
PHYSICAL REVIEW B VOLUME 29, NUMBER 12

Optical properties of randomly distributed particles

15 JUNE 1984

Ansgar Liebsch
Institut fiir Festkorperforschung, Kernforschungsanlage tulich, D 5I-70 tiilich, West Germany

and Instituto de I'isica, Unioersidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

Pedro Villasenor Gonzalez
Instituto de Fisica, UniUersidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

(Received 17 October 1983)

The optical properties of inhomogeneous media consisting of small metal particles in a dielectric

host (cermet topology) are studied using the coherent-potential approximation in conjunction with a
lattice-gas model. The theory includes the dipole fields of the randomly distributed particles and

constitutes a self-consistent generalization of the Maxwell-Garnett model. It is shown that the dis-

order leads to a sizable red shift and broadening of absorption peaks. These effects are largest near

filling fractions of about 10—20% in contrast to multipole-induced changes, which become impor-

tant at higher particle concentrations. The composite dielectric function is shown to satisfy the

rigorous bounds which hold for any two-component system. The disorder treatment is extended to
multicomponent composites in order to illustrate the effect of nonuniform particle sizes. In the case
of two-dimensional inhomogeneous systems, the disorder is shown to have a qualitatively different

influence on the shift and broadening of the parallel and perpendicular collective modes. Several ap-

plications of the theory to real systems are given and compared with experimental absorption spec-

tra.

I. INTRODUCTION

The remarkable range of electromagnetic properties
found in inhomogeneous systems has attracted attention
for a long time. ' In recent years this class of materials
has been widely studied because of the potential usefulness
as efficient photothermal solar energy converters. In
practice, the spectral selectivity that is required for good
absorber surfaces (high absorption in the visible and the
ultraviolet and low emission at thermal wavelengths to
reduce losses due to reradiation) can presumably only be
achieved by combining a variety of mechanisms such as
surface roughness, interference, intrinsic properties, inho-
mogeneity, etc. In this regard, composite systems con-
sisting of small metallic particles (diameter —100 A)
dispersed in a dielectric host material are of particular im-
portance for solar-energy conversion since they tend to ex-
hibit large absorption cross sections at visible frequen-
cies.

Recently, a new theoretical method"' has been
developed which allows an approximate description of the
influence of particle interactions on absorption spectra of
composites. The metallic particles are assumed to be
completely surrounded by the insulating host, i.e., the mi-
crostructure of the two-component system is character-
ized by the so-called cermet topology. In the procedure
discussed in Refs. 4 and 5, the coherent-potential approxi-
mation (CPA) is employed in order to take into account
the contributions to the local electric field arising from
the randomly located polarizable particles. This theory
therefore represents a self-consistent generalization of the
Maxwell-Garnett (MG) model which has been widely
used to interpret the optical behavior of inhomogeneous
systems. The disorder was shown to cause a sizable

broadening and a red shift of absorption peaks. In con-
trast, the MG model assumes the local field acting on a
particle to be given by the Lorentz relation, i.e., the pres-
ence of disorder is ignored. As has been noted in many
experimental studies, the MG theory tends to underesti-
mate the linewidths of absorption features and to place
their positions at too-short wavelengths. The CPA treat-
ment presented in Refs. 4 and 5 demonstrates that the
randomness of the particle positions has pronounced in-
fluence on the optical properties of inhomogeneous media
and that this effect can, at least partially, explain the
discrepancies between the predictions of the MG model
and observed absorption spectra.

The purpose of the present work is twofold: First, in
Sec. II several features of the theory given in Refs. 4 and
5 are discussed in greater detail in order to illustrate the
consequences of the coherent-potential approximation. In
particular, the implications of the lattice-gas model, on
which the theory is based, are demonstrated. Also, it is
shown that the dielectric function of the composite de-
rived within the CPA lies within the bounds which are
known to exist on general grounds for any two-component
system. ' A comparison is then given of the CPA and
an alternative method for treating particle interactions in
random systems which has recently been proposed by
Lamb et al. " This comparison also serves to illustrate
the effect of multipole interactions on absorption spectra.
Furthermore, the CPA treatment is extended to the case
of particle mixtures embedded in a dielectric host, in or-
der to study the influence of deviations from uniform par-
ticle size. Finally, the relationship of the theory given in
Refs. 4 and 5 to its two-dimensional analog will be dis-
cussed. This is of particular importance for experiments
on ultrathin inhomogeneous films which might consist of
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only a single plane of particles suspended on a substrate
material.

In all of the cases listed above, the dielectric properties
of the metallic particles are for illustrative purposes
represented by a Drude model. Applications to several
real metals in dielectric hosts and comparisons with ex-
perimental spectra will be discussed in Sec. III. Such
comparisons are necessarily of a qualitative nature since
the present theoretical work deals only with one particular
aspect of the optical properties of composites, namely, the
influence of disorder. Real systems, on the other hand,
are usually very difficult to characterize and their absorp-
tion spectra can be affected by a variety of factors such as
nonrandom-particle distributions (particle clustering), de-
viations from spherical particle shape, nonuniform size,
defects within particles, voids within the insulating medi-
um, ctc.

000 000
p ~ c x

6 000 000
FIG. 1. (a) Schematic representation of a lattice gas for parti-

cles of polarizability eo(m) (shaded circles). (b) Fully occupied
lattice of "average particles" with effective polarizability a(u)
(open circles). (c) Real impurity particle in otherwise perfect lat-
tlcc of avcragc partlclcs. Thc CPA consists ln ldcntlfylng thc
induced-dipole moment p of a particle in (b) with that induced
in impurity in {e), po, weighted by impurity concentration c [see
Eq. (6)].

