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Quarter-filled-band quasi-one-dimensional compounds which exhibit large Coulomb repulsion be-

tween two electrons on the same site ("large U ") can support the formation of fractionally charged
solitons. Electron hopping between solitons may contribute substantially to transport in these ma-

terials. We calculate the intersoliton electron hopping rate for transitions mediated by intramolecu-
lar phonons and by acoustic phonons. Acoustic phonons are found to be much less effective and are
expected to contribute significantly only when intramolecular phonons are not excited or cannot
satisfy conservation of energy. For the case of intramolecular phonons, we consider both hopping of
an electron from a soliton pinned by. an impurity to a second soliton which then becomes pinned,
and hopping between a pair of solitons, one of which remains free to move. [Owing to the large on-
chain dielectric constant (-100—1000) in these materials, the solitons are probably not bound except
at low temperatures. ] The transition rates are used to find the hopping mobility for electrons in the
soliton levels. Evaluation of the mobility due to the different hopping mechanisms for (N-
methylphenazinium)0 &4(phenazine)046 tetracyanoquinodimethane [(NMP)0 54(Phen)o 46-(TCNQ)] at a
temperature of 100 K suggests that, unlike the polyacetylene case, the predominant process at tem-
peratures & 100 K is on-chain hopping, due to the large interchain distances involved. We find a
mobility at 100 K of 0.06—1.03 cm /Vsec due to on-chain hopping, mediated by intramolecular
phonons, between pinned and free sohtons. This mobility should increase at higher temperatures.
The thermoelectric power due to the various electron hopping processes is calculated as well. We
find that for hopping processes involving transitions between pinned and free solitons there is a term
in the thermopower involving the soliton pinning energy, in addition to the usual term involving
electronic energy levels.

I. INTRODUCTION

There is a large body of evidence that excess charge rel-
ative to the commensurate state, up to 6—7%, is accom-
modated in trans-polyacetylene [(CH)„] by the formation
of solitons. ' Evidence that solitons exist for the same pur-
pose in —,-filled-band quasi-one-dimensional crystals with
large U has been given recently, specifically for
(N-methylphenazinium) (phenazine)

& „ tetracyano-
quinodimethane [(NMP)„(Phen) & „-(TCNQ)], with
0.50(x &0.55. Similar effects might be expected in oth-
er crystals of this type, e.g., quinolinium di-tetra-
cyanoquinodimethane [Qn(TCNQ)z], acridinium di-tetra-
cyanoquinodimethane [Ad(TCNQ)z], etc. Although the
Peierls distortion is different in the crystals in that it in-
volves mainly frozen-in internal modes of vibration (site
distortion) rather than frozen-in external modes (bond dis-
tortion} as in (CH)„, the soliton wave functions are the
same in the two cases, as will be shown in Sec. II.

An important difference, in the context of transport,
between the solitons in the crystals and those in polyace-
tylene is that in the crystals they can only exist charged,
specifically with charges +e/2, where e is the magnitude
of the electronic charge. At low concentrations the soli-
tons provide localized electronic levels at midgap, ' as in
(CH}„. At higher concentrations there is a spread of the
electronic levels about midgap due to overlap, ' and to
the Coulomb field of the randomly distributed charged
impurities that give rise to solitons. These effects should

be smaller in the crystals than in polyacetylene, however,
for a number of reasons. First, the solitons will overlap
less since they are smaller. According to the continuum
model, the length of a soliton is 4talb„where t is the
transfer integral and a is the lattice constant. For
(NMP) (Phen)~ „-(TCNQ), 6=900 K (for x =0.50 at
zero temperature), and 4t has been estimated as 4500 K.
Thus l=5a, considerably less than the length in (CH)„,
which is 14a. The Coulomb field of the impurities will
also have a smaller effect due to the very large dielectric
constants characteristic of conducting TCNQ salts. In
what follows we will generally neglect the level spread.

Solitons are expected to contribute to charge transport
due to electron hopping among them. If the solitons are
charged and unpinned, then motion in a field could also
make a direct contribution to conductivity and other
transport properties. We do not expect this contribution
to be larger than the hopping contribution, however, for
the following reason. Although the materials we deal
with have excess electrons, there will, at temperatures
above T =0 K, be some positively charged solitons (S+)
on each chain. In an electric field they will block the
motion of the negatively charged solitons (S ). Recom-
bination of an adjacent S+S pair would remove the
block .only temporarily, ' we are dealing with a thermal
equilibrium situation and another S+S pair must be
generated elsewhere. Electrons hopping in from other
chains could unblock the conduction path, but then the
rate-limiting step, the step that determines the conductivi-
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ty, would be the electron hopping.
The hopping conductivity and thermoelectric power

were calculated for low soliton concentrations in (CH)„by
Kivelson. ' '2 In (CH)„a charged soliton is pinned by
the attraction of the oppositely charged impurity that
gave rise to it. An electron can jump with phonon assis-
tance from a localized midgap state on a bound soliton to
one on a nearby neutral soliton. As Kivelson points out,
since the pinning energy Eb is large, &0.3 eV, the jump
can only take place when the neutral (mobile) soliton is in
the neighborhood of a positively charged impurity. He
approximates the electron-phonon coupling by a smooth-
peaked function of energy having two parameters. By
reasoning that the predominant electron-phonon interac-
tion is with the zone-center optical modes which modulate
the dimerization, Kivelson chooses the parameters by
matching the peak to the average optical frequency and
the peak width to the half-width of the optical-phonon
spectrum. The procedure of Miller and Abrahams for
calculating the hopping rate between impurities in semi-
conductors' is used to formally calculate the transition
rate between an initial soliton with total energy E; and a
final soliton with total energy Ef To fin.d the actual hop-
ping rate it is necessary to average over all possible initial
and final energies for the solitons. Since the calculated
quantum of vibrational energy is small compared to the
binding energy of the solitons, Kivelson takes the distribu-
tion of soliton energies, and thus of final energies for the
transition, to be continuous.

Intersoliton hopping in the molecular crystals differs in
a number of important respects. First, it is quite likely
that the solitons are not pinned at room temperature. The
Couloinb attraction of a soliton with charge +e/2 to a
point impurity with charge +e at a distance ii from the
chain is given by

ping from a free soliton to a free soliton is also possible
and will be taken up in a later paper.

