-
ing to the given value of the angular momentum /. The
index p denotes the basis function belonging to a particu-
lar column a of the representation A, . It is a compound in-
dex counting the particular combinations (/ns) of the an-
gular momentum /, the shell s, and the number of linear
independent combinations n of a certain value of the quar-
tet (A,a/s). The elements of the symmetrized matrix do
not depend on the specific column a of the irreducible
representation A, , which is a well-known group-theoretical
result. The maximuIn number of columns is 3, appearing
for only 4 of the 10 representations. This (two-sided)
symmetrization procedure leads to a reduction factor of 6
for the computer time needed for the inversion of the ma-
trix (i.e., for the inversion of all the different submatrices).

HowcvcI', as Ilotcd by Ri)senbrij and Loddcr and R1cs
and Winter, the use of one-sided symmetrization leads to
a larger reduction of the computer time, because then the
sumInation over all sites in a particular shell is replaced
by the summation over the columns at one side of the ma-
trix, which must be symmetrized. Thus the following also
holds:



energy points. Thus thc radial SchrOdingcr cqUations and
the Dyson equation (3) would have to be solved in each
iteration cycle for an enormous number of energies. A
very elegant solution of this problem can be found by re-
placing the energy integral of the imaginary part of the
Green's function by a contour integra1 in the complex-
energy plane (Koenig and Dreysse and Riedinger '):

4

p(r)= —Pdz6(r, r;z) .

The contour starts at EF—i e and ends at EI; +ie
(e~0+ ), including all branch cuts and poles of G(z) on
the real axis below EF. The analytical property of G(z)
off the real axis prevents any strong structure along the
contour and warrants a sufficiently smooth integrand,
which can be integrated with only 20—40 complex-energy
points instead of the enormous amount needed on the real
axis. Details can be found elsewhere. ' Thus the radial
Schrodinger equation and the Dyson equation are only
solved for a rather small number of complex energies,
which does not only lead to a considerable saving of com-
puter time but also to increased numcrica1 accuracy.

bN, (E)=—g b,5I",(E) ——Im ln det
~

1 —G ht,
~

.
7T

A more direct derivation has been recently given by one of
us. Here b,5q, ——51,—5I is the change of the phase shifts
with respect to the host crystal. The determinant refers to
the matrix of Eq. (6).

In Eq. (14) contributions due to polarization of all
neighboring host atoms are included, whereas the cluster
magnetic moment calculated as

n in cluster

contains only the polarization of the first neighbors.
Since only perturbed host potentials at the first shell

around the impurity are allowed, the Friedel sum rule
hN(E~) =bZ is not satisfied exactly in our calculation.
Thus the deviation of hN(Ez) from the ideal value hZ
gives an indication of the error involved and of the impor-
tance of including more perturbed. Shells.

D. Spin polarization and Lloyd's formula

The use of spin polarization requires an additional in-
dex for spin up ( t) and spin down (L). That is, for each
spin direction we have different potentials, phase shifts,
Green's functions, etc., so that all equations (for instance,
the Dyson equation) appear twofold. Furthermore, the
densities (of charge and of states) are obtained separately
for each spin direction by an energy integration or space
integration. Then the local charge lV]„and local moment
M~„within the cell n are given by

= J dE[Ni"„,(E) Ni"„, ,(E)]—

= I d~f p, (r) —p, (r)] (11)

[N&"„,(E) being the local density of states in the cell n for
spin up and p, the corresponding local charge density] and

E. Density-functional theory and. improved
iteration schemes

Our calculations are based on density-functional
theory. We use the local-density approximation of
Hedin and Lundqvist" for the non-spin-polarized case
and that of von Barth and Hedin in the case of spin po-
larization. The necessary parameters in these forms were
chosen to agree with those of Moruzzi et al. . The host
band structure of Cu has been generated from the self-
consistent potentials given by these authors.

The Green's function of the impurity system, which
determines the charge density in the different perturbed
cluster cells, depends on the potentials u„(r), which them-
selves are related to the charge density. The seif-
consistency problem is therefore of the form
p(r ) =EI p(r) I. A weil-known solution consists of rewrit-
ing p=(1 —a)p+aF t pI and iterating towards self-
consistency:

The total displaced charge is given by the change hN(E~)
of the integrated density of states at the Fermi energy,
which can be calculated by Lloyd's formula (see below):

5N(E~)=AN, (E~)+AN, (Ep) .

Analogously, thc change of thc total moment AM indUccd
by thc 1mpunty 1s glvcn by

hM =AN, (EF ) b,N, (E~), —
which is merely the total moment if the host is paramag-
netic.