~r. THE COHERENT-POTENTIAL APPROXIMATION
FOR T% O-COMPONENT SYSTEMS

OF CERMET TOPOLOGY

n=c =f R
Q

(2)

where m =1,2,4 for sc, bcc, fcc, respectively. This par-
tially occupied lattice will now be simulated by a fully oc-
cupied lattice of identical "average particles, " each of
which is characterized by an effective single-particle po-

A. Description of theory

Let us consider a system of identical metal particles of
spherical shape (radius R) and dielectric function eo(~)
embedded in a continuous insulating host Inaterial with
dielectric function c'&(co). The particle size is assumed to
be small compared to the wavelength of the incident radi-
ation. The polarizability of a single sphere surrounded by
the medium is given by'

, co(ro) —co(ro)
uo(co) =R

eo(co)+ 2@i(co)

In order to obtain an approximate expression for the mac-
roscopic dielectric function c(ro) of the two-component
system, we first replace the true random-particle distribu-
tion by a lattice gas. Thus the particles may only occupy
the sites of a fictitious lattice. The symmetry of this lat-
tice is assumed to be cubic (sc, bcc, fcc), and the lattice
constant a is chosen such that the nearest-neighbor spac-
ing d satisfies d & 28. As we will demonstrate for a par-
ticular case in the following section, the choice of the lat-
tice symmetry is not crucial because of the long-range na-
ture of dipole interactions. However, most examples will
be given for the fcc structure since it implies weaker
geometrical constraints on the particle distributions than
those for the bcc or sc lattices.

Let us assume a fraction c of sites of the hypothetical
lattice to be occupied by metallic particles. This concen-
tration c may vary between 0 and 1. It is related to the
volume density of particles n and to the fraction of
volume occupied by metal f by

larizability a(ro). [See schematic views in Figs. 1(a) and
1(b).] Once a procedure is established for determining
a(co), the dielectric function of the composite, c'(co), may
be obtained via the Clausius-Mossotti (CM) relation

~(~)—c~(~)

e(a) )+2@1(co)
4m m

, II(ro) . (3)

[Note that m/a =nlc represents the volume density of
the effective particles with polarizability a(co).] Equation
(3) is applicable since the average particles form a com-
plete lattice of cubic symmetry.

The main task now consists in finding an adequate rep-
resentation of the effective polarizability u(co). The most
straightforward approximation of a(co) would be given by

a(~) =cao(al) (ATA) . (4)

C(co) —el(co)
nao(co) (MG) .

E ro +26t a) 3

Since the Clausius-Mossotti relation is strictly applicable
to only cubic structures, the MG formula (5) neglects that
contribution to the local electric field which arises from
the randomly distributed metallic spheres in the vicinity
of a given particle. In order to include these fields in an
approximate manner, an improved representation of a(co)
must be found.

Within the coherent-potential approximation the pro-
cedure for determining a(ul) is as follows. ' Let us as-
slllllc fll'st tllat flic oIlglll of thc lattlcc Is occupied by a
real particle with polarizability ao(co) and all other sites
by average particles with polarizability a(co). The dipole
moment induced in the particle at the origin due to an
cxtcfIlal field 1s dcflncd as po. If the origin 1s instead oc-
cupied by an average particle (all other sites as before), the

This cholcc corresponds to thc avcragc —t-matr1x appI'ox1-
mation (ATA) in alloy theories. Inserting (4) into (3), we
obtain the formula originally derived by Maxwell-Garnett
to describe tllc optical plopcl'tlcs of I'alldolllly dlspclscd
metallic particles:
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induced dipole moment is denoted by p. The CPA then
consists in identifying

P =~10

[see schematic representation in Fig. 1(c)]. As shown in
detail in Ref. 5 [see Eqs. (6)—(13) and Appendix], this
equation leads to the following self-consistency condition
for the effective polarizability a(co):

a(co) =cao(a)) 1+[ao(m) —a(oi)] g U(q)

q
I+a(~)U(q)

(CPA)

where the sum over q extends over the Brillouin zone of
volume m (2~/a) and U( q ) denotes the Fourier
transform of the dipole tensor:

U»(q)= g e'q' (R 5» 3R,R—&)R
R (~0)

Since we have assumed isotropic particles and cubic lat-
tice symmetry, it can easily be shown that the average
particles are also isotropic. Thus an explicit tensor nota-
tion in Eq. (7) has been omitted for convenience.

Obviously, if U(q) is set equal to 0 in Eq. (7), we re-
cover the average —t-matrix expression a(co) given in Eq.
(4). Thus the local fields from randomly located polariz-
able particles which are neglected in the ATA and MG
theory, appear in the CPA via the Brillouin-zone integra-
tion over the dipole tensor U(q). In the case of a fully
occupied cubic lattice, on the other hand, c =1 and
a(to)=ao(co). In this limit only the small-q limit of
U(q) for transverse fields, ——', m.n, enters the expression
for the dielectric function. This may be seen by rewriting
the Clausius-Mossotti relation in the form

e(co) —1=4mn
ao(co)

(ATA) .
1 ——', mnao(co)

Thus the single-particle polarizability ao(co) is renormal-
ized via the interaction U(qo)= —Tn.n, where qo corre-
sponds to the wave vector of the incident radiation. The
CPA, however, gives

e(oi) ao(o~)/y(m)—1 =4mn (CPA), (10)
1 —', nnao(c—o)/y(co)

where y(co) denotes the denominator of Eq. (7). The
single-particle polarizability ao(co) is seen to be further re-
normalized by the factor [y(co)] ' as a result of the posi-
tional disorder among the metal particles.