Another difference betwen our calculation and that of
Kivelson is that we have taken the phonon assistance to
be by internal or by acoustic modes. In both cases we
have the advantage that the frequencies and coupling con-
stants for these modes are known for the TCNQ com-
pounds. The internal modes are expected to have essen-
tially no dispersion. In the impurity problem this would
cause the hopping rate to be vanishingly small. Here,
however, the motion of the solitons provides a continuum
of final states, resulting in a finite hopping rate.

In Sec. II we set up the continuum model Hamiltonian
and wave function of an electron bound to an isolated sol-
iton for the case of the Peierls distortion stabilized by
internal modes. These are used in Sec. III to establish the
appropriate Hamiltonian for a two-soliton system with
not much overlap in the presence of impurity potentials.
We then find the correct soliton wave functions for this
Hamiltonian by the method of Miller and Abrahams.
From these and the perturbing potentials due to the
acoustic and the internal modes, we obtain the matrix ele-
ments for hopping. In Sec. IV the total hopping rate is
calculated for the cases of bound and free solitons previ-
ously discussed. Once the transition rate is known, the
conductivity and thermopower due to intersoliton hopping
can be calculated. This is done in Secs. IV and V. In Sec.
VI we summarize the conclusions. In the Appendix we
discuss the soliton mass for this case and the quantum of
vibrational energy of a soliton pinned to an impurity. Ex-
perimental comparison will be carried out in a subsequent
paper because dc transport, above 80 K at least, involves
band electrons and holes as well as hopping in the soliton
levels.

II. HAMILTONIAN AND WAVE FUNCTION
FOR ELECTRONS IN SOLITON STATES

where y(x) is the normalized wave function of the elec-
tron on the soliton, and e~~ and ez are the dielectric con-
stants parallel and perpendicular to the chain, respec-
tively. Since e~~&&ez in these molecular crystals, E, is
well approximated by e /[2(cia~)' b]. For
(NMP)„(Phen)i „-(TCNQ), b is of the order of the dis-
tance between the NMP and TCNQ chains, equal to 7.7
A. If we assume @~~=1000 and ei ——3, typical values for
other compounds in this family, '~ we find E, =190 K.
Thus the solitons could be bound only at temperatures
somewhat less than 190 K. If, as a lower limit, e~~ were
100, the Coulomb energy could be as large as 590 K. If
we assume, for definiteness, that the impurities are posi-
tively charged, then, of course, even at low temperatures,
only negative solitons can be bound and not all of these
need be bound since there are more negative solitons than
impurities. In what follows we have calculated the hop-
ping rate for three possible low-temperature cases: (1) the
electron is initially on a bound soliton and jumps to a free
soliton which then becomes bound; (2a) the electron is ini-
tially on a bound soliton and jumps to a soliton which
remains free; (2b) the electron is initially on a free soliton
and jumps to a soliton which then becomes bound. Hop-

To take into account the gap contribution of the inter-
nal modes we add to the Hamiltonian of Su, Schreiffer,
and Heeger the term for the energy of an electron on the
nth lattice site. To terms linear in the (dimensionless)
normal coordinate Qi„ for the ith internal vibration on
the nth site, we may write' this addition to the Hamil-
tonian as

n, s n, s
(2.1)

where eo, is the site energy in the absence of excited vibra-
tions, Pi=(Be /BQi„)0, and the summation is over the
modes, G in number, linearly coupled to the electrons. '

For the half-filled-band case (or ~ -filled band with large
U), we take into account the spatial variation of Q&„by
introducing a staggered order parameter Qi „
=(—1)"Qi„. To derive the continuum H for this case, it
is convenient to introduce the superposition of right- and
left-going waves shifted in phase by 3ir/4 from the usual,
1.C.,

c~=u e'3 ~ exp(iona) iu e ' ~ exp(—ikzna) . —
(2.2)



INTERSOLITON HOPPING TRANSPORT. . . IN MOLECULAR CRYSTALS

Using the same procedure as Ref. 7 to derive the continu-
um H with the added term Eq. (1), and c given by (2.2),
we obtain, for the electronic terms,

H, l J——dx g (x) 2—latcrl —h,„„oz+5;«O l g(x),
Bx

(2.3)

where 5,„,=4ay{x), a being the derivative of t with
respect to displacement of a lattice point and y{x) being
the staggered displacement parameter,

6
~;.t= g PtQi = g ~t(»

1=1 I

9 (X)
.v(x) .

'

From Eq. (2.3) we obtain the equations of motion:

bilized by internal modes, there is no oscillating modulat-
ing factor cos(xn. /2a) [sin(nx/2a) for the antisoliton] in
the wave function for the soliton as there is when the gap
is stabilized by external modes, as in polyacetylene. Thus
the wave function for either soliton or antisoliton has am-
plitude on both even- and odd-numbered sites, and is
given by (2.9).

III. MATRIX ELEMENTS FOR HOPPING

To calculate the matrix elements we consider the case
of one soliton centered at x;=Q, y, =O, and z,.=(),
sccolld cclltclcd Rt xpyj, zp sufficlclltly fRr away so that
the overlap is small, and one charged donor or acceptor
nearby. As do Miller and Abrahams, ' we assume that
the Coulomb fields of all the other charged donors or ac-
ceptors cancel, on the average. With V, the potential en-

ergy due to the donor or acceptor charge, me have, using
the results of Sec. II,

Eu = 2iat —+(5;«+i b,,„t)v,
BQ

Bx

Ev =2iat +(b„«—ih,„,)u .
Bx

(2.5a)

(2.5b)

H = 2ta ——6(x)5(y')5(z')

—h(x —x )5(y' —y' )5(z' —z' )+ V (3.1)

Ill Rll calllcl dcrlvRtloll of tlM HRBllltolllall ill thc lllollMll-
tum representation, b, was obtained as b„„,+id, ;„„' the
difference here is due to the phase shifted u and v~ of
Eq. (2.2).

