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We have developed a cluster-effective-medium approach for the numerical computation of the
physical properties of systems with diagonal and off-diagonal disorder including short-range order.
Our embedding technique, which is equivalent to one first discovered by Kumar and Joshi, treats
the cluster systematically within a hierarchical scheme for the propagators. Dependent on cluster
size, the highest-order propagator in the hierarchy is approximated by that belonging to the statisti-
cally Rvcragcd cffcctlvc mcdIum. Exprcsslons foI' obscrvablcs RI'c obtained Rs functions of
effective-medium quantities. The effective medium is then chosen to satisfy the exact dispersion re-
lations and the first few sum rules which analyticity in the complex-frequency plane requires of the
exact, translationally invariant quasiparticle self-energy X(k,co). The sum rules are fixed by the k-
diagonal matrix elements, (H ) of the Hamiltonian. These matrix elements are self-averagedk, k

and therefore may be computed directly from knowledge of the distribution functions characterizing
thc tl anslatlonally Inval lant disorder. Numcr1cal results foI' off-diagonal dlsol dcI' ln 8 onc"
dimensional binary alloy within the single-site-cluster approximation are included. The theory is
self-consistent In an iterative sense and is analytic by construction so that propagators are necessari-
ly free of any pathologic singularities, Beyond its present application to off-diagonal disorder in
substitutional systems, the theory also encompasses short-range order in amorphous systems.

I. INTRODUCTION

A general comprehensive theory for the behavior of ex-
citations in disordered media will be expected to meet a
long list of requirements. To name a few, the theory must
be causal, so that stringent analyticity conditions must be
satisfied by all averaged propagators. If the distribution
of disorder is translationally invariant, so too must be the
predicted macroscopic physical observables; constraints
emerge on the definition of the effective medium and the
technique by which the cluster is embedded within it. The
exact limiting behaviors at weak or strong scattering and
high or low concentrations must be reproduced. The for-
malism shouM place no ab initio restrictions on the num-
ber of distinct microscopic components comprising the
system nor should it restrict the short-range character of
the disorder distribution functions. One-particle and
two-particle properties should be computable within essen-
tially the same framework. If desired, the theory should
be implementable in a self-consistent mode. Finally, it
should incorporate sufficient parameter flexibility to ac-
commodate, for instance, the self-consistent many-body
screening of the electronic problem.

To date, despite many important advances, the search
for such a comprehensive theory has been unsuccessful.
Many difficulties have been encountered the principal
one has been a proper definition of the effective medium
and its relation to the cluster embedded within. The
discovery of the coherent-potential approximation (CPA),
for single-site scattering, by Soven and Taylor, ' was fol-
lowed by attempts to specify effective mediums such that
arbitrarily large embedded clusters would, in some sense,

fail to scatter. Those works were inspired in part by the
impressive success of CPA and because the average T ma-
trix must vanish in an exact theory. " The earlier efforts
pursued a rather straightforward implementation of the
non-scattering-medium idea in the construction of
multiple-scattering generalizations to the CPA. ' That
period was brought to an end by the work of Nickel and
Butler, who clearly demonstrated the implausibility of
satisfying both ab initio self-consistency and causality via
dlrcct appl ox1I11ate methods.

Two schools of thought have emerged in response to
this state of affairs. The first, influenced by Mills and Ra-
tanavararaksa, relies on diagrammatic techniques to ob-
tain approximations which are both ab initio self-
consistent and analytic, In conjunction with the
augmented-space techniques of Mookerjee, important
progress has been made. ' These works, however, are
not yet generally practicable. Their authors have experi-
enced considerable difficulty with the treatment of corre-
lated disordered systems, offering at present only a pertur-
bative solution. ' From a computational point of view,
what is perhaps of most concern are the theoretical com-
plexities to which a worker must subject himself to obtain
numbers. It would appear that the theory wi11 be signifi-
cantly IIlorc 1Ilvolvcd 1n appllcatlons to amorphous and
geophysical systems of current interest.

The second school of thought, to which this work be-
longs, sacrifices ab initio self-consistency in favor of
guaranteed analyticity. ' ' The cluster propagators are
computed in terms of yet undetermined medium propaga-
tors. The result is a theory which is flexible and general.
It will accommodate diagonal and off-diagonal disorder as
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well as environmental disorder. Short-range order is also
simply incorporated and the generalization to amorphous
disorder is relatively straightforward. Furthermore, nu-

merical implementation is simple. However, one glaring
problem remains: What should be used for an effective
medium? Some suggestions have been a Bethe lat-
tice, ' ' the effective medium from the single-site
CPA, ' or simple functional forms motivated by the CPA
results. '7'8

In this paper, we propose a resolution of this effective-
medium question, which is based on exact theorems for
the quasiparticle self-energy of any particular disorder
problem. We use any number (in principle) of the infinite
moment equations, which analyticity requires of the exact
self-energy X(k,ro), to fix parameters in simple guessed
functional forms for the effective-medium self-energy

8'i(k, co). An iterative process is thus initiated, where

8'„+i(k,co) is determined from the cluster Green's func-

tions for a given 8'„(k, co). In this manner self-
consistency may be established. However, as shown here
and as demonstrated previously, ' ' very good results
may be obtained after only the first step. The outline of
this paper is as follows.