The integrated densities of states hN(Ez) can be calcu-
lated by Lehmann's adaptation of Lloyd's formula,
which for a cluster of perturbed potentials is slightly more
complicated than that for a single perturbed potential:

One can show that for a sufficiently small mixing factor,
one always obtains a convergent process. However, in
impurity calculations we found this to be a serious prob-
lem. Especially, for d impurities with virtual bound states
at the Fermi energy we had to choose o, s as small as 10
and consequently hundreds of iterations were necessary.
Physically, this is due to the fact that a small change of
the potential sweeps the virtual bound state through the
Fermi energy, thereby drastically changing its population,

In order to accelerate the convergence we have recently
studied improved iteration schemes. In one scheme
given by Anderson the input charge density p„+~ for the
iteration n+ I is constructed by using information from
more than one previous iteration. One introduces a free
parameter e„and constructs linear combinations of p„
andp„), EI p„j andI'I p„,j by
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p: =p. +e.{p.-i —p. )

6„ is determined by minimizing the integral

I d r
i
p'„(r )—F„*(r")

i

with respect to 6„. The input charge density for the next
iteration is chosen {similar to the normal mixing scheme)

p„+i——(1—a') p*„+a*F„*,

where e* can usually be somewhat larger than the normal
mixing factor a. In most cases the larger a' and the op-
timization with respect to 6„ lead to a better convergence,
which sometimes is surprisingly fast. However, the con-
vergence behavior at times can be quite irregular, so it is
advantageous to return to the normal mixing scheme (17)
for 10 or 20 iterations and then proceed with the im-

proved scheme.
Our calculations rely on the muffin-tin approximation

for the potentials. However, no muffin-tin approximation
is made for the charge density, the full nonspherical com-
ponents of which are considered. The intercell Coulombic
potential is calculated by using a multipole expansion for
the charge density. The potential is brought into muffin-
tin form by spherically averaging inside the muffin-tin
spheres and by using the constant host interstitial poten-
tial outside the spheres.

III. NONMAGNETIC 4d AND 3d IMPURITIES

The electronic structure of 4d impurities in Cu is not
complicated owing to the occurrence of magnetism. We
find all 4d impurities in Cu to be nonmagnetic; the Stoner
criterion is far from being met. ' Of the 3d impurities,
only Sc, Ti, and Ni are nonmagnetic. The other 3d im-

purities V, Cr, Mn, Fe, and Co are magnetic and are dis-
cussed in the next section. A comparison of the 4d impur-
ities with their chemically equivalent 3d counterparts
should be especially interesting because the 4d impurities
have a larger size and also a larger electronegativity than
their 3d partners.

A. Local densities of states of the lmpUrities
and their nearest neighbors

Figure 1 gives the local density of states (LDOS) for the
series Y, . . . , Pd of 4d impurities in Cu. Band-structure
effects are seen to be very important. . There is a rather
large amount of structure in the Cu d-band region (from
1.6 to 5.3 eV below EF), and a great quantity of intensity
is distributed in this region, being more peaked at loweI
energies. Furthermore, the virtual bound states near the
Fermi energy are rather broad at the beginning of the
series and become increasingly sharper, until for Pd where
we have an extremely sharp peak at the upper end of the
Cu d band. Note that the virtual bound states are not
I.orentzian but rather unsymmetric.

It is interesting to compare the present impurity-cluster

calculations (ICC) with the previous single-site calcula-
tion, where only the impurity potential was calculated
self-consistently. The present calculation yields an appre-
ciably lowcl Intensity ln the loweI' d-band region, which ls
most dramatic for Cu(Pd). Here the peak at the bottom of
the d band is substantially lowered, whereas the very small
virtual bound state peak is increased.

As a representative example we will discuss Cu(Mo) in
more detail. Figure 2(a) shows again the LDOS for Mo in
Cu. The dashed line refers to the Mo LDOS obtained
from the self-consistent impurity potential by calculating
only the first term in Eq. (1), i.e., the Green's function for
the single muffin-tin potential of the impurity in the
muffin-tin zero-background potential ("no backscatter-
ing"). Physically, this essentially describes only the in-
teraction of the Mo 4d electrons with the more or less free
s and p electrons of Cu, leading to a rather broad virtual
bound state centered at the upper d band of Cu. Since the
interaction between the Mo 4d and the Cu 3d electrons is
essentially switched off, we see that the hybridization be-
tween the Mo 4d and the Cu 3d electrons is very impor-
tant: It shifts the virtual bound state to higher energies
and at the same time leads to an additional intensity in the
lower band region.

The LDOS of a Cu atom neighboring Mo is shown in

Fig. 2(b) together with the unperturbed host density of
states of Cu. On the neighboring site an appreciable part
of the intensity is shifted to lower energies, while at the
same time a small hump near the Fermi energy com-
memorates the virtual bound state at the Mo site.

The features seen in Figs. 2(a) and 2(b) can be under-
stood by the formation of bonding and antibonding states
between thc Mo 4d and Cu 3d clcctIons. FOI' a diatomic
molecule with nondegcnerate orbitals this is schematically
illustrated in Fig. 3. Note that the Mo 4d level is higher
than the Cu 3d level. A lower bonding level Eb and a
higher antibonding level E, are formed. Since E, is closer
to the Mo level and Eb is closer to the Cu level, the bond-

ing wave function g» has a larger amphtude for the Cu
site, as is illustrated in Fig. 3{b). Therefore the hybridiza-
tion can also be considered as an effective repulsion be-
tween the unhybridized levels.