For the materials of interest here, as noted earlier, the
gap 1S stabilized mainly by the 1nternal modes, so we drop
the term 5,„, in Eqs. (2.5a) and (2.5b). Combining them
ave obtain

Ef = 2iat — i 6;«(x)f+, —
Bx

(2.6)

where f+ ——u+iv. For the electronic state on the soliton
at midgap we may take E =0. The resulting equation,

2at ——5;«(x) f+ =Of+,8
Bx

(2.7)

6(x)=hotanh{x/g'~~),

and find the solution

{2.8)

may be considered the eigenvalue equation for the electron
on the soliton; the quantity in large parentheses is the
Hamiltonian. Since it is precisely the same equation as
would have been obtained if there were only external-
mode distortion (and u and v were not phase shifted
by 3lr/4), it is clear that the electron wave function is the
same whether there is internal- or external-mode distor-
tion. To obtain that wave function we choose

A=ble +br' b»»2
4, =b le +b'z+J bz»b l

(3.2a)

where p; and yj are the wave functions for isolated soli-
tons at (x;,y;,z; ) and (xj,yj,zj ), respectively. A variation-
al calculation y1elds

bi/by-(AE, +Jl —Jl)/W, {3.3)

and

Jl ——
& gent I

—b,(x —xj )5(y' —yj )5(z' —zJ )
I y; &, (3A)

Jz=(y, I
—&(x)5(y')5(z')

I q, &, (3.5)

~E.=
I &9 I v. lv &

—
&m, I V. Itj& I

(3.6)

where x is the chain direction, y'=y/gl, z'=z/gl (g'l be-
ing the average transverse decay length of the electron
wave function), and the Dirac 5 functions reflect the fact
that the soliton lattice distortion has no off-chain (trans-
verse) component. Here, the first term of H is a kinetic
energy term, and b,(x), the soliton lattice distortion, is
taken to have the same form as in the single-soliton Ham-
iltonian, Eq. (2.8), since soliton overlap is small.

The eigenfunctions of this ground-state two-soliton
Hamiltonian in the absence of phonons may be approxi-
mated by superpositions of solutions for single-soliton sys-
tems. Therefore, we can write solutions as

f+ ——C sech(x/g~~),

p1ov1ded

(2.9) 2w=z. '+L, "—2&J, +2&q, I
v. I y, &

—2W(y, .
I
v.

I y, &, (3.7)

g~( =2ta/b, o, (2.10)

where b,o is one-half the Peierls gap. We will use f+ of
(2.9) as the wave function for an electron on an isolated
soliton. It can be shown that, for the case of the gap sta-

l.'= (y; I
—6(x)5(y')5(z')

I pj &, (3.8)

I."=(yj I
—l(x —xj )5(y' —yJ )5(z' —zj ) I q); & , (3.9)



6882 I. A. HOW ARD AND E. M. CONVfEI. I.

(3.10)

the overlap integral. The last two terms of (3.7) cancel if
e~~ &&ez, and are subsequently dropped. To evaluate these
integrals we need the isolated-soliton wave functions y;
and yJ. The on-chain soliton wave function is given in
Sec. II. Since the lattice disturbance b, (x) associated with
a soliton is strictly one dimensional, we expect the elec-
tronic wave function to decay off chain with a decay
length gz essentially that of the p orbitals from which the
state on the soliton is formed, i.e., -3 A. ' We can ap-
proximate this transverse wave function as an exponential,
so that for a soliton centered at x;,y;,z;,

g, (x;,y;,z;) =C~~sech[(x —x;)/g~~]

XC, exp I
—[(y —y )'+(z —z, )']'"/g, I,

(3.11)

=( g) ' =( /g)( )
on-chain and transverse normalization constants, respec-
tIvely.

Upon evaluating the integrals for J&, J2, L', L", and
W, we find that

H =H, +V, +H;„, , (3.15)

where H, is the electronic Hamiltonian of the "pure" sys-
tem (with no impurities 01 phonons), V ls the potential
of the impurity or dopant molecule, and H;„, is the
intramolecular-mode phonon Hamiltoman. H;„, is the
sum of kinetic- and potential-energy terms:

~i t 2 y (~/~l )Q I, n + 2 y ~l Ql, n (3.16)

As before, n is the site index, 1 is the mode index, coI is
the mode frequency, and QI „ is the dimensionless
normal-mode coordinate. We assume that the total wave
function can be written as the product of an electronic
part P, which is the eigenfunction of H, + V„and a lat-
tice oscillator wave function 4. Recalling that Qc „varies
with time as exp(icot ) and that its spatial variation may be
written

Ql „=N '~z g exp(iq. R„)I2 '~ [bc(q)+bI ( —q)] I,

A. Transitions by intramolecular-mode phonons

The total (electronic and vibrational) Hamiltonian for
the system consisting of solitons, impurity or dopant mol-
ecule, and intramolecular-mode phonons can be written as

J1 J2—(50/2~)tanh(R f[/~/[)exp( 2R+ /

(R(~ &&g~(), (3.12)

and L'= L", or L'+L"—=0. The overlap integral P' is

kt (1+
X(Rj /g'j ) —,'K2(Rg/g'i) (Rii »g'ii),

(3.17)

where N is the number of lattice sites on the chain, q is
the wave vector of the phonon, R„ is a lattice coordinate,
and bI(q) and b~( —q) are the annihilation and creation
operators, we find upon taking the matrix elements of
(3.16) that, in the continuum limit,

where IC2 is the second-order modified Bessel function,
R~~ Is the on-chain component of the distance between
soliton centers, and R~ is the transverse component of the
distance between soliton centers. For R~ &&g~, Ez varies
as exp( —Rq /gq), so the overlap integral decays exponen-
tially„as expected. Since W cc W, we expect that
8'g& (b,E, +2J& ) and we may write

4=q;+(b2/bi)q, =m; [~Ji/(~E, +2—Ji)]q,

gJ =pj (bzlb))y; =yJ+—[P'J) l(bE, +2J) )]p; . (3.14b)

The procedure we have followed here, and the results ob-
tained, are closely analogous to those of Miller and Abra-
hams for the wave functions of an electron on two donor
sites in a doped semiconductor in the presence of an ion-
ized acceptor. Once the wave functions f; and QJ are
known, the intersoliton transition rate follows from the
matrix elements of the Hamiltonian mixing P; and QJ. In
the remainder of this section we will develop these matrix
elements. In Sec. IIIA we deal with transitions assisted
by intramolecular-mode phonons. In Sec. III8 transitions
mediated by acoustic phonons are discussed.