In Sec. II we specify the model which concerns us in
this work. The model is a tight-binding Hamiltonian with
nearest-neighbor kinetic energy matrix elements. Diago-
nal and off-diagonal disorder are included together with
short-range order in the form of a conditional probability
for nearest-neighbor occupancy with a simple Cowley
parametrization. ' Section III presents a detailed discus-
sion of the analytic properties, dispersion relations, and
sum rules which causality imposes on the exact quasipar-
ticle self-energy. We use the fact that the k-diagonal ma-
trix elements of any power of Hamiltonian are configura-
tionally self-averaged when the distribution of disorder is
translationally invariant. Hence, we are able to explicitly
evaluate one side of the sum-rule equalities. We note that
this sum-rule analysis has appeared previously. ' In Sec.
IV we discuss our technique for embedding the cluster in
the effective medium which is yet unspecified. Although
formally different, our embedding method is entirely
equivalent (Appendix A) to the one which was first
discovered by Kumar and Joshi. Identification of the
cluster Hamiltonian leads to a Lippmann-Schwinger
hierarchy of propagator equations. These equations are
solved approximately by truncating the hierarchy at any
arbitrary point and replacing the highest-order propagator
with that belonging to the effective medium. As our nu-
merical results of Sec. VI are for the local density of states
in the one-site cluster approximation (1SCA), detailed
equations are shown only for truncation at the first level
in the propagator hierarchy. Section V concerns our
choice of medium. We show that the sum rules complete-

ly determine the k dependence of the medium self-energy

5'i(k, co) when a simple and intuitive ansatz is made for
its frequency dependence. Our selections for the latter fol-
low those of Bloom and Mattis. ' ' Appendix B contains
a discussion of conditions which causality imposes on the
choice of effective medium. In Sec. VI we illustrate and
discuss the information content present in the sum rules

and show first iteration results for the local density of
states pertinent to the one-dimensional alloy model of Sec.
II. Our 1SCA results for diagonal off-diagonal disorder
in the strong-scattering, split-band limit compare favor-
ably with corresponding results of Kaplan, Leath, Gray,
and Diehl. " We summarize our findings in Sec. VII.

II. THE MODEL

We consider tight-binding electrons in a binary, substi-
tutionally disordered solid with Hamiltonian

(2.1)

Except where otherwise indicated, our analysis will be
applicable to any number of dimensions. The off-diagonal
matrix elements Tj take on values of TAA, TAz, TzA, and
Tsii for nearest-neighbor atoms of both type A or A next
to B, or both type B. Similarly, the diagonal V; assumes
the values VA or V~. In this work, we take
Tg~ ——T~s HA. We assume that atoms A are found in
concentration cz, and therefore atoms B are found in con-
centration cz ——1 —cA. We treat short-range order with a
simple Cowley parametrization of the conditional proba-
bility for nearest-neighbor occupancy. ' We note, however,
that the theory developed in this work places no a priori
restrictions on the types of distribution functions which
may: be used to characterize the short-range order,
Cowley's parametrization is

P(A;A) =c„+st, P(B;A)=cs(1—s),

P(A;B)=cz(1—s), P(B;B)=cz+sc~ .
(2.2)

III. EXACT SUM RULES AND DISPERSION
RELATIONS

The Schrodinger-equation response function

(3.1)

has a contour-integral representation in the complex-
frequency plane,

P(P;a) is the probability of finding an atom of type P at a
nearest-neighbor site of one known to be type a. The al-
lowed range of s & 1 depends on concentration, and is as
such to ensure the semidefinite positivity of the condition-
al probabilities (2.2). Equations (2.2) satisfy the required

g P(P;a)=1, a=A, B
P=A, B

(2.3)

g P(P;a)c =cp, P=A, B .
a=A, B

The numerical results of Sec. VI are for the single-particle
density of states of a one-dimensional substitutionally
disordered alloy of lattice constant a with Hamiltonian
(2.1).
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(3.3)

G „(z)=(k (G(z) ( k), (3A)

~
k&= ge

N
(3.5)

G(t)= . f dze '~G(z), (3.2)
2@i

G(z) =
z —H+i 0+

The contour C includes the entire real axis, ( —Do, co),
and closes in the upper half-plane (UHP) for t &0 or the
lower half-plane for r )0.