In reality, the situation is more complicated than that in
Figs. 3(a) and 3(b), since the d levels are degenerate and
since there are 12 Cu neighbors instead of one; moreover,
the 12 Cu neighbors are embedded in a Cu host environ-
ment. However, qualitatively the situation is still similar:
The unhybridized Mo 4d levels, being broadened due to
the interaction with the s electrons of the host [dashed
curve in Fig. 2(a)] and the pure Cu levels on the neighbor-
ing site [dashed curve in Fig. 2(b)], hybridize and form
bonding and antibonding states. Thus the new virtual
bound state resembles the antibonding peak and is shifted
to higher energies while being mostly concentrated on the
Mo site. Furthermore, on the neighboring sites the strong
shift of the intensity to lower energies is due to the forma-
tion of bonding orbitals, which are mostly centered at the
neighboring sites. [Note that in order to calculate the
change of the total density of states one must multiply the
intensity changes seen in Fig. 2(b) for one neighbor by 12,
the number of first neighbors, in order to compare them
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FIG. 4. LDOS in Cu-neighbor Wigner-Seitz cell of some ele-
ments from the 4d series. Only the behavior in the Cu d-band
energy region and somewhat above it is shown.
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FIG. 2. (a) LDOS for Mo in Cu (solid line). The dotted curve
refers to the solution for the single Mo muffin-tin potential in
the constant muffin-tin zero-background potential (no "back-
scattering"). (b) LDOS of a Cu atom neighboring Mo (solid line)
and the unperturbed host density of states of Cu (dotted line).

with the "bonding" intensity within the d band on the Mo
site.]

Figure 4 shows the LDOS on a neighboring site for Nb,
Tc, and Rh, whereas Fig. 5 shows the corresponding
change of the neighbor LDOS with respect to the host
density of state for Zr, Mo, Rh, and Pd. Especially Fig. 5
shows clearly that the shift of the intensity to lower ener-
gies is a well-defined trend for the entire 4d series. It is
more pronounced at the beginning of the series, which can
be explained by the larger extent of the 4d wave functions

(leading to a stronger overlap witn the Cu d electrons) and
by the larger splitting between the corresponding 4d level
and the Cu level. For Pd at the end of the 4d series we see
a peak at the upper band edge, resembling the very narrow
virtual bound state and two peaks at the lower end of the
band. Essentially the same structure is seen at the impuri-
ty site. Apparently the Pd 4d and Cu 3d levels more or
less coincide, which is not unreasonable considering the
large electronegativity of Pd, so that both the bonding and
antibonding states have about equal intensity at the im-
purity site and at the neighboring sites. Thus we have
here a situation where the large 4d-3d hybridization near-
ly splits off two levels at the upper and lower band edge.
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the atomic Cu and Mo levels into bonding and antibonding ener-

gy levels Eb,E, . (b) Schematic form of the bonding and anti-
bonding wave functions at the Cu and Mo sites.
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Now we want to compare our calculations for chemical-
ly equivalent 4d and 3d impurities. Figure 6 shows the
LDOS for Ni and Pd impurities, both in the impurity cell
and in a neighboring cell. In the Ni cell we have much
less intensity within the d-band region, indicating the
smaller hybridization between the Cu 3d band and the Ni
3d electrons, which are more localized than the Pd 4d
electrons. Moreover, the Pd virtual bound state is appre-
ciably lower than the Ni state, indicating the larger elec-
tronegativity of Pd. On the neighboring site the shift to
lower energies is for both reasons larger for Pd. For the
elements Sc and Y at the beginning of the 3d and 4d
series, Fig. 7 shows the I,DOS at the neighboring site and
also the change of the LDOS (lower curve) with respect to
the host density of states. In addition, here one sees the
effect of the stronger hybridization of the 4d electrons due
to their larger overlap.

Finally, we want to stress the magnitude of the change
of the LDOS on the neighboring site. For instance, from
Fig. 7 we see that for Sc or Y, about 2 electrons are effec-
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and 4d series.

I

—5
ENERGY ( cV )

FIG. 7. LDOS (upper curves) and difference LDOS (lower
curves) in the Cu-neighbor W'igner-Seitz cell of elements at the
beginning of the 3d and 4d series.

tively shifted from the upper to the lower band region, say
from about —2.5 to —4.5 eV on the average Since. we
must multiply this by 12 in order to obtain the change of
the LDOS in the first shell, we see that this gives an enor-
mous contribution to the change of the total density of
states, which is much larger than that arising from the
impurity cell. Note, however, that these relatively large
and important changes of the density of states on the
neighboring sites do not lead to similar large changes of
the charge density or of the potential. For instance, by in-
tegrating the change of the LDOS on the neighboring site
of Sc or Y, the positive and negative contributions cancel
each other to a very large extent, leaving only a rather
small surplus charge of 0.07 or 0.09 electron on the neigh-
boring site (see Tables I and II).

For more distant neighbors we expect essentially the
same behavior. The change of the LDOS should acquire
even more oscillations; by integrating over the energy, the
cancellation is even more complete so that the perturbed
charge density and the perturbed potential are well local-
ized. This is essentially w'hy the Green s-function method
is superior to cluster calculations. In the Green's-function
method, the infinite spatial extent of the changed densities
of states is described correctly; only the perturbed poten-
tial is assumed to be localized Therefor. e in most cases a
calculation with a single perturbed potential for the im-
purity already gives a reasonable description of the phys-
ics. In contrast, in cluster calculations rather large clus-
ters of more than 40—50 atoms must be treated in order to
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detect typical impurity properties (see the discussion in
the next section).