1/2

& '(„+1)&g2 X&QJ I exp(2iq r)
I g;& . (3.18)

I &~, &
I '=(8/Wf(~o)~q~~p~~(b2/bi)each(mq~~gt()]

Pl o
&(I+qih) '&& '1~„$ +pg

(3.19)

where q~~, qz are the components of q parallel and per-
pendicular to the chain, respectively. To arrive at this, we

Here n~ is the number of phonons of energy fico&. The
factor n~ in large curly brackets corresponds to phonon
absorb tion, the factor nq+1 to emission.

We evaluate the integral in (3.18) using g; and tbj. de-
rived earlier in this section. Since in practice only the
lowest-energy optical mode will be important, we drop the
summation over I. The phonon energy for that mode will
be taken as ficoo, independent of q since, as noted earlier,
dispersion is small. The result is
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have dropped the off-diagonal terms in the matrix ele-

ment; these give contributions to the transition rate small-
er by at least an order of magnitude than the contribu-
tlolls froill thc dlagoI1R1 terms. Oscillatory tcrllls varying
as s'n(q()R)() or cos(q((R()) have»so bcc" «opPed t"clr
contribution to the total conductivity will be small when
summed over all R~~. The transition rate v,j between soli-
ton i and soliton j is given according to Fermi's golden
rule by

v;, =(2~/A') g ~ (H, ) ~'h{E,. E, +~. ,), (3.20)

where EJ and E, are, respectively, the total energies of
soliton j and soliton i Th. e plus sign in (3.20) refers to
phonon emission, the minus sign to phonon absorption.
Changing the summation over q to an integration over the
Brillouin zone, and inserting (3.19) into (3.20), we have for
hopping in three dimensions

3.30(ficoo)
v; (EI,E~)= 2 (bI /b, )ID5(EI E;+ficoii)—

(fin'g~ ~g,
')

r

Pl 0~ '1+n, '

to the chain direction or transverse modes with q perpen-
dicular to the chain direction

(H, ) = g (P,*P„y,) f.e,{P„/M)e,d&

1/2
=(%co /2M%) i'll X (1+n, )»'

I

X f1f dx e '&"(p*—p'„ttA ) .
(3.24)

Here the factor e+'~" corresponds to absorption of a pho-
non, while e '~" corresponds to phonon emission. %"hen
the spatial integral in (3.24) is evaluated with the use of
the electronic wave functions (3.14a) and {3.14b), the re-
sult is

~
(Hq )

~

I= [ficoq/(MX)][(IIIir/4$~~)(qg~~)

X(b2/bi)IDcsch(n. (iraq/2)] X +nq

where 0 is the volume of a unit cell. To obtain Eq. (3.21)
the integral over

q~~ was evaluated approximately in re-
glolis of slliall (q~~g~~) Rnd lal'gc ( q~~g~~) by uslilg thc poly-
nomial and the exponential expansions of csch{m'q~~g~~),
respectively. In addition, the factor 1 —(I+giir /b )
has been approximated by unity, which is reasonable for
the cases we consider. For later use we also write the
transition rate for the case of on-chain hopping and

&g~j~(EJ,Eg )=[26.4a (ficoo) /(girg~
~

)](b2/b I ) iD

X~(E E+%coo)X—J l — 0 j +
( b2/b 1 )iD is evaluated by setting R I =0 in

(3.12)—(3.14).
To find the total transition rate v for intersoliton hop-

ping due to intramolecular phonons, one must sum v,j
over all Ez and E;. This summation will be carried out in
Sec. IV, where the total rate v will then be used to find the
mobility of electrons in the soliton levels.

(3.25)

Here, as in the intramolecular-mode case, off-diagonal
terms and terms oscillatory in RI~ have been dropped,
since their contributions to the conductivity will be very
small compared to the remaining terms. To find v;J, we
insert Eq. (3.25) into Eq. (3.20), setting fico~ =ficoq, where
co is the velocity of longitudinal or transverse waves. In-
tegrating over q, we find

v& (Ir ab——E/Mcogii)(giibE/2fico) (bI/bl )iD

Xcsch (mg~~AE/2fico) X
1 {&E), (3.26)2 n (hE)

where b,E =
i Ei E; i

. —
Having derived the rates v;J. for the cases of

lntramolecular- and acoustic-phonon-assisted hopping, we
proceed in Sec. IV to average over the possible sohton en-
ergies E; and EI to find the total transition rates v;J, and
subsequently the intersoliton electron mobilities for the
iwo cases.

H =H, + V, +U(R)+ QP„/(2M), (3.23)

where U(R) is the potential energy of the molecules along
the chain, M is the mass of a molecule, and P„=if'IV„,
the momentum operator. The development of the matrix
element {H~) proceeds along the lines of Kivelson's ma-
trix element for external modes. ' For the case of on-
chain hopping due to longitudinal modes with q parallel

B. Transitions by acoustic-mode phonons

Intersoliton hopping can also be mediated by acoustic-
mode phonons. In analogy to (3.15) we may write the
Hamiltonian for that case as

IV. TOTAL TRANSITION RATES AND MOMLITIES

&i =f f&J(EJ,E; )p; (E; )pj(EJ. )dE; dEJ . (4 1)

Given the hopping rate &;J, onc can approxilnate the hop-

The hopping rate v,z(EJ,E~ ) established in the preceding
section is the probability per unit time of a transition
from soliton i to an empty soliton j, when the initial state
energy is E; and the final-state energy is Ej. The actual
hopping rate from i to j is the sum of vcr. (EI,Ec) over all
initial states E;, weighted by the probability of their oc-
currence p;(E; ), and all final states Ei weighted by their
probability pj(E&). The total hopping rate v,J between all
pairs of states, (EI,E~ ) is then
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ping mobility p for electrons in the soliton levels by

p=~e ~v;R /(kT) (4.2)

from the Einstein relation. Here R is the average hopping
distance.

