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Comment on the enhanced magnetic susceptibility of expanded 1iquid cesium
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(Received 20 December 1983)

A maximum in the enhanced magnetic susceptibility of liquid cesium at low densities is shown to be re-
lated to a Curie-law limitation of the susceptibihty at the high experimental temperatures. Implications for
the nature of the enhancement are discussed and it is sho~n that the available experimental results support
a description of low-density cesium as a highly correlated, nearly antiferromagnetic metal.

Considerable interest has developed in thc electrical and
magnetic properties of liquid alkali metals expanded by
heating toward thc llquld-gas cI'ltlcal point. Because thc cl'lt-

ical densities are about 20'k of the normal liquid or solid
densities, large density variations can be achieved experi-
mentally before the metallic properties give way to a metal-
nonmetal transition close to the critica1 point. As elemen-
tal monov81cnt metals, expanded alkali metals approximate
the expanded alkali crystals considered by Mott3 in his origi-
nal discussion of the metal-nonmetal transition, and they
are well suited for investigating electron correlation effects
in low-density metals.

Much of the recent activity was motivated by the remark-
able results of Freyland5 who measured the magnetic sus-
ceptibility of expanded cesium along the liquid-gas coex-
istence curve over 8 density range of roughly 0.6 & p & 1.8
gcm 3. With decreasing density, there develops a growing
enhancement of the susceptibility which reaches a max-
imum at about 0.8 gcm . This density is roughly twice the
critical density p, . Similar enhancements have subsequently
been observed over more limited density ranges for rubidi-
um6 and sodium7 although for these metals Ao peak in the
susceptibility was found.

Enhanced susceptabilitics at low density are in general ac-
cord with theoretical expectations for increased effects duc
to electron-electron interactions. According to the Stoner
IYlodcl of cxchangc enhancement, wldcly acccptcd fol'

descriptions of thc susceptibility at normal densities, s thc
enhancement of X relative to the susceptibility Xo for nonin-
teracting electrons is

x/x. = [1-JN. (E,)]-',
where J is the exchange-correlation integral and N, (Ep) is
thc dcnslty of states pcI' atoIYl at thc Fermi cncI'gy. FGI' nor-
mal cestum, X/Xc= 1.8. Stnce Ng(Ep) should increase due
to band narrowing, Eq. (1) predicts increased enhancement
at low density. A divergence in X when the bracketed ex-
pression of Eq. (1) vanishes might, at high temperature,
take the form of 8 peak such as that observed for cesium.
However, calculations by Rose'0 predict that the maximum
enhancement should occur at the metal-nonmetal transition,
i.e., at a density roughly half that of the observed peak.

Rose suggested that increasing structural disorder in the ex-
panded llquld might rcducc thc sUsccptlblllty at thc lowest
dcnsltlcs and pI'odUcc 8 peak bcfol c thc metal-nonmetal
transition is reached.

Alternatively, Freylands suggested that electron correla-
tion effects enhance the susceptibility in the manner predict-
ed by Brinkman and Rice.4 The susceptibility enhancement
in a highly correlated metal takes a form different from Eq.
(1) and is described in terms of' an enhancement of the den-
sity of states or effective mass"

x/xe = N(EF)//Nc(E~) = m' .

In contrast with the Stoner picture, an enhanced specific
heat is predicted to accompany the susceptibility enhance-
ment for a highly correlated metal. Freyland' suggested that
thc susccptlbllity peak ln ccsiuIYl might bc duc to thc com-
peting effects of increased correlation enhancement and
development of a Hubbard pseudogap" which lowers
N(Ep) as the metal-nonmetal transition is approached.

It is the purpose of this Comment to point out that the
peak ln thc sUsccptlbllty has 8 simple cxp18ARtlorl which has
apparently been overlooked. The experimental susceptibili-
ty, converted to volume susceptibility units and corrected
for diamagnetism, ' is shown in Fig. 1. Also shown is the
free-spin Curie susceptibility Xc„„, calculated for the ap-
propriate densities and temperatures along the coexistence
curve. It is clear that the observed susceptibility is limited
by thc Curie value and follows the Curie law within about
150/o on the low-density side of the peak. The small ap-
parent discrepancy in magnitude is consistent with inherent
errors in the measured susceptibility, temperature, and den-
sity, and the estimated diamagnetic correction. The absence
of silYlilar- peaks ln thc obscIvcd susccptlbllltlcs of sodium
Rnd rubidium6 ~ is readily understood since the susceptibili-
ties are still well below the Curie limit at the minimum dcn-
sitites reached for those metals. Interestingly, extrapolation
of the rubidium data indicates that the Curie limit would be
reached at roughly the same reduced density p/p, ——2 as for
ccslum. It ls clear, however, that thc susccptlblllty peak ls
essentially a consequence of the high temperature at which
thc cxpcrlmcnts must bc condUctcd. Thc dcnslty valUc at
the peak therefore has no special significance in the context
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FIG. 1. Volume paramagnetic spin susceptibility vs density for
liquid cesium along the liquid-gas coexistence curve. Solid line:
experimental results of Freyland (Ref. 5) corrected for Ion core
and conduction-electron diamagnetism. Typical experimental un-
certainties in susceptibility and density are indicated. Broken line:
free-spin Curie susceptibility calculated for densities and tempera-
tures along the coexistence curve.

of theories in which it is assumed that the temperature is 0
K.

The simple explanation that the low-density susceptibility
of cesium is limited by the Curie law has nontrivial implica-
tions for interpretation of the enhancement. The ex-
change-enhanced susceptibility represented by Eq. (1) is not
restricted to X & Xc„„,and, in fact, can increase without lim-
it on approaching a transition to ferromagnetism. On the
other hand, an enhanced density of states as in Eq. (2)
leads to a reduced degeneracy temperature, and X cannot
exceed Xc„„., even in the strongly enhanced limit. This

behavior is described by integrals over the Fermi function
f(E)

—kT dE(df/dE) N(E)
r oo

dE f(E)N(E)Jo
(3)

and, for a free-electron-like band N(E)tom"i2E' 2, it is easi-
ly shown that X/Xc„,;, 1 for sufficiently large m'. Evalua-
tion of Eq. (3) under the conditions of the expanded cesium
experiments indicates that m'= 6.5 at p=0.8 gcm . Ac-
cording to the Brinkman-Rice theory, this value of the mass
implies a value g = 0.08 for the fraction of doubly occupied
sites. 4

The low-temperature magnetic state of a highly correlated
metal is predicted to be antiferromagnetic. " Spin-density
functional calculations of the ground-state energy of ex-
panded hydrogen and alkali-metal crystals also yield an anti-
ferromagnetic state. ' ' ' The observed magnetic proper-
ties of expanded liquid cesium support these predictions.
Analysis of the ' 'Cs nuclear-spin-relaxation rates and
Knight shifts revealed a change in the wave-vector (q)
dependence of the susceptibility enhancement leading to-
ward increased enhancement at high q relative to q=0.9

The same effect has been reported recently for expanded
liquid sodium. ' Such an increase in high-q enhancement
corresponds to a trend from Stoner-type (ferromagnetic)
enhancement to antiferromagnetic enhancement. Thus the
inferred density dependence of the q-dependent susceptibili-
ty is completely consistent with the Curie-law behavior of
the uniform (q = 0) susceptibility at low density. The mag-
netic properties of the expanded alkali metals are essentially
those of a highly correlated, nearly antiferromagnetic metal
or an antiferromagnet well above its ordering temperature.
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