B. Application to Drude particles

In this section we apply the CPA to a system of Drude
particles in order to illustrate the effect of the disorder on
the absorption spectra and to examine more closely the
validity of the lattice-gas model. As shown in Ref. 5, the
interpretation of disorder-induced modifications of ab-

&p = 9.2eV
fcc

i =2.37
d =2R

0

K XX W r
q

FIG. 2. Dispersion of dipole modes for ordered fcc lattice of Drude particles in dielectric medium. The single-particle resonance is
coo and the longitudinal and transverse modes at q =0 are mL and coT, respectively.
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3c)
1 —E(+

1+5k,,(q)
co,(q) =co~

v=1, . . . , 3 (11)

sorption features is greatly facilitated by relating them to
the normal modes of a fu11y occupied cubic lattice of me-
tallic particles. If these particles are described by a Drude
dielectric function, the modes are given by

1/2

COp

Q)T =
& 2

——1.80 eV
(1+10.56m))'~

(14a)

fcc lattice with co&
——9.2 eV (corresponding to silver),

e& ——2.37, and the nearest-neighbor distance is d =2R (i.e.,
a =2v2R and 5=V2/8). Since the A,„(q) are confined
to the interval ——,'~(A, ,( ', n—,

's. the frequencies co„(q)
lie in the interval defined by

where co& is the plasma frequency of the bulk metal, e& (=
const) is the dielectric constant of the surrounding medi-
um, and the parameter 5 is defined as

COp

COI = =7.55 eV .
(1+0.21. )

~
= (14b)

5=m(R/a) =R nlc =3f/4m. c . (12)

Q
u,„(q)—= U,„(q) .

m

The functions A,,(q), v= 1, . . . , 3, represent the eigen-
values of the renormalized dipole tensor

These limiting frequencies correspond, respectively, to the

transverse and longitudinal modes at q=0. The reso-
nance frequency of an isolated Drude particle is given by

COp

ao —— ——3.84 eV
(1+2~ )'"

Figure 2 shows the dispersion of co,(q) for the case of a and corresponds to the value of co,(q) in the limit of van-

(a

V i' ~ 0.2 eV

6, ~ 2.57

3
I8

E
H

0.6-

a («)
FICz. 3. (a) Frequency dependence of imaginary part of effective polarizability o;(~) at several filling fractions. Solid lines, CPA;

dotted line, MG formula (independent off ). (b) Density of states for modes shown in Fig. 2.
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ishing dipole interactions, i.e., A,,(q) —+0. It is useful to
define the density of states for the normal modes pE„(q) in
the usual way:

v=]
q

The frequency dependence of p(co) is shown in Fig. 3(b)
for the same set of parameters as in the example given
above.

It is illustrative to compare the effective polarizability
a(co) of an average particle, obtained from the CPA self-
consistency condition (7), with the corresponding ATA or
MG result given by Eq. (5). To facilitate the comparison,
we show in Fig. 3(a) the imaginary parts of the functions
a(co)=a(co)/cR for three filling fractions, f=0.1, 0.2,
and 0.3 [in the ATA we have from Eq. (4):
a(pE)=ap(co)/R3 independently of f]. A damping pa-
rarneter I =0.2 eV has been included in the Drude dielec-
tric function of the metallic particles. Whereas in the
MG approximation, Ima(co) is a symmetric peak of width
I located at pro independently of f, the CPA is seen to
give a considerably broadened, asymmetric absorption
feature whose maximum lies well below the single-particle
frequency coo. Moreover, peak position and width depend
strongly on the concentration of metallic particles.

The comparison of Figs. 3(a) and 3(b) indicates that, as
a consequence of the disorder among particles, the effec-
tive polarizability a(co) shows spectral weight in the entire
range of normal modes, coT&co&coL, which exist in the
fully occupied three-dimensional lattice. (Because of the
finite damping, weak absorption persists also beyond this
frequency interval. ) The degree to which the position and
shape of Ima(pE) differ from the single-particle frequency
cop and width I", depends on the local electric fields pro-
duced by the surrounding randomly distributed particles,
and therefore depends on the filling fraction f. Obvious-

ly, in the limit of small f, a(pE) approaches the ATA or
MG form given by cuo(co). In the opposite limit of close
packing (i.e., c =1 or f =m.v 2/6 for fcc), the effective
polarizability a(co) also reduces to ap(co), since, in the case
of an ordered cubic lattice, the dipole fields of particles
within the Lorentz cavity cancel each other identically. '

A remarkable result of the CPA treatment of the disorder
problem is that the induced broadening is largest at rela-
tively small filling fractions: At f=20%, Ima(co) has a
width of 2 eV [full width at half maximum (FWHM)],
i.e., an order of magnitude larger than in the ATA.

The fact that the maximum of the absorption peaks in
Fig. 3(a) lies below the single-particle resonance frequency
cop is a direct consequence of the asymmetry of the density
of states shown in 3(b). [A symmetric p(pE) would indeed
lead to a symmetric broadening of a(co) about cop.] Since
all three cubic structures sc, bcc, and fcc show very simi-
lar densities of states as a result of the long-range dipole
interactions, this kind of red shift presumably is a conse-
quence of dipolar interactions in general and not just in
the special case of a lattice-gas model.