There is practically no experimental information from
x-ray photoelectron spectroscopy (XPS) measurements on
the rather large changes of the density of states within the
Cu d band. The only exception known to us is the work
of Hiifner et a/. , who measured XPS difference spectra
for Pd in Cu, Ag, and Au. They found a nonuniform
change within the d-band region: a strong loss of intensi-
ty in the upper band region and an increase in the lower
region, in agreement with the general trend we obtain.
Note, however, that the calculated changes for Pd (see
Fig. 5) are rather small compared to the changes, e.g. , for
Mo or Zr at the beginning of the 4d series, so that an ex-
perimental measurement of these larger changes would be
quite interesting.

B. Charges in the impurity and neighboring
cells; Friedel sums

In Table I the most important numerical results for the
4d impurities are summarized, whereas Table II gives the
results for the 3d impurities (including the magnetic im-
purities). A comparison of the results for the 4d impuri-
ties with the single-site calculation of Braspenning et al. '

shows that the local charges in the impurity Wigner-Seitz
sphere have considerably been reduced, e.g., for Mo with a
valence of 6 the local charge is 4.90 instead of 5.65 in the
simpler previous calculation; for Pd it is 9.59 instead of
9.88. Apparently, the self-consistency of the single site
underestimates the charge transfer and has a tendency to
make the impurity cell more neutral. The charge transfer
towards the Cu neighbors decreases continuously through
the 4d series, which is partly due to the decreasing extent
of the 4d wave functions. The same tendencies are also
seen for the nonmagnetic (as well as the magnetic) 3d im-
purities for which the single-site results are given in Ref.
12. Here, however, the charge transfer is considerably
smaller due to the smaller extent of the 3d wave functions.
For the 4d impurities, the additional charge on the neigh-
boring site has mostly s and p character with only a small

positive d component. Contrary to the 3d impurities, a
sizable but negative d component exists. From the magni-
tude of the charge transfer it is evident that a correct
treatment of the nearest neighbors is more important for
the 4d impurities than for the 3d impurities.

From Table I one also sees that the cluster consisting of
the impurity and the first neighbors is practically neutral,
with maximal charge deviations of 0.12 for Y and —0.08
for Mo and Tc. This is even more evident for the 3d im-
purities. However, one should keep in mind that self-
consistency might make the cluster more neutral than it
actually is, so that the deviations might be somewhat
larger.

Table I also gives the total charges calculated from the
Lloyd formula, i.e., N„„=EN(E~)+Nc„. For an exact
calculation the Friedel sum rule AN(EF ) =b,Z or
X„,=Z; „should be valid. Compared to the single-site
calculation (SSC) this sum rule is now much better satis-
fied. For instance, for Y at the beginning of the series
(Z; ~=3) we obtain N«, ——3.05 instead of the previous
value 1.75, whereas for Pd at the end of the series
(Z; ~=10) we have now 10.02 instead of 10.11. This
clearly shows the improvement of the present cluster cal-
culation compared to the SSC. For the 3d impurities the
Friedel sum rule is just as well satisfied, so that the in-
clusion of more neighbors should be not important.

Table I also lists the decomposition of the total charge
X„,into the "free-electron" part

N„",'=Nc„+ —g (21+ l)55i(EF),
l, n

arising from the first term in Eq. (1) due to the changed
phase shifts, and the backscattering part N„"," due to the
second term in (1) describing the multiple scattering. For
both the 4d and 3d impurities X„",' is, in general, larger
than X„, or Z; ~. The negative backscattering decreases
through the 4d series and is even slightly positive for Pd.
Since N«, is dominated by the change of the impurity
phase shifts b,5'i ~, Nf,",'&Z; ~ means that the virtual
bound state for the solution of a single muffin tin in jelli-

TABLE I. Theoretical results for 4d impurities. The local valence charge N~„within the impurity
signer-Seitz sphere and the deviation AN~"" of the local charge N~",", of a neighboring Cu atom from the
value N&""' of a bulk Cu atom. The charge neutrality lists the excess or deficit charge in the cluster con-

taining the impurity and its 12 nearest neighbors. Furthermore, the total charge N„, =Zh„, + AN(E+),
as calculated from the Friedel sum AN(EF), is given together with its decomposition into N„",' and
N back

tot

Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd

Zimp

3

5
6
7
8
9

10

NimP
loc

2.02
2.79
3.79
4.90
6.05
7.28
8.46
9.59

0.09
0.10
0.10
0.09
0.07
0.06
0.04
0.03

Charge
neutrality

0.12
0.01

—0.05
—0.08
—0.08
—0.06
—0.03

0.00

3.05
4.02
5.01
6.01
7.00
7.99
9.00

10.02

N free
tot

4.46
6.08
7.28
7.96
8.40
8.75
9.23
9.99

Nback
tot

—1.41
—2.05
—2.27
—1.95
—1.39
—0.75
—0.24

0.03
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TABLE II. Theoretical results for 3d impurities. The same notation as in Table I is used. In addition, the corresponding magnet-
ic quantities are given: the total moment M~ in the impurity Wigner-Seitz cell, the induced moment Mi on a neighboring Cu
atom, the total momentum M,&

of the cluster containing the impurity and its 12 neighbors, and the total moment M„, as calculated
by the Friedel sum rule.

