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We have calculated the energy and atomic positions of possible ground-state configurations of Kr and Xe
monolayers physiadsorbed on graphite for different coverages. We do this by expanding in a Fourier series

the modulation of the atomic positions. In so doing, we extend the previous work of Shiba by (1) using

microscopic pair potentials, (2) taking into account the discreteness of the lattice, and (3) including anhar-

monic terms. It is found that the cubic term in the expansion of the rare-gas pair potential is significant for

Kr, but not for Xe. Excellent agreement is found with previous calculations using a different approach.

Graphite will, at low temperatures, allow physisadsorption
by rare gases such as Kr and Xe. Under suitable conditions,
rare-gas monolayers are formed which exhibit solid phases
that are either commensurate or incommensurate with the
carbon substrate. It is of interest to study these phases as
well as transitions between them (an excellent review is that
of Villain and Gordon' ). lf the monolayer is slightly ex-
panded or compressed beyond that of the E3x/3 graphite
configuration, then the interaction with the substrate will

cause a modulation of the triangular lattice associated with
the mean spacing. These modulations have the appearance
of registered domains separated by discommensurations or
domain walls. Model calculations for Kr (Ref. 2) and Xe
(Ref. 3) indicate that the incommensurate phases contain
very broad and smoothly varying structures ( —35 A for Kr
and —100 A for Xe). Experimental diffraction studies
also indicate that there are no sharp domain walls. Under
these circumstances, it is natural to make use of a method
similar to that of Shiba.

The present communication presents results for the
ground-state properties of Xe and Kr. The approach taken
generalizes Shiba's work in three respects: (i) We calculate
the forces between the adatoms using microscopic pair po-
tentials, instead of macroscopic stress tensors. (ii) When
calculating the displacements of the adatoms, the continua-
tion approximation is not made. (iii) Anharmonic contribu-
tions to the adatom pair potentials are taken into account.

The results of the present calculation are found to be in
good agreement with those of Refs. 2 and 3. The present
methods, however, are computationally considerably more
efficient and therefore are more suited to further applica-
tions. We plan to present elsewhere results on the phonon
modes, including the phonon contributions to the free ener-
gy.

In our study, we express the position of the ith adatom as

qI =1q~+mq2 (2)

r;=R;+ v;

~here R; is a triangular lattice vector with lattice constant
determined by the coverage, and v; is the displacement re-
lative to R;. We consider strain-free configurations that ex-
hibit periodic superstructures of hexagonal symmetry. Let

be a reciprocal lattice vector of the superlattice with primi-
tive vectors q~ and q2. The displacement field can be ex-
pressed as

vi +uIm e
l, m

(3)

For the rare-gas pair potential @( r; —r, ), we have used
the potential of Aziz. This potential was originally intend-
ed for Kr while in the case of Xe, we have rescaled the po-
tential parameters as discussed in Ref. 3.

We used the McLachlan expression as discussed by
Rauber, Klein, and Cole for the substrate mediated screen-
ing of the pair potential. In the case of Kr, calculations
were also performed with Sinanoglu-Pitzer' form for ease
of comparison with earlier work. '

The pair potentials are expanded in a Taylor series about
the points R;, giving for the total adatom-adatom interaction
energy

U=-r gy( r; —r, )

g [I+ (v; —v, ) '7 + —,
' [(v;—v, ) '0 ]'

+~[(v;—v, ) &]'+.. . )@( r; —r, ) (4)

x '7$( r; —r J)

Calculations have been performed in the harmonic ap-
proximation and for the case where the cubic anharmonic
term is included. In the harmonic case, we have also con-
sidered the effect of the continuous approximation. In this
approximation, the displacement field is considered to be a
continuously varying function v(R). Thus v; —v, in Eqs.
(4) and (5) is replaced by

v; —vj. = [(R;—R~) '7 + ~[(R;—RJ) V ] +. . . ) v(R~)

(6)

Similarly, the force on a given adatom is

F, = —/[I+(v —v ) '0+ —'[(v; —v ) '7]'+. . . )
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In the harmonic approximation, only terms up to second
order are retained in (6). In what we call the discrete ap-
proach, no use is made of the expansion (6).

The rare-gas-substrate interaction is treated as in Refs. 2
and 3. We construct a two-dimensional potential V( r;) to
describe the interaction where

V( r, ) = V0+ g V-e

g is a substrate reciprocal lattice vector and only the first
shell of g's are considered in the summation. Similarly, the
force of a given adatom due to the substrate is

lg' f
F( r () = —pig V-, e (8)

The total force on a given adatom can be obtained by
summing Eqs. (5) and (8). From the assumed periodicity,

we can express this force as a Fourier series

F(r;)=/F1 e
l, m

In this way, the coefficients FI can be expressed as an ima
plicit function of the set [uI I defined by Eq. (3). In all
cases considered, it was found that the contribution to the
displacements from Fourier coefficients beyond the order
m, l= +3 gave rise to a negligible contribution. If one
wishes to consider coverages very close to registered
J3 x J3 configuration, it would be necessary to include
more coefficients. The present calculations involve solving
a coupled set of nonlinear equations obtained by setting the
coefficients FI equal to zero. %'e used a multidimensional
Newton step method because it provided rapid convergence
for initial states close to the force-free state. The calcula-
tions were carried out sequentially for coverages approach-
ing registry using the coefficients of each previous calcula-
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FIG. 1. Lowest-energy configurations for Kr on graphite as a function of coverage for different values of the substrate potential
parameter V
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FIG. 2. As in Fig. 1, but for Xe.

tion as input for the initial state of the next calculation. For
the first calculation in each sequence, an initial state with
zero displacements was used.

We show in Fig. 1 results for Kr using the discrete har-
monic and cubic approximations using McLachlan screen-
ing. In this calculation, the radial cutoff is set to include the
shells up to a distance of 30 A. The results from the con-
tinuum approximation are indistinguishable from that of
discrete treatment in the harmonic case and therefore not
shown. It is seen that while the contribution from the cubic
term is relatively small in magnitude, it is still significant in
determining whether the registered configuration is energet-
ically favored. Presumably the reason for this is that when
the incommensurate configurations are compressed, the cu-

bic term increases the domain-wall energy. We have repeat-
ed the calculations using the parameter values in Ref. 2.
The results were found to agree within 1 K for the calcula-
tion that took into account the cubic approximation.

In Fig. 2, we show results for Xe. In this case, the effect
of the anharmonic terms are found to be qualitatively insig-
nificant. The reason for this is that the domain walls are
very broad and smooth for Xe.
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