The propagator (3.3) is analytic in the UHP, and there-
fore, so is the matix dement

Gp k«)= + &klHlk)+ i &k IH Ik&+'''

(k (H"
~
k)=[(k ~H"

~
k)],„, n =1,2, . . . (3.7)

where [ ],„ indicates the opera f' configurational
averaging. A little study reveals ).7) is due to the
fact that H " may always be cast in the form

g, O(r; —rj), so that each local configuration contri-
butes to the total sum irrespective of its absolute position
in the lattice. For the model of Sec. II, our results for the
first three moments in a one-dimensional lattice are

(3.6)

and note that all the matrix elements on the right-hand
side are configurationally self-averaged, i.e.,

(k„iHik„)= g c V + 2 g P(P;a)T p cos(ak„) (3.8)

(k„~H
~
k„)=pc V +2+ P(13,"a)T pTp + 2+P(P;a)T p(V + Vp) cos(ak„)

a P

+ 2+P(P;a)T pg P(y;P)Tpr cos(2ak„)
P y

(3.9)

(k„~H 3
~
k„)=g c V'+2 g P(P;a)T pTp (2V + Vp)

+ .2g P(P;a)T p V + V Vp+ Vp
P

+Tp T p+g P(y;a)T r +QP(y;P)TprTrp cos(ak„)
y

+ 2g P(P;a)T.pg P(y;P)Tp, (V.+Vp+V, ) cos(2ak, )
P y

+ '2+ P(I3;a)T~pg P(y;P)Tprg P(5;y)Trs cos(3ak„)
P y

Calculation of these moments is increasingly difficult
with higher order and or higher dimension. Evidently,
this problem may be overcome by the development of
computer algorithms vrhich directly evaluate the various
terms enclosed by large parentheses in the above equa-
tions. Nevertheless, it is our belief that most applications
will require calculation of only the first few moments. As
will be seen later in Sec. V, the usefulness of the sum rules
is in some measure due to the fact that for a substitution-
ally disordered system ( k

~

H"
~

k ) may always be cast in
the form of a sum of terms, each of which is the product
of a probabilistic weight times a topological structure fac-
tor. For substitutional disorder, these topological terms
are completdy independent of the disorder. It is not diffi-
cult to see that there exists a class of amorphously disor-
dered systems for which (k

~

H"
~
k ) also has this con- [& k

)
G(z)

~
k &].„=0, k~k . (3.12)

t

venient form. For example, such will be the case for an
amorphous system in which each atom has the exact same
number of nearest neighbors and in which the substitu-
tional disorder is statistically independent of the topologi-
cal disorder.

Returning to Eqs. (3.6) and (3.7) we see that

[(k
~
G(z) ] k)],„= =(k [G(z)

~
k),

z —X(k,z)

where X(k,z) is the exact quasiparticle self-energy. The
configurationally averaged Green's function is therefore
analytic in the UHP when the distribution of disorder is
translationally invariant, since in that case
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X(k ) f d'
2&l C Z —Z

(3.13)

It is not difficult to convince onself that the analyticity
of [6- (z)],„ in the UHP requires the analyticity of

X(k,z) there also. A simple proof of this has been pub-
lished by Mookerjee. ' ' Therefore Cauchy's integral for-
mula

of which are

f dc@ ImX(k, co) = —mgi(k),

OPAL ImX k, QP = —g 2

etc. The real parts of the sum rules may be recovered
from (3.19) and the Kramers-Kronig relation implied by
(3.13) as follows:

must be satisfied. In (3.13) and hereafter, the contour C
will be taken to enclose the entire UHP.

From (3.6) and (3.11) it may be shown that X(k,z) has a
large z expansion of the form

ReX(k, co)= & k
I
H

I
k &+ P—f da)'™

(3.20)

X(k,z) = g g„(k)z-",

where the coefficients Q„may be evaluated by equating
powcl's of z in tllc cxpl cssloI1

[x(r,z)]" I ~ E?"
I)n=o n=o ~

Explicitly, the first three terms yield

Qo(k) = & k
I
II

I
k &,

Qi(k)=&k IH I
k& —[Qo(k)]

Qz(k)=&k IH I
k& —[Qo(k)] —2Q[i(k)Q[(k),

(3.16)

etc. The analyticity of X(k,z) in the UHP and Eq. (3.14)
imply that the infinite set of functions

X[I(k,z) =X(k,z) —Qo(k),

F„(k,z) =zF„ i(k,z) —Q„(k), n =1,2