Figure 4(a) shows the imaginary parts of the CPA
dielectric function, e(co), and of the corresponding loss
function, —e(co) ', at several filling factors. The posi-

tions of the MG absorption and loss peaks are indicated
by the vertical arrows. It can easily be verified that, in the
MCx limit, absorption as well as loss peaks have the same
width I as the single-particle polarizability ap(co), in-
dependently of f. In Fig. 4(b) the positions of absorption
and loss peaks obtained using the CPA are plotted as
functions of f. The vertical bars indicate the widths
(FWHM). The absorption features predicted by the CPA
are seen to lie typically 0.5 eV below the MG peaks while
the positions of the loss features are blue-shifted by about
the same amount. The disorder-induced broadening is
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FIG. 4. (a) Absorption and loss spectra for Drude particles as
calculated using CPA at various filling fractions. The corre-
sponding peak positions in the MG limit are indicated by the ar-
rows. (b) Variation of maxima of absorption and loss peaks
with filling fraction. The vertical bars denote the width of these
peaks (FWHM). In the MG limit, the width is equal to I re-
gardless of f.



6912 ANSGAR LIEBSCH AND PEDRO VILLASENOR GONZALEZ 29

3e,fa2(co)
Ime(co) =

[1—fai(~)]'+ [fa2(~)]'
(18)

I0-
)I
(

(I
(I
(I
(I
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( I
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I
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(dp & 9.2 sv
I = 02eV

gl = 257
= 0,2

3

0
a
K

very pronounced and exceeds 1 eV for f =10%%uo to 20%.
In the limit of close packing (c =1 and f =mV2/6 in this
example), the CPA approaches the MG limit, i.e., Ime(co)
consists of a Lorentzian peak of width I'=0.2 eV located
at coT given by Eq. 14(a), while the maximum of
Im[ —e(co) ') is located at coL, Eq. 14(b). Thus in the case
of a cubic, fully occupied lattice of particles, only the

q = 0 modes of the band structure shown in Fig. 2 contri-
bute to the absorption and loss spectra. At smaller filling
fractions, all (transverse as well as longitudinal) modes of
the three-dimensional Brillouin zone, coT & co,( q ) & coL,

may contribute to the spectra as a consequence of the dis-
order.

The fact that the absorption peaks are red-shifted rela-
tive to the MG results while the loss peaks are blue-
shifted may be understood as follows: Equations (9) and
(10) for the composite dielectric function can be rewritten
in the form

e(co) 3fa(co )
(17)

1 fa(co)—

where a(co) =a(co)/cR as in Fig. 3(b), and a(co) is given
by expressions (4) and (7) in the ATA and CPA, respec-
tively. With a(co) =a~(co)+iaz(co) we obtain

—1

e(co)

3@~fa2(co)

[I+2fai(~)]'+ [2faz(~)]'
(19)

The application of the coherent-potential approxima-
tion to the disordered system of metal particles, as
described in Sec. IIA, is based on the lattice-gas model,
i.e., on the restriction of the particle positions to the sites
of an imagined (cubic) lattice. Obviously the choice of the
lattice parameter (in relation to the particle diameter) as
well as the symmetry of the lattice (sc, bcc, fcc) are, to
some extent arbitrary and in order for the lattice-gas
model to be justified, they should not influence the calcu-
lated absorption spectra as far as the overall qualitative
behavior is concerned.

The essential physical argument for the adequacy of the
lattice gas in the present problem is the fact that the di-
pole interaction is rather long ranged. Of course, with in-
creasing interparticle spacings, the change of the local
electric field due to the surrounding randomly distributed
metal particles must diminish. However, because of the
r dependence of the dipole field, this reduction can be
expected to be rather gradual. The symmetry of the ficti-
tious lattice should have an even weaker influence on the
effective local field at a given particle, at least as long as

Figure 5 shows the functions a~(co) for f =0.2 obtained
by applying the ATA and CPA. [The corresponding ima-
ginary parts a2(co) are shown in Fig. 3(a).] The maxima
of Ime'(co) are approximately determined by the condition

~

1 —fat(co)
~

=min whereas those of Im[ —e(co) '] are
given by

~
1+2fat(co)

I
=min [see dotted-dashed lines;

the actual maxima of the absorption and loss peaks might
differ somewhat from these positions because of the fre-
quency dependence of the imaginary parts a2(co)]. Evi-
dently because of the disorder-induced broadening of
Ima(co) [see Fig. 3(a)], the real part of the CPA effective
polarizability, a&(co), approaches the lines f and
—(2f) ' much farther away from coo than in the case of
the ATA. This explains the red shift of the absorption
peaks and blue shift of the loss peaks shown in Fig. 4.

C. The lattice-gas model

-5-

4) (eV )

I T
r- (2f)

I I
I
I
I
(
I

CPA I

MG ] (

I(
Il
I(

coo)l

0 2

4.0

3.53
ld

E

O

3.03

=2.37

FIG. 5. Frequency dependence of real part of effective polar-
izability a{co) for f =0.2. The intersections with or closest ap-
proaches to the lines 1/f and —1/2f give the positions of the
absorption and loss peaks, respectively [see Eqs. {18)and {19)].
The horizontal arrows indicate the frequency shifts of these
peaks as a result of the disorder.