Sc
Tl
V
Cr
Mn
Fe
Co
Co'
Ni

Zimp

3
4
5
6
7
8

9
9

10

N imp
1oc

2.22
3.21
4.33
5.51
6.56
7.70
8.87
8.89
9.98

ANnb

0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.01

—0.00

Charge
neutrality

—0.01
—0.07
—0.08
—0.05
—0.05
—0.05
—0.05
—0.05
—0.03

3.00
4.00
5.00
5.97
6.99
8.00
8.98
8.98
9.98

Nore
loc

4.16
6.03
6.81
6.65
7.86
9.05
9.36
9.27
9.97

N back
tot

—1.16
—2.02
—1.81
—0.68
—0.87
—1.05
—0.38
—0.29

0.01

Mimp
loc

0
0
1.28
3.09
3.44
2.55
0.96
0
0

nbMi„

0
0
0.02
0.03
0.02
0.01

—0.00
0
0

Mc

0
0
1.47
3.39
3.65
2.62
0.95
0
0

Mtot

0
0
1.47
3.36
3.59
2.55
0.92
0
0

' Result of paramagnetic calculation.

um, given by the first term in Eq. (1) and, e.g., shown in
Fig. 2(a) for Mo (dashed curve), contains too many elec-
trons. The bonding-antibonding hybridization, the effects
of which are described by the backscattering term,
corrects this and leads then approximately to the correct
Friedel sum rule.

We have also performed calculations using different
cutoff energies E, for the host Green's function in order
to study the sensitivity of the results to the cutoff approxi-
mation (5). For all 3d and 4d impurities we find that the
local charges of the impurities and the first neighbors are
quite insensitive to the cutoff energy E„with typical
changes of 0.01 electron if E, is varied from a rather low
value of 3 to 16 eV above EF. Thus apparently the local
self-consistency reduces, to a large extent, errors of the
Green's functions introduced by the cutoff procedure. In
contrast the Friedel sums are more affected. For Mo, for
instance, N«, changes from 6.15 for E, =3 eV to 6.01 for
E,= 16 eV. All results given in Tables I, II, and III refer
to a cutoff energy of 16 eV above Ep.

IV. MAGNETIC 3d IMPURITIES

Impurities from the middle of the 3d series are magnet-
ic in simple or noble metals, since by spin alignment the
electrons gain exchange energy. The occurrence of local
moments is usually discussed in the Anderson model or
equivalently in the Wolff model, ' which are based on
Friede1's virtual-bound-state concept. Ionic aspects are
stressed in the model proposed by Schrieffer and Hirst.
We have recently performed realistic ab initio calculations
for 3d impurities in Cu and Ag (Refs. 11 and 12) that are
based on the single-perturbed-potential model. Although
our results were in qualitative agreement with the Ander-
son model, nevertheless important qualitative differences
arose due to the hybridization of the impurity d electrons
with the Cu d band, which is not contained in the Ander-
son model. The results are, however, in strong disagree-
ment with cluster calculations of Johnson et aI, which
we have criticized. ' %e come back to this point in con-
nection with some recent cluster calculations for CuFe

and I'dFe of Delley et al. and Rodriquez and Keller.
We have also performed similar calculations for 3d im-
purities in Mo and Nb (Ref. 15) and for 3d impurities in
Al (Ref. 14). Even in the simple metal Al, band-structure
effects turned out to be important.

In order to check the reliability of our previous calcula-
tion based on the single perturbed potential and in order
to obtain more reliable information about the host polari-
zation, we have therefore recalculated the electronic struc-
ture of magnetic 3d impurities in Cu by also allowing per-
turbed potentials at the neighboring sites. Figure 8 shows
the LDOS of the impurities V, Cr, Mn, and Fe in Cu for
the majority and minority spins. Comparison with the re-
sults of the SSC of Zeller et al. "and Podloucky et al. ' re-
veals only minor differences, and all qualitative aspects
are the same. Especially one also sees that for the mag-
netic impurities the hybridization of the impurity d elec-
trons with the host d electrons is quite important, leading
for both spin directions to a division of the intensity into a
smaller, bonding-type fraction within the d band and a
larger antibonding type virtual bound state at higher ener-
gies. Note the hybridization minimum at the upper edge
of the Cu d band. For Mn and Fe the very sharp majority
virtual bound state is shifted towards the upper edge of
the d band, leading to an especially large intensity within
the d-band region. For the LDOS of the neighboring
sites, similar but far less pronounced features as those for
the 4d impurities or for Sc (see Figs. 4, 5, and 7) are
found. The differences between the neighboring LDOS of
the two spin directions are minor.

Table II summarizes the most important quantitative
results for the 3d impurities. As with the 4d impurities,
the local charges in the impurity cell are appreciably
smaller than those in the SSC, i.e., the single-site self-
consistency underestimates the charge transfer by about a
factor of 2. For instance, for Mn with Z;~~=7 the local
charge is 6.56 instead of 6.79 in the SSC. Our present cal-
culation yields V, Cr, Mn, and Fe as well as Co to be mag-
netic. Compared to the SSC the local moments for V and
Cr are somewhat reduced, while those for Mn and Fe are
slightly increased (see Fig. 9). A major discrepancy is seen
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—0.001@ii for the fourth neighbor. These calculations
also explain the very small moment at the neighboring
sites of Fe and Co: When progressing in the 3d series, the
first zero of the magnetization oscillations shifts systernat-
ically to smaller radii, so that for Co, and nearly so for Fe,
the positive and negative contributions to the polarization
cancel each other in the first neighboring cell.

Figure 9 shows a comparison of the calculated moments
with the available experimental results for Cr, Mn, and Fe
(mostly susceptibihty or neutron scattering results). The
present values agree somewhat better with the experimen-
tal results than the SSC. Note the appreciable scattering
of the experimental data for the same material.