A. Intramolecular modes

First we will consider transitions from an initially
bound soliton to a soliton which is near a positive impuri-
ty or dopant and thus becomes bound in the final state,
after receiving the electron. If the Coulomb attraction E,
[see Eq. (1.1)] of the soliton to the dopant is large, and the
quantum of vibrational energy fico, is small, it is appropri-
ate to speak of a continuum of soliton energy levels in the
Coulomb potential well of the donor or impurity, as
Kivelson does. ' ' In that case p;(E; ) is given by'

p;(E; ) =p;(E; )exp( E; IkT—)IZ;(T), (4.3)

where p;(E;) is the density of states of the negatively
charged soliton in the potential well of the dopant and
Z;(T) is the corresponding partition function. Likewise,
for pj(EJ) we have'

pj(EJ ) =pJ(EJ )/ZJ (4.4)

where pj(EJ ) is the density of states of the final-state soli-
ton, and ZJ is the partition function for the free soliton j
that exists before the electron's hop from soliton i Since.

we consider the bound soliton to have a continuous distri-
bution of energy levels between —Eb —— E, +fico„/—2 and
the top of the well, which we take to have zero energy, we
have

e( —E, )e(E;+E )p(E)= (f )
(4.5)

Here e is the unit step function. The partition function
Z; (T), which follows from (4.5), is now

Z; ( T)=(kT/fico„ )exp(Eb /kT) (4.6)

for Eb »kT.
As shown in the Appendix, we expect a free soliton to

have essentially zero kinetic energy compared to kT at
100 K and above. We may then take the partition func-
tion ZJ as the total number of free-soliton states. With N
the number of sites on a chain, and n, the number of soli-
tons on a chain, we can approximate the number of states
as the average number of sites available to each soliton, so
that

Z) —2V/n, . (4.7)

and likewise, for EJ =E;+Sicko (phonon absorption) we

Using (3.22), (4.1), and (4.3)—(4.7), we can then evaluate v
for EJ E; ficoo (that is, ——for p—honon emission) to obtain
(case la)

V,m=(3. 3Qcoon, /ir g~~g1co„N)(bz/b1)3D

Xexp( —Eb lk T) I exp[(Eb ficoo) Ik T]—1 I ( I +no ),—
(4.8)

obtain (case lb)

v,b, ——[3.3Qaion, /(ir g~ ~g1 co„N)](bz/b1 )3D

X I 1 ex—p[(ficoo E—b)/kT)] In o. (4.9)

(4.10)
0

The interchain distances are 7.6 and 16.3 A. The latter
distance is so large that we can clearly neglect hopping in
that direction. Taking into account the finite extent of
the molecule, and the fact that the electron wave function
is spread throughout, we may take Rj as small as 6 A in
the former direction, giving R1/$1=2. Evaluating (4.10)
and inserting the result in the above expression for 7',
we find V —10 v' for even the closest chain. Thus
the relatively large interchain distance results in such poor
overlap that on-chain jumping is greatly favored.

As explained in the Appendix, for (NMP)„(Phen)1
(TCNQ) it is likely that there are —10 vibrational levels
in the potential well of a soliton bound to an impurity;
this would justify use of a continuum model for states in
the well. For (NMP)034(Phen)046-(TCNQ) at 100 K, we
have calculated from (4.8) and (4.9) the total transition
rates v,'b, and v,'; at this temperature b, /k=690 K (Ref.
8) for (n, /N) =0.08, and with a bandwidth 4t/k =4500
K,' g~~

=3.26a =12.6 A. We may take R
~~

as the average
distance between two solitons, 12.5a =48.3 A, so that
(R

~ ~
/g~

~

)=3.83. Then, with Eb of 250 K and
(ficoo/k) =210 K, the lowest-energy intramolecular mode
for TCNQ, ' we find (bz/b1)1D ——0.0267. This results in

v,bs=2 17X10 sec and v, =2.17
X 10 sec ', which give a total mobility of
p=5.6X10 cm /V sec for this process.

If E, is not much larger than %co„, then there may be
only one soliton level in the potential well. We cannot
consider hopping transitions from a bound soliton to a
final-state bound soliton in this case, since the system
lacks the necessary continuum of final states for a hop-
ping transition. Hopping could occur for this case, how-
ever, if electrons make transitions from the single bound-
state energy level to an (initially unoccupied) free soliton,
which has a continuum of kinetic energy levels, or vice
versa.

We thus take up the case of hopping from a bound soli-
ton to a free soliton and its reverse, hopping from a free

In (4.8) and (4.9), (bz/b1)3D is evaluated for i3E, =fuuo.
The sum of (4.8) and (4.9) gives the total transition rate
for intersoliton hopping assisted by internal modes be-
tween solitons bound in deep wells with many levels, case
1. To obtain the corresponding 1D quantities we use the
relationship

v' =V (8mg1a/Q)(bz/b1)1D/(b2/b1)3D .

To have an idea of the magnitude of vtj we apply these re-
sults to the case of (NMP)„(Phen), „-TCNQ. We first
find that, in contrast to polyacetylene, off-chain or 3D
hopping is negligible compared to 1D hopping. Using
Eqs. (3.3), (3.12), and (3.13), with ~,=ficoo, we find

(bz/b1)3D
(R J /gJ ) Ki(R1 /gj)exp( —2R J /gJ ) ~

2 11D
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Z;(T)=exp(EblkT) . (4.12)

The free soliton which is the final state of the electron is
assumed to be sufficiently far away that the net Coulomb
repulsion due to the charged ion and the other soliton may
be neglected. It then has a continuum of levels between
zero energy and Ek, a maximum kinetic energy (see the
Appendix). For the density of states in (4.4}we then have

soliton to a soliton that becomes bound in the 6nal state
near an impurity, assuming there is only one level in the
potential well of the bound soliton. This level is taken to
be at energy E—b, where, as before, the zero of energy is
at the top of the well. For the density of states in (4.3) we
then have simply

p;(E;)=&(E;+Eb),
and for the corresponding partition function,

the electron can go from the bound to the free soliton only
by absorption, and from free to bound only by emission,
to obtain p from Eq. (4.2) we insert for v;J the average of
V, and v», . The result is p = 1.03 cm /V sec at 100 K.