0.6"0 0.2 0.4
filling factor f

FIG. 6. Frequency of maximum of absorption peak as func-
tion of filling factor for sc, bcc, and fcc lattice gases. Interparti-
cle spacings are chosen such that 5=

8 [see Eq. {12)].1
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&0(~)(1+2f)+2ei(1f-
eo(co)(1 f)+ei(2+f)—
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FIG. 8. Bounds of dielectric function E'(x), Eq. (21), for two
energies co. The Maxwell-Garnett values are indicated by dots,
the corresponding CPA results by crosses.
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while the latter point corresponds to the MG dielectric
function of the "inverse" topology (a volume fraction
1 f occupied b—y dielectric spheres surrounded by metal-
lic medium):

er(3 —2f)+2eo(~)f
e'(co)=so(co) =E(—, ) .E)+Eo co '3—

Figure 8 shows the function E'(x) at two frequencies,
co=2.75 eV and co=3.25 eV, for f=0.2 [see spectra in
Figs. 4(a) and 7(a)]. The dots mark the positions of the
end points given by Eqs. (22) and (23). For clarity we do
not show the arcs defined by E(x) since they lie outside
the area enclosed by E'(x) and the straight line connect-
ing the points E(0) and E(—', ). At both energies, the
values of the CPA dielectric function (crosses) lie well in-
side the boundaries, although their locations in the com-
plex plane are rather different from the corresponding
MG values. This behavior is fairly typical for other fre-
quencies and filling fractions; in all the cases that we have
investigated the CPA results were found to satisfy the re-
quired boundary conditions. On the other hand, they are
not closely correlated with the corresponding MG limits
even though the underlying microstructure is the same.
In general, the CPA results tend to be much more concen-
trated near the origin of the complex e plane since the
disorder-induced broadening suppresses the rapid varia-
tions of Ime(co) shown by the MG dielectric function in
the vicinity of the absorption-resonance frequency.

E. Multipole interactions

The results summarized in Fig. 4(b) demonstrate that
the disorder-induced shift and broadening of absorption as
well as loss peaks is largest at filling fractions near
10—20%. This behavior is in striking contrast to the ef-
fects that arise as a result of multipole interactions, which
are not included in this work. In general, higher-than-
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FIG. 9. Absorption coefficient (Drude) for gold particles in
KBr. (a) Dipole approximation. Solid line, CPA; dashed line,
theoretical results of Lamb et al. (Ref. 11); dotted line,
Maxwell-Garnett formula. (b) Comparison of dipole approxi-
mation (solid line, CPA; dashed line, LWA) with multipole ex-
pansion (dotted line) of LWA (Ref. 11).

dipole terms become important at small interparticle spac-
ings, i.e., at rather large values off. '

In order to illustrate the role of multipole fields in ab-
sorption spectra we compare our results in this section
with those of Lamb, Wood, and Ashcroft"' (LWA),
who investigated the optical properties of inhomogeneous
systems using a rather different approach. Essentially,
these authors replace the system of disordered particles by
a periodic system with a large basis and describe the



OPTICAL PROPERTIES QF RANDOM' DISTRIBUTED PARTICLES

random-particle arrangement withm the unit cell in terms
of distribution functions of a hard-sphere fluid. Figure
9(a) shows a comparison of the absorption coefficient
P(co) for gold particles (represented for simplicity by a
Drude dielectric function) in KBr as calculated by LWA
in the dipole limit (multipole index I =1) and the corre-
sponding result obtained using the CPA. Although the
quantitative details are quite different for the two ap-
proaches, the overall behavior is similar. Compared to the
Maxwell-Garnett limit, the disorder in both theories is
seen to cause a red shift and a broadening of the absorp-
tion peak. Since the numerical work of LWA includes
only specific interparticle correlations of a hard-sphere
distribution, the absorption coefficient exhibits consider-
able fine structure. The CPA, on the other hand, is
known to represent an average over many (including
higher order) particle distributions; thus the red shift and
broademng are more pronounced.

LWA have also calculated the absorption spectrum in-

cluding higher-order multipole interactions between parti-
cles. A comparison of their results for 1=1 and l(12
with the CPA is shown in Fig. 9(b). The multipoles are
seen to increase the amount of fine structure in the ab-
sorption coefficient and to enhance the red shift of the
main absorption peak near co =0.32co~. While some of the
new features correspond to genuine multipole resonances,
others are certaInly a consequence of the partIcular mter-
particle distributions included in the theory. (The pro-
nounced dip at m=0. 38co~, for example, is presumably
spurious since it is also present in the dipole Hmit. ) Note
also that the damping constant I' in Fig. 9 corresponds to
the bulk value of gold. If a more realistic value is used to
take into account the finite particle size, much of the fine
structure disappears and the broadening of the absorption
peak increases. (See Figs. 3 and 4 of Ref. 11.) In this case
the similarity of the results for I =1 and I (12 is much
greater than in the example shown in Fig. 9(b).

The absorption spectra in Fig. 9 are for a rather small
filling fraction of 20%. At these concentrations the aver-
age spacing between metal particles is apparently suffi-
ciently large so that multipole fields cause only minor
modifications of the position and shape of the absorption
peak. At smaller values of f, these effects are even weak-
er. The disorder among particles, on the other hand,
causes strong deviations from the Maxwell-Garnett result,
even at filling fractions as small as 5—10% (see Fig. 4).