Whereas Ni in Cu is generally agreed to be nonmagnet-
ic, the experimental situation is not so clear for Co, V, or
Ti impurities. For a discussion of this point see, e.g., Ref.
48. Kramer and Bergmann have recently found by
anomalous Hall-effect measurements that Co impurities in
disordered Cu films are nonmagnetic, whereas Co impuri-
ties in Ag films are magnetic. While this is in disagree-
ment with our present result for Co in Cu, it nevertheless
agrees with our general findings in Ref. 12 that the ten-
dency for magnetism is larger in Ag than in Cu.

The experiinental information about virtual bound
states of magnetic impurities is somewhat conflicting.
For a detailed discussion we refer to Refs. 12 and 50.
Whereas Hochst et 8/. have not bccn able to dctcct virtu-
al bound states for magnetic impurities such as AgMn,
AuFC, or CuFC, Reehal and Andrews and Andrews and
Brown found evidence for virtual bound states for Fe
and Cr in Au. For Ago 8Mno z a majority peak is identi-

FIG. 8. LDOS in the impurity %igner-Seitz cell for majority
( f ) and minority ( $) spin of some 3d impurities in Cu.

only for Co. In the SSC Co was nonmagnetic, but just on
the verge of becoming magnetic as one could conclude
from the extremely slow convergence of the self- con-
sistency iterations. In the present ICC we obtain a mo-
ment of 0.96pz for Co. This rather large change is not
too surprising since near the threshold a rather small
change of physical quantities may result in a large change
for the moment. Overall, however, our present elaborate
calclllatloils coilflrm tlM slnlplel SSC vallles qlllte well, as
can be seen from Fig. 9.

The neighboring atoms become slightly ferromagnetic-
polarized, with the largest moment of 0.025p, ~ for a Cr
neighbor, 0.017pz for a Mn neighbor, and 0.006pz for a
Fe neighbor. Practically the same values for the polariza-
tion of the first neighbors have been recently obtained by
Deutz for the single-site model, so that the Cu-host
magnetization, contrary to the charge transfer, seems to be
well described in the single-site model. Moreover, the mo-
ment of the cluster agrees quite well with the total mo-
ment, so that the polarization of the more distant neigh-
bors is not important. For instance, Deutz obtains for Mn
in the single-site model 0.016p~ for the first neighbor,
—0.006@& for the second, 0.000@~ for the third, and

l l ! l l I

Ti V Cr Nn Fe Co Ni

FIG. 9. Local moments in the impurity Vhgner-Seitz cell for

3d impurities in Cu. , present calculations; ~, SSC; O, experi-

mental values. a, %'. D. gneiss, Z. Metallk. 58, 909 (1967); b,

M. Vochten, M. Labro, and S. Vynckier, Physica 86-888, 467

(1977);e, C. M. Hurd, J. Phys. Chem. Solids 30, 539 (1969);d, J.
R. Davies and T. J. Hicks, J. Phys. F 9, 753 i1979); e, Ref. 56; f,
J. R. Davies and T. J. Hicks, J. Phys. F 9, L7 (1979); g, P.
Steiner, S. Hufner, and W. V. Zdrojewsky, Phys, Rev. B 10,
4704 (1974).
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fied at —2. 8 eV below EF in agreement with earlier find-
ings of Norris and Wallden and Wallden. Cohen and
Slichter have recently performed jellium-type calcula-
tions for 3d impurities in Cu and have fitted their results
to NMR satellite data for these impurities. The resulting
positions of the virtual bound states for Fe, Mn, and Cr
are in astonishing agreement with our ab initio calcula-
tions except for the majority peaks of Fe and Mn for
which band-structure effects, not included in a jellium cal-
culation, are very important.

Coleridge et al. have performed de Haas —van Alphen
measurements at very dilute CuCr, CuMn, and CuFe.
Their results are in qualitative agreement with the loca-
tion of the virtual bound states found in our calculations,
i.e., resonance scattering at the minority virtual bound
state for Fe, a strongly asymmetrical scattering for both
spin directions for Mn, and no additional magnetic
scattering for Cr due to the more or less equal densities of
states for both spin directions at Ez. Recently Higgins
and Hendel made a detailed dHvA study for CuMn.
From their measurements they infer a moment of 3.4pz
(our value 3.44). Moreover, their measured ratio of the
spin-up —spin-down scattering of 0.25 favorably agrees
with our values for the corresponding local densities of
states at E~ [n+(EJ; )In (EF)=0.27].

Our present and previous results are strongly conflict-
ing with the cluster calculations of Johnson et al., who
obtained an extremely small exchange splitting for the vir-
tual bound states of CuFe and CuMn. In contrast, Delley
et a/. recently performed cluster calculations for AgFe
and for PdFe. By paying special attention to the local
properties of the impurities, they obtain for Fe in Ag a lo-
cal moment of 2.9pz, in satisfactory agreement with our
SSC (Refs. 11 and 12), yielding 2.94pii. The resulting ex-
change splitting of the Fe virtual bound states (1.7 eV) is
somewhat smaller than our value (2.2 eV) but still an or-
der of magnitude larger than that of Johnson et al. For
Fe in Pd Delley et al. obtain agreement with recent clus-
ter calculations of Rodriquez and Keller. The calculated
iron moments are 3.2pz and 3.3p~. For the same system
an unpublished SSC result by one of us (R.Z. ) gives 3.4pii.