Finally, we consider hopping between bound and free
solitons when E, is large compared to fico„, i.e., when
there is an effective continuum of levels in the well. We
then use the density of states and partition function given
by Eqs. (4.5) and (4.6) for the bound soliton, in place of
Eqs. (4.11) and (4.12). The rest of the derivation is identi-
cal to that of the previous case. Taking ficoo(Eb, we have

v,'b, =[26.4a /(irgIIfiEk )](ficoo)~(b2/b2) iD

X exp[(ficoo —Eb )/kT] [1—exp( Ek /k—T )]no

(4.16)

v, =[26.4acookTn, /(irgIIEkco„N')]{bi/bi)iD

X [1—exp( Ek/kT)—](1+no) .
pj(EJ )= [X/(n, Ek)]e(EJ.)e( EJ+Ek—) . (4.13)

The partition function for the free solitons is given by
(4.7) as before. The hop from the bound soliton to the
free soli ton involves phonon absorption, i.e, EJ=E;
+ficoo. Thus, using (3.22) and (4.1), we have for the
bound-soliton —free-soliton transition via phonon absorp-
tloil for 1D liopplllg aild g =qII (case 2a)

v,'b, [26.4a/(——irgIIfiEk)](ficoo) (bi/bi)iDno . (4.14)

(4.17)

If we evaluate this case for the (NMP)0 s4(Phen}0
~~(TCNQ) parameters used previously, (4.16) gives v»,

=8.59X109 sec ' and (4.17) gives v,' =4.6
X 10' sec ', so that @=0.70 cm /V sec at 100 K.

Although the mobilities for all the hopping processes
considered are likely to be smaller than that of the
conduction-band electrons, intersoliton hopping may
noncthclcss make an important contribution to transport
since there are few electrons in the conduction band at the
temperatures we have considered.

We consider now the acoustic-mode case. From (3.26)
we see that v,z(EJ,E;) has a complicated dependence on
E; and EJ; we can use (3.26), however, to obtain an esti-
mate of p for (NMP)„(Phen)i „-(TCNQ). The relation
Aco~=ficoq is applicable only below (fico~/k)=80 K for
TCNQ-based compounds of this type. We can evaluate
(3.26) for a phonon of fico~/k =50 K, at a temperature of
T=50 K, to have an idea of the magnitude of v;i(EJ,E; ).
We will apply the calculation to the case x=0.54. Previ-
ous calculations' have predicted a Peierls half-gap
5/k=710 K and a soliton half-length /II=12 A for
(NMP)o s4(Phen)0 q6-{TCNQ) at this temperature. If the
speed of sound is 3X10 cm/sec, and the mass M of the
TCNQ molecule -3.41X10 g, then for +II=12.5a
the average distance between two solitons, the calculated
hopping rate from Eq. (3.26) is v,z (50 K)=1.649X10
sec ', corresponding to p=8.25X10 cm /Vsec. When
the contribution of the transverse modes is included, this
is multiplied by a factor of 3. If we allow the solitons to
approach as closely as possible before hopping, p is multi-
plied by a factor of 3.4. Thus the mobility is exceedingly
small for this process. The reasons for this small value
are the large mass of the ions, which makes the vibration
amplitude small, and the weak coupling to the acoustic
modes.

For the transition from a free soliton to a free soliton
which becomes bound to an impurity in the final state,
phonon emission is required, and EJ =E; ficta. Use —of
(3.22) and (4.1) leads to (case 2b)

=[26.4an, /(mfIIfiEkX) (]ficoo) (~bi/b, )2iD(1+no) .

(4.15)

Since Kivclson has dcrivcd the thcrmoclcctric power fol
case 1,' we will first address case 2, transitions between

The above expressions are valid for 0(ficoo Eb (Ek,'—
that is, the difference in the phonon energy and the
bound-SOHton energy level in the weB must be no larger
than the maximum allowed kinetic energy of the free soli-
ton. Since, as explained in the Appendix, we can expect
Ek to be small [-30 K for (NMP)„(Phen)i „-(TCNQ)],
this would mean that for intersoliton hopping to take
place via intramolecular phonons, the intramolecular pho-
non energy and the soliton binding energy must be rather
closely matched. This restriction is due to some of the
idcalizations made in the calculation, notably neglecting
the Coulomb potential energy of the free soliton and al-
lowing for the presence of only one impurity. In a real
material, one would expect an inhomogeneous distribution
of impurities. Particularly when the concentration is not
very low, this will result in a range of binding energies for
the bound soliton and of potential energies for the free
soliton. In addition, if there are intermolecular modes
close in energy to Acoo, more than one mode may partici-
pate in the intersoliton transitions.

We now evaluate the on-chain hopping rate for the case
x =0.54 at T=100 K. We have previously found that
(b2/bi)iD ——0.0267 for this case. With Ek ——30 K, these
values inserted in Eqs. {4.14) and (4.15) lead to
V,'bs ——4.9)& 10' sec ' and v,'m=3. 2& 10' sec '. Since
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free and bound solitons, the latter having only one bound
level in the potential well of the impurity. We will also
calculate the thermopower for transitions between free
solitons. The method used is that of Emin. '

Denoting the hopping rate from site i to site jby v,j, as
calculated in Sec. IV, and the probability of electron occu-
pation of site i by f;, we can write the net particle (elec-
tron) current I;J—I 1; from soliton i to soliton j as

T =(T;+TJ )I2=(T+5T;+T+5T~)/2 . (5.7)

Thus 5T;= 5—TJ and b, T=25T;. The presence of the
gradient will shift the hopping rates i and the distribution
functions f;J, and will give rise to a potential difference
between the sites. The "new" particle current can be ap-
proximated for small gradients by expansion of
V,J, VJ;, f;, and fj in Eq. (5.1). To first order in 5T;, 5TJ,
5p;, and 5pJ, the changes in these quantities are

I "—I -=f (1 f )7—" f (1 —f )v—" .V J1 I J lJ J l Jl (5.1)

The distribution functions f;,f~ here must reflect the fact
that each soliton site may have a multiplicity of states;
these states differ in nature according to whether the soli-
ton is positively charged and free, or negatively charged
(occupied), in which case, according to the situation con-
sidered, it may be either pinned or free. Allowing Zo to
denote the partition function of the empty (positive) soli-
ton, and Z; the partition function of the occupied (nega-
tive) soliton, we have

af, of,
5f; = 5T~+ 5p;,BT y. =z" Bp.