The role of multipole interactions has also been investi-
gated by Doyle for ordered cubic lattices of perfectly
conducting spheres. While multipole effects are weaker in
ordered than in disordered systems (the latter involves
more close approaches between particles), it is nevertheless
instructive to compare them with the disorder-related
changes of the dielectric function. In Fig. 10 the enhance-
ment of e compared to the MG value is plotted as func-
tion of filling fraction. The solid line gives the result ob-
tained within the CPA (dipoles only) for a lattice gas (fcc
symmetry) where the lattice parameter is kept constant
(a =4R/V3). The dashed line corresponds to the in-
crease of c due to multipoles in the case of an ordered fcc
lattice where the lattice constant is varied according to
f=I 3 Ir(R/a) [see Eq. (12); c =1 in this case since the

I.05

PIG. 10. Enhancement of Maxwell-Garnett dielectric con-
stant for perfectly conducting spheres in vacuum as function of
filling fraction. Solid curve: effect of disorder for lattice gas as
calculated within CPA, dashed curve: influence of multipoles
for perfectly ordered fcc lattice (Ref. 18).

lattice is fully occupied]. ' The latter increase is seen to
become important only at f&50%, while the enhance-
ment due to disorder is appreciable already near f= 10%
to 20%. (Since the CPA calculation includes only dipole
fields, e=eMo at f,„=0.74. Multipole interactions, on
the other hand, cause e to diverge at f,„.)

F. Multicomponent systems: nonuniform particle size

In the work discussed so far we have assumed that all
metal particles are spherical and of identical size. In
practice, of course„deviations from exact sphericity and
from uniform size are nearly always present, so that true
111110IIlogcIlcolls systcIIis co11s1st111g of 111ctal paI'tlclcs 111 a
dielectric medium are in fact usually multicomponent sys-
tern. s. The CPA treatment described in Sec. II A can easi-
ly be extended to composites of this kind. As an example,
we discuss in this section a random distribution of spheri-
cal particles whose dielectric properties are assumed to be
identical [i.e., they are characterized by the same eo(co)j,
but whose radii may be different.

Let us introduce the parameters y; =(R;/R), where R;
is the radius of the ith type of particle and R the radius of
the average particle whose effective polarizability a(co)
will be calculated using the CPA. Since the dielectric
functions are assumed to be the same for all particles, the
single-particle polarizabilities may be written as

As in the case of the two-component system, we first cal-
culate the induced dipole moment p; of a real particle of
radius R; surrounded by a perfect fcc lattice of ficticious
particles of radius R and polarizability a(co). If the rela-
tive concentrations of the various types of particles are
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denoted by c; we have, in analogy to Eq. (6),

p= Qci pt i (25)

where p is again the dipole moment induced in an aver-
age particle. Instead of Eq.(7), therefore, we obtain the
following self-consistency condition for the effective po-
larizability a(co):

a(r0) = g c;a;(co) 1+[a;(co)—a(co)] Q U(q)
1 ~a(co) U(q)

(26)

(This formula is, of course, also applicable to inhomo-
geneous systems consisting of particles whose shapes
and/or dielectric properties are nonuniform. )

In order to illustrate the consequences of nonuniform
particle sizes we show in Fig. 11 absorption spectra for
silver particles (represented by a Drude model as before)
with the following distributions: (a) Equal volume frac-
tions (10%) are occupied by particles of radius R1 ——R
and Rz ——R/2', i.e., f& fz ——0.——1 and y&=1.0, yz ——0.5.
The concentrations of sites in the fcc lattice that are occu-
pied by these two types of particles are, respectively,
c1 ——f~( —,rr5y1) '=0. 135 and cz ——2c1. (b) Equal con-
centrations of sites are occupied by particles of radius
R& ——R and Rz ——R/2', i.e., y~ ——1.0, yz 0.5 as in——(a),
but f& 0 4/——3 a.nd fz ——0.2/3 (c& ——cz ——0. 18). The total
filling fraction f=f&+fz is 0.2 in both cases. Also
shown for comparison is the absorption spectrum for par-
ticles of uniform size (radius R) at f=0.2 [see also Fig.
4(a)].

The nonuniformity of particle sizes is seen to enhance
the broadening of the absorption peak while the red shift
of the maximum relative to the MG position (see arrow) is
slightly reduced. This may be understood by considering
the spectra for R1&Rz as approximate superpositions of
absorption peaks corresponding to filling fractions f&

and
fz. According to Fig. 4(b), the broadening is larger for
f=0.2/3, 0.3/3, 0.4/3 than for f=0.2, while the maxi-
ma of the absorption peaks lie at higher energies in this
range of f. Since the MG formula, on the other hand, de-
pends only on the total volume fraction occupied by metal
(in our example all particles are assumed to have identical
dielectric properties), it yields identical peaks of width
I =0.2 eV for all three cases shown in Fig. 11.

G. Two-dimensional inhomogeneous systems

As pointed out in Sec. IIA, in a three-dimensional
random-particle distribution the effective polarizability

= 9.2eY I = 02eV , = 2.37 f =0.2

IO-

~(eY)
FIG. 11. Absorption peak for various mixtures of Drude particles of nonuniform size [y; =(R;/R), f; equals partial filling frac-

tions; see text]. In the Maxwell-Garnett approximation, all three mixtures give a Lorentzian peak of width I' at the position marked
by the arrow.
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ap(co }
a(q, co) =

1+ap(co)U( q )

(27)

where U(q) is defined as in (8) except that the sum over
sites is now two dimensional. In the long-wavelength lim-

it (qa « 1, where a is the lattice constant), U(q) is diago-

a(co) of an average particle is isotropic if the polarizabili-
ties ap(co) of the individual real particles are isotropic.
Some measurements on inhomogeneous systems, however,
have been performed for ultrathin films which might con-
tain only a single plane of particles suspended on a trans-
parent substrate. The purpose of this section is to discuss
the modifications of the theory described above in the
case of a two-dimensional random arrangement of parti-
cles. Only the main features are presented; a more com-
plete analysis of this problem is given elsewhere. '9