V. SOME sp IMPURITIES: VACANCY, H, He, Mg, Si,
AND Ag IN Cu

In this section we present results for some selected sp
impurities in Cu, e.g. , for Mg and Si as well as for Ag.

Furthermore, we treat substitutional H and He, i.e., H and
He trapped in a Cu vacancy. The results for the vacancy
itself have already been published; a preliminary account
has been presented in a conference proceedings.

Figure 10 gives the LDOS for the substitutional impuri-
ties H and He and for the vacancy for which both the
cluster result and the SSC result are given. For the vacan-
cy we find a strong s peak at —4.2 eV and a smaller peak
of s and p character at —3.2 eV. From this strong struc-
ture it is clear that the hybridization with the Cu d band is
quite important. It is of interest to point out the close
similarity of the LDOS for the vacancy with that for a Na
impurity. ' Even minor features of the density of states
are similar, and in both cases roughly one electron is at-
tracted by the impurity cell (see Table III). For H we ob-
tain a very broad s intensity below the d band. This is
quite contrary to interstitial hydrogen for which usually a
bound state just below the band minimum, say at about
—10 eV, is obtained. The difference is due to the weaker
electrostatic potential of the host atoms that the hydrogen
"feels" at the substitutional site. For He a bound 1s state
below the band minimum is found, which is not shown in
Fig. 10.

Figure 11 shows the difference LDOS (neighbor LDOS
minus the host LDOS) at the perturbed neighbor sites of
H, He, and the vacancy, while again the SSC results for
the vacancy are added. In all three cases quantitatively
similar results are obtained. States are removed from the
lower-d band region and are added at higher energies.
This is just the opposite trend as found for the 4d and 3d
impurities, shown in Figs. 5 and 7. One could be tempted
to describe this by the simple bonding and antibonding
model of Fig. 3. Since the local energy levels of H and He
are lower than the Cu 3d levels the bonding levels are now
more localized on the impurity site, while the higher anti-
bonding levels are more 1ocalized on the neighboring sites.
However, at least for He this explanation has some prob-
lems, since the overlap between the He 1s states and the
Cu 3d states is exceedingly small (see below).

Figure 12 shows the spherically averaged charge density
for the vacancy and for H and He trapped in the vacancy.
In the vacancy Wigner-Seitz cell a local charge of 1.07
electrons is found, which is considerably larger than the
SSC number of 0.67 electron. Since the cluster consisting
of the vacancy and the 12 nearest neighbors is practically
neutral, there is a considerable charge transfer from the

TABLE III. Theoretical results for some sp impurities (same notation as in Table I).

Vacancy
H
He
Mg
Si
Ag

Zimp

0
1

2
2
4

11

Nsmp
loc

1.07
2.05
2.94
1.64
3.60

10.53

AN)"

—0.08
—0.08
—0.07

0.03
0.04
0.04

Charge
neutrality

0.06
0.11
0.05
0.00
0.04
0.03

+ 0.02
1.05
1.95
1.99
3.97

11.04

N free
tot

—0.30
1.07
1.56
2.17
4.70

11.06

N'""
tot

0.32
—0.02

0.38
—0.18
—0.73
—0.03
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first neighbors into the vacancy (see Table III). The
charge density at the center of the vacancy is 0.5 electron
per atomic cell, being about a factor of 4 smaller than the
density at thc %1gncl -Scltz I'ad1Us. Fox' Hc thc chazgc
density is strongly concentrated in the center of the cell,
while it follows the charge-density behavior of the vacan-
cy in the neighborhood of the Wigner-Seitz boundary.
ThUs apparently thc atomic Hc dcIlsity 81Hlply sUpcAHl-

poses the density in the vacancy. This is, however, not
quite true: The total charge in the impurity cell is 2.94 in-

ENERGY ( aV )

FIG. 11. Difference I DOS ln the Cu"neighbor ce11 of the va"

cancy and of substitutional H and He.
FIG. 12. Spherically averaged charge density (a.u.) in the

%igner-Seitz cell of the vacancy and of substitutional H and He.



stead of 1.07+ 2=3.07 if the superposition would hold.
The difference is also clear: The full ls core of He acts as
a weak and repulsive pseudopotential that diminishes the
density in the center of the vacancy ceil. However, at the
boundary and at the QclghborIng sites the vacancy proper-
ties are more or less unperturbed, which explains the close
agreement between the LDOS on the neighboring sites for
He and the vacancy. Compared to He, substitutional H
seems to be an intermediate case. While fairly localized,
there seems to be enough overlap with the Cu d electrons
In ordcI to make thc above bonding-RntlbondIng discus"
sion meaningful.

Similar to the case of the vacancy, the SSC results for
substitutional H and He are unreliable. For instance, for
He no bound ls state is obtained. A large part of this
discrepancy seems, however, to be connected with the
determination of the perturbed single-site potential in the
single-site calculation. For this we have only taken the
perturbed charge density within the perturbed muffin-tin
into account, thus completely neglecting the perturbed
charge outside. In contrast, Terakura et Ql. and
Katajama-Yoshida et al. and also Klein and Pickett
take the perturbed chaxge outside into account by reason-
ably extrapolating the single-site solution beyond the
muffin-tin radius. As has recently been demonstrated by
Klein and Pickett for the vacancy in Al, this can consid-
erably improve the quality of the single-site solution, espe-
cially in cases where the charge transfer is very important.
Note that in the present cluster calculation this problem
docs Qot arise siIlcc thc chRI'gc density within thc irIlpurIty
site and the first neighbor sites is treated exactly.