5v;, =
d T,. T, =T . d T T =T. .

Bvg~

c)(EI„E~„,) —E' EJ Am—=

where po is the thermal equilibrium value and

(5.8)

(5.9)

f; =
I 1+—,

'
(Zo/Z& );exp[(e; p)lkT;—] I (5.2)

f = I 1+ , (Nln, )exp[( —Eb+~; p) Ik—T]I—(5A)

Soliton j, on the other hand, is free before and after the
transition, making (Zo/Z&)J in Eq. (5.2) unity. With
these results for f, and f~ we obtain

V,J/VJ. , =(N/n, )exp[( Eb+e; eJ)—/kT] . — (5.5)

The left-hand side of Eq. (5.5) was evaluated in Sec. IV,
V,z being given by Eq. (4.14) and Vz, being given by Eq.
(4.15). Using these expressions, we obtain

v,z/vz, (N/n, )nol(1+——no)=(N/n, )exp( ficoolkT) . —

Since the kinetic energy of the soliton is small compared
to Eb, and we are taking e;=ej, conservation of energy
requires that Eb=ficoo, making (5.5) equal to (5.6), as re-
quired by detailed balancing.

To find the thermopower we assume that there is a
temperature gradient AT, with site i at T; and site j at TJ,
such that the average temperature T is

where e; is the electronic energy level on site i, and
(ZO/Z& ); is the ratio of the partition functions calculated
by using the soliton energy levels of site i. The factor —,

'

here reflects the fact that the electronic state, although it
has a degeneracy of 2, may be occupied by just one elec-
tron due to the very large Coulomb repulsion for a second
electron.

In thermal equilibrium (which we denote by a super-
script zero) I,z —I z,

——0, leading to
—0 / —0 f0(1 fO)/fO(1 fO) (5.3)

Before finding the thermopower we will show that Eq.
(5.3) is satisfied with f given by (5.2). For the case that
soliton i is initially bound, with a single energy level in
the potential well at EI„by the partition function Z» is
given by Eq. (4.12). After the transition soliton i is free
and the partition function Zo; is given by Eq. (4.7). In-
serting these in Eq. (5.2), we obtain

where E, , is a total site energy for i or j. The current
I,J —I J, in the presence of the thermal gradients is
evaluated by using f; of (5.2) in (5.8), and V,z and vz, from
(4.13) and (4.14) in (5.9), with the condition of detailed
balance (5.3) used to eliminate the thermal equilibrium
terms. In (5.9) the temperature derivatives of v,z cancel
each other since the electron interacts with the same pho-
non reservoir at i and j. The thermopower Q;i is defined
as the ratio of the open-circuit (I =0) difference in elec-
trochemical potential between the sites i and j to the tern-
perature gradient T& T;. Settin—g I;1—I 1; equal to zero,
we find for this ratio,

Q,J=
e V" +5p —5p.

ehT I =0
(5.10)

Eb (e;+e, )/2 —p
2kT kT (5.11)

for case 2.
We take the electronic levels e; and eJ in this and subse-

quent expressions to be at midgap, i.e., at zero energy.
Then, since each pair of solitons has the same spectrum of
levels, we may take Q;1 =Q, the thermopower of the sam-
ple 12

This expression differs from the usual hopping formula
for the thermopower'9 by the presence of the term

Eb/2kT. Basically—, the extra term arises from the fact
that the statistical weight (ZO/Z& ); of the level on i is a
function of T;; this reflects the fact that the probability of
an electron's being trapped on the site is a function of T,
dependent on the factor Eb/kT. As T rises, the effect of
this factor [see Eq. (5.4)] is to make f; decrease. Since
there is less probability of finding an electron on i, the
current I';~ [the first term of (5.1)] decreases, while I J,

.

(second term) increases. This would tend to decrease the
voltage developed, for a given b, T, between sites i and j,
and thus to decrease Q.

For the case of transitions between free solitions, the
thermopower is somewhat simplified by the fact that the
empty and filled soliton states have the same statistical
distribution of energy levels. Thus ( Zo/Z'~ ); = (ZO/
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Zi )J =1, and the distribution function is the usual one for
a large- U case. Evaluation of Q can be carried out by us-

ing (5.8)—(5.10) with the result that

(e +e )/2 —p
Q

1 j (5.12)
e kT

This is the usual result for hopping thermopower. '9

The thermopower for case 1, hopping between bound
solitons with a spectrum of energy levels, has been con-
sidered by Kivelson for the case of lightly doped polyace-
tylene. He finds' ' ' ' for the case 1 that

k Z {~+
(5.13)

e=v,j Eg E~Egpg Eg pj EJ exp —E; T v,j E;,EJ

is an average, weighted by hopping frequency, of the soli-
ton cncrgy on a glvcn sltc. This cxprcsslon ls still applic-
able for the case of soliton hopping in large- U molecular
crystals. We note here that EInin and Ngai have criti-
cized Kivelson's result, stating that there will be no term
in the thermopower such as the first in (5.13) if sites i and

J have cqulvalcnt coupling to thc atoImc vibrations.
This statement is true, however, only for a single state on
each site; for a multiphcity of states, as in the present
case, there will, in general, be a term in Q besides the one
involving the difference between the average electronic en-

ergy level and p, as was seen earlier in Eq. (5.11).

VI. CONCLUSIONS

In view of the large dielectric constants that have been
measured in quasi-one-dimensional molecular crystals, it
is probable that the solitons are not bound at room tem-
perature and for a considerable range of temperatures
below. Nevertheless, we do not expect moving solitons to
contribute much to dc conductivity above very low tem-
peratures (g 50 K in samples with low doping), since the
small gaps and very long chains [compared to (CH) )] in
these crystals mean that there will be some solitons of the
opposite sign on the chain to block motion in the electric
field. Nor do we see any way of unblocking the motion.
Intersoliton hopping of electrons onto another chain, an
important process in (CH)„, will not be important for
these materials due to the small transverse extent of the
bound electron wave function compared to the interchain
spacing. Recombination of a pair of oppositely charged
solitons will result in the thermal generation of another
such pair on the chain, since we are dealing with the
thermal equilibrium situation. Thus the only contribution
wc scc solltons making to dc conductlvlty, cxccpt for very
low temperatures, is due to intersoliton hopping of elec-
tions.