Let us consider at first a fully occupied square lattice of
identical Drude particles of polarizability ap(co). (The
surrounding medium is taken to be vacuum for simplici-
ty. ) As a consequence of dipole interactions, the total po-
larizability for this system is given by

p =cp0 (28)

where c is the concentration of occupied sites. In com-
plete analogy to Eq. (7) this relation leads to the following
self-consistency condition for a(co):

nal with elements Up and —0.5 Up, where Up ——9.03a
The lattice polarizability (27) exhibits two resonances at
frequencies co~~ =cop(1 —0.5R Up)'~ (doubly degenerate)
and cog=cop(1+R Up) . cop=co&IW3 is the single-

particle resonance frequency. The width of Ima(O, co) is
easily shown to be equal to I, the damping constant of
the particle dielectric function.

In order to apply the CPA to the two-dimensional
disordered system, the true particle distribution is again
simulated by a lattice gas, i.e., the particle positions are
confined to the sites of a fictitious square lattice. Let us
denote by pp the induced-dipole moment of a real particle
surrounded by a fully occupied lattice of average particles
of effective polarizability a(co). If the site at the origin is
instead occupied by an average particle, its induced-dipole
moment is p. The CPA consists now in identifying

U(q)a(co) =cap(co) 1+[ap(co)1 —a(co)] g
1+a(co) U(q)

where the sum over q extends over the two-dimensional
Brillouin zone.

Since the average particles form an ordered, fully occu-
pied lattice, the total polarizability for this sytem is given
by

cap(co)
a( q, co)=,(ATA)

1+cap(co)U( q )

(31)

which, in the long-wavelength limit, shows two reso-
nances at frequencies co~~=cop(1 —0.5cR Up)'~ (doubly
degenerate) and co& ——cop(1+cR Up)'~2. The width of
these peaks is easily shown to be given by I . In the ATA,
therefore, the absorption frequency of the parallel mode
shifts smoothly as function of concentration from cop at
c =0 to cop —scop in the case of a full monolayer where
scop=0. 25R Upcop. The perpendicular mode shifts up-
ward from cop to cop+2b. cop. The disorder at finite con-

a(q, co) = (CPA) . (30)
1+a(co) U(q)

It can be shown that a(co) is in fact diagonal with ele-
ments a~~(co} (doubly degenerate) and ai(co). Thus, even
though the original particles have an isotropic polarizabil-
ity ap(co), the average particles are anisotropic because of
the symmetry of the dipole interactions included in the
denominator of Eq. (29). The disorder accordingly infiu-
ences the modes parallel and perpendicular to the plane of
particles in a different manner. If the effect of the ran-
dom dipole fields in Eq. (29) is neglected, we obtain the
approximation corresponding to the ATA, a(co) =cap(co).
The total polarizability in this limit is given by

centrations has no effect on the shapes or widths of the
absorption peaks in this approxim. ation.

Figure 12(a} shows the imaginary parts of a~~(co) and
ai(co) which are defined as the diagonal components of
a(O, co)R as calculated within the CPA. The corre-
sponding peaks in the ATA are located at ~~I

——3.94 eV
and coi ——4. 11 eV (the single-particle frequency is cop ——4
eV). The disorder is seen to cause a red shift of about 1

eV of the parallel mode and an equally strong blue shift of
the perpendicular mode. Both absorption peaks are in ad-
dition broadened and have asymmetric line shapes. A re-
markable feature of these spectra is the fact that the
disorder-induced width of the parallel mode is significant-
ly larger than that of the perpendicular mode. This effect
may be understood by considering the disordered system
as an assembly of clusters of different sizes and configura-
tions. In general, the parallel modes of these clusters
differ more widely than the perpendicular modes. Thus
the distribution of parallel modes in a disordered system
will be much broader than that of the perpendicular
modes.

Evidence for this effect can be found in recent experi-
ments by Yamaguchi et ctl. Figure 12(b) shows a typi-
cal absorption spectrum for small silver particles suspend-
ed on a transparent film of polyvinyl alcohol. The separa-
tion into parallel and perpendicular components of the
spectrum is achieved by varying the angle of incidence of
the radiation. The parallel mode is seen to be consider-
ably broader than the perpendicular mode, in qualitative
agreement with the theoretical spectra shown in Fig.
12(a}. A detailed comparison with the CPA results in
12(a} is, of course, not possible since the measured spectra
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are also influenced by a variety of other effects such as in-
terband transitions and image fields. The influence of the
dlsordcr among particles, howcvcI, 1S clearly vls1blc 1n thc
experimental data.

III. APPLICATIONS AND COMPARISON
%ITH EXPERIMENTS

Q.Q
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~(eV)
FIG. 12. Imaginary parts of parallel and perpendicular com-

ponents of polarizability o.'(co) =a(O, co)R, Eq. (30), for two-
dimensional lattice gas ( c =0.3}of Drude particles as calculated
within CPA. (b) Measured absorption spectra for layer of silver
particles (radius =90 A, concentration c =35%) randomly dis-
tributed on sheet of polyvinyl alcohol (Ref. 20).
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FIG. 13. (a) Width and (b) position of absorption peaks for
silver particles in gelatin (ej ——2.37) as functions of filling frac-
tion. Solid lines, CPA; dashed lines, MG approximation. Ex-
perImental results are lndlcated by vertical bars and crosses
(Ref. 21).