Figure 13 shows the LDOS for the sp impurities Mg
and Si together with Ag. The density of states is decom-
posed iIlto s, s+p, RQd s+p+d coIltributions. Thc re-
sults are very similar to the SSC.' The main characteris-
tics for Mg and Si are bonding and antibonding peaks
below and above the d band, while for Ag a virtual bound
state below the d band appears. Figure 14 shows the
difference LDOS for the neighbors of Mg, Si, and Ag.
Again a large repopulation is seen within the d band.
Especially for Mg and Si we have a strong shift of the in-
tensity from higher to lower energies, while for Ag the sit-

uation is more complex. In all cases intensity is lost at the
upper band edge. From Table 111 one sees that for Mg
and Si there is an appreciable charge transfer from the im-
purity to the neighbors: 0.36 and 0.40 electrons, respec-
tively, are missing in the impurity cell.

Thc total chaIgcs calculated USIng the Fricdcl sum alc
in good agreement with the valence of the impurity
(Z; &). The improvement compared to the single-site cal-
culations is quite remarkable. For instance, for Mg
(Z; ~

=2) the Friedel sum gives 1.99 instead of 1.52 in the
SSC, whereas for the vacancy (Z; ~=0) we obtain now
0.02 instead of 0.25 previously. Clearly, longer-ranged po-
tential perturbations are not important.

The present calculation refers to a cutoff energy for 6
of E, =16 cV above EF. The results are quite stable with
respect to variations of E, . For instance, even if a rather
low cutoff energy of E, =3 eV is chosen as in Ref 23,. the
local charge in the vacancy changes only from 1.07 to 1.10
electrons, whereas somewhat larger changes are obtained
for the Friedel sum X„,(—0.05 instead of + 0.02).

Thc calcu18tions pI'cscQtcd in this pRpcI' show that thc
KKR Green's-function method is capable of including po-
tential perturbations both at the impurity site Rnd at the
neighboring host sites. In this sense the present calcula-
tions are a natural extension of the previous single-site cal-
culations. Our calculations demonstrate that very often
a single perturbed potential gives a good qualitative
description of the defect properties and that the addition
of one shell of perturbed host potentials gives good quan-
titative results. This indicates the advantage of the
present approach compared to conventional cluster calcu-
lations. Qnly the perturbed potentials enter as a perturba-
tion in the Dyson equation. Since they are strongly local-
ized, the corresponding clusters to be considered can be
quite small, so that often only a single perturbed potential
is sufficient.

Our study shows that the influence of the Cu neighbors
on the 3d impurities is rather small; it is larger for the 4d
impurities. The LDOS of the impurity consists of the vir-

—- Ag
~ - ~ ~ * - NEIGHBOR- Ag

O~
—8

1 1
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T t I T
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FIG. 13. I.DOS in the impurity signer-Seitz ceH of Mg, Si, and Ag. The influence of the Ag virtual bound state on the I.DOS of
a Cu neighbor is also shown (dotted).
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FIG. 14. Difference LDOS in the Cu neighbor Wigner-Seitz
cell of Mg, Si, and Ag.

tual bound state, which is mostly strongly asymmetrical,
and of an appreciable intensity within the Cu d band.
These structures can be understood as the antibonding and
bonding combinations of the impurity d orbitals with the
host d electrons. While the changes of the charge density
and the potential on the neighboring sites are rather small,
the LDOS of the neighbors shows an important shift of
the intensity from the higher part of the d band to the
lower part, especially for 4d impurities. We therefore
predict such an effect in future XPS difference spectra.

Our calculations for the magnetic 3d impurities essen-

tially confirm the previous results based on a single per-
turbed potential. The calculated moments for Cr, Mn,
and Fe in Cu are somewhat larger than those in the SSC
and in general are in somewhat better agreement with the

experimental data. The neighboring host atoms become
slightly polarized, and the polarization of more distant
atoms seems to be very small. In contrast to the SSC, Co
in Cu is obtained as magnetic with a local moment of
0.96pz. This is, however, a very critical case since in the
SSC Co was just on the verge of becoming magnetic.

For the vacancy in Cu and for substitutional H and He
impurities the inclusion of perturbed potentials at the
neighboring sites is quite important. Locally, we obtain
1.07 electrons in the vacancy cell and 2.05 and 2.94 elec-
trons, respectively, in the impurity cell for H and He.
Thus there is a considerable charge transfer into the im-
purity cell, contrary to the SSC results.

We are convinced that the experience gained with the
present calculation allows for considerable improvement
in the future. For instance, more shells of perturbed po-
tentials can be included, so that a realistic calculation of
Friedel oscillations in the first shells around the impurity
is feasible. Lattice relaxations could be included along the
lines suggested by Lodder. More complicated defects,
e.g. , impurity pairs with perturbed neighboring potentials,
can be treated, etc. In all cases the computer time needed
does not seem to be prohibitive due to the combined use of
improved iteration schemes, complex-energy integration,
and group theory
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