Hopping rates for both internal and external modes
were found to depend, as expected, on the square of the
overlap integral for the electron wave functions and on
phonon abundance. It is the former factor which makes

The authors would like to acknowledge useful and
stimulating discussions with A. J. Epstein and S. Kivcl-
SOIl.

APPENDIX

The mass of a soliton stabilized by external modes was
found to be"

MQ0~cxt
3 3agii

where uo is the dimerization amplitude. We follow a
similar procedure to determine the mass of a soliton stabi-
lized by internal modes. The expression in Eq. (3.16) for
the kinetic energy may be written in the continuum
model, with the use of Eq. (2.4), as

T =(&/2) g (coipI )
' f (dx/a)h&(x) . {A2)

Assuming tha t, foi" eacli '(IIldepeIldent) Iiormal mode,

4I =hiotanh[(x —U, t)/g~
~

j,
we obtain, from (Al),

& =(U, /2)(4A'/3ag(() g BIO/(coipiz) .

(A3)

(A4)

the interchain hopping so small. In addition, for the
acoustic modes the hopping rate depends on
{q g~ ~

) exp( —Irqg~
~
), so that the coupling to these modes is

weak for both small and large q. Also, the amplitude of
motion is small for the acoustic modes due to the inverse
dependence on thc Hlolccular mass. Thus acoustic-modc-
assisted hopping is expected to be quite ineffective. For
the internal modes the hopping rate depends on the square
of the phonon energy, which is substantial. For
(NMP)054. (Phen)046-(TCNQ) at 100 K, for instance, we
calculate hopping rates of —10 —10'0 sec ', depending
on whether the electron hops between pin~ed solitons or
between a pinned and a free sohton, for internal-mode-
assisted hopping. This leads to mobilities in the range
10 to 1.03 cm /V sec, as compared to the mobility of
-10 cm /V sec that follows from the transition rate of
-1.649&& 10 sec ' calculated for acoustic-phonon-
assisted hopping.

We find that the thermoelectric power generated by in-
tersoliton hopping processes contains, in general, a term
arising from the soliton energies as well as the usual term
involving the difference between electronic energies and
the Fermi energy. The additional term arises from the ex-
istence of a multiphcity of possible states for a given soli-
ton. In the case of hopping between pinned solitons, this
term is Kivelson's' e/kr", for hopping between pinned
solitons of energy Es and free—solitons of essentially
zero energy, the analogous term is Eb l(2kT). In the case
of hopping between free solitons there is no extra
term. Detailed comparison of these results with experi-
mental conductivity and thermopower data for
(NMP)„(Phen)i „-(TCNQ) will be carried out in a later
publication.

ACKNOW LEDGMENTS
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The expression at the right, similar in form to that for the
external mode case, is obtained by introducing normal-
mode coordinates, gt' =—(iit/tot)' Qt, which have dimen-
sions of (mass)'~ Xlength.

To evaluate (A5) it is convenient to eliminate hto by use
of the relation"

~(o =(Pt /~() ~;.t g (/3t /cot)
I

(A6)

With b.,„, taken as the observed half-gap, and the values

of Pt and tot tabulated by Etemad for the as internal
modes of TCNQ [from tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ)], we can calcu-
late Ms"' for (NMP)„(Phen)t „-(TCNQ). For an empty
soliton in a lightly doped sample, where 6;„,=900 K, we
find from (A5) and (A6) Ms"'=1.57m„where m, is the
electron mass. In the case of an occupied soliton we must

add 1m, to Mq"'. For larger doping and higher tempera-
tures Mz"' would be less. These are small masses and it is

quite possible that there are other contributions of the
same order of magnitude from other sources of Peierls

distortion —acoustic modes and librons —and from anhar-

monic effects. A periodic interchain potential that in-

creases the Peierls gap would also add to the soliton mass.
Given the soliton mass, one can calculate the oscillation

energy fico„of a pinned soliton about an impurity. The

Thus the mass of the soliton in this case is given by

Ms~ (4~/3ak~~) X~to/(~lPl ) i g (Qi )'/«k~~) .
I I

(A5)

oscillation frequency is to, = (kb /Ms )', where

ks ——t) E, /Bxs evaluated at xs ——0 and E,(xs) is the
Coulomb energy for a soliton centered not at x =0 but at
x =xs at a perpendicular distance b from the impurity.
If we approximate the soliton wave function p(x —xs) by
a constant from xs —

4(( to xs+k~~, we can use Eq. (1.1) to
find E,(xs). We find then, for the force constant,

(e2el/2/2e3/2bi)(1+$2' /b2e ) (A7)

T,*=V™s+gj~~co/2a

(Ref. 24), where co is the speed of sound in the crystal.
For co—3 X 10 cm/sec we find, T,„/k =30 K if
t( =0.887. (This is the value of A, needed to reproduce the
experimentally seen gap 2b, /ok =1800 K at T=0 from
the Peierls equation. If we use the value A,=0.35 calculat-
ed by Etemad for the TCNQ chain, we obtain
T,„/k=52K). This T,„ is smaller than kT over most
of the temperature range of interest in studying hopping.

Using the previously derived mass of an occupied soliton
in (NMP)„(Phen)i „-(TCNQ) and taking @~~=10,we ob-
tain fico, =18 K. Since the corresponding depth of the po-
tential well, as calculated in the Introduction, is —190 K,
this would indicate —10 vibrational levels in the well.
For this case one will be able to reasonably approximate
the soliton density of states in the well by a continuum, as
Kivelson' does for (CH)„.

When considering hopping transitions to or from free
solitons as in Sec. IV, one must know the width of the ki-
netic energy distribution for free solitons. We take the
maximum kinetic energy to be
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