Au — Si0~

than 1.5 eV. Both the overall magnitude and the trend of
this broadening are very well described by the CPA
whereas the Maxwell-Garnett fomula systematically un-
derestimates the peak width by about 0.4—0.5 CV. The
comparison of the peak positions is shown in Fig. 13(b).
Here, the data shows a large amount of scatter, in particu-
lar, near f&5%. These wide variations of co,„are
presumably related to particle clustering which is not in-

In this section we present applications of the CPA to
several real inhomogeneous systems where the metal parti-
cles are described by the appropriate dielectric functions.
Although any comparison with experimental absorption
data is necessarily of a qualitative nature at this stage, we
believe there is evidence for the kind of disorder-induced
spectral chaIlgcs wh1ch wc have descr1bcd I thc plcccd1ng
section.

In Fig. 13(a) a comparison is given of the calculated
and measured ' width of the absorption coefficient for
silver particles at various concentrations in a gelatin medi-
um. The bulk dielectric function of Ag is used for the
particles with a free-electron damping of I"=0.6 eV. This
rather large value was deduced from spectra at very low
Ag concentrations and seems to be caused by imperfec-
tions within the particles. The measured widths are seen
to increase with increasing filling fraction up to more

CU

LJ

OJ
D
LJ

0

C PA

R&ev)
FIG. 14. Absorption spectra for gold particles in Si02 at two

filling fractions. Solid lines, CPA; dashed lines, MG approxi-
mation.
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eluded in the theory. Compared to the MG results, how-

ever, the CPA gives a red shift of about 0.1—0.25 eV of
the absorption peak and is therefore in better overall
agreement with the data.

The Drude region in the case of silver is relatively large
(co (4 eV), i.e., interband transitions have only a minor in-
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FIG. 15. Imaginary parts of dielectric function for (a) Ni
particles in KBr and {b) Cr particles in vacuum for various fil-
ling fractions f. Solid lines, CPA; dashed lines, MG approxima-
tion.

fluence on the absorption spectra of small particles in the
visible. In Fig. 14 calculated absorption spectra are
shown for gold particles in Si02 (er ——2.2) at filling frac-
tions f=10% and 20%. Here the onset of interband
transitions occurs at about 2.6 eV. Above this energy, the
MG and CPA absorption coefficients coincide, i.e., the
disorder is seen to have very little effect. The resonance
below this threshold, however, is red shifted and
broadened. These kinds of effects have been observed, for
example, by Doremus, who studied the absorption spec-
tra of gold particles in glass. Compared to the MG calcu-
lation, the measured peaks were found to be broader and
located at slightly lower frequencies. Qualitatively similar
behavior was also observed for gold particles immersed in
other media.

Although the free-electron region in the case of gold is
quite small, the spectra still show the characteristic reso-
nances induced by the finite particle size. A rather dif-
ferent behavior is found in transition metals whose dielec-
tric properties are entirely dominated by interband transi-
tions. To illustrate the influence of randomness on the
absorption spectra of these kinds of inhomogeneous sys-
tems, we show in Fig. 15 the absorption coefficient for Ni
and Cr particles at several filling fractions. The bulk
dielectric functions of Ni and Cr are used and the Ni
particles are immersed in KBr (er ——2.34), whereas the Cr
particles are surrounded by vacuum. Instead of the reso-
nances which are characteristic of Drude particles, a
broad absorption spectrum is observed in both cases. The
disorder among particles as calculated within the CPA is
seen to enhance the absorption coefficient which might
also be viewed as an overall red shift of the entire spec-
trum. Transmittance spectra of chromium particles in air
show a strong increase of the transmittance towards long
wavelength. The Maxwell-Garnet formula reproduces
this increase qualitatively; the onset occurs, however, at
too-high energies. The enhancement of P(co) shown in
Fig. 15(b) makes the system less transparent at lower ener-
gies, i.e., it shifts the onset of the rise of transmittance to
longer wavelength. Thus the CPA treatment of the disor-
der improves the agreement between calculated and mea-
sured spectra.

IV. SUMMARY

We have presented a theoretical treatment of the influ-
ence of positional randomness on the optical properties of
small metallic particles embedded in a dielectric host.
Traditionally, this kind of inhomogeneous system has
been analyzed using the Maxwell-Garnett model which is
based on the Clausius-Mossotti relation and therefore
neglects the contributions to the local electric field arising
from the noncubic structure of the composite system. Us-
ing the coherent-potential approximation, we have shown
that these additional fields lead to an appreciable red shift
and broadening of the absorption lines. The central quan-
tity in our theory is the self-consistently determined effec-
tive single-particle polarizability in analogy to the effec-
tive single site t matrix in the alloy case. In the
Maxwell-Garnett model, this effective polarizability is
simply replaced by the true single-particle polarizability
multiplied by the particle concentration; i.e., the MG
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theory is equivalent to the average —t-matrix approxima-
tion.

It should be emphasized that our theory applies to a
particular type of composite systems, namely, those of
cermet topology in which one constituent is completely
surrounded by the other. Thus our treatment should not
be confused with the so-called "effective-medium
theory" ' which can also be regarded as a CPA-type
theory but which applies to composites consisting of topo-
logically equivalent constituents (i.e., both components
must be treated on the same geometrical footing since
none can be considered as a host into which the other is

embedded). The distinction between these topologies is
quite important since they can give rise to strikingly dif-
ferent optical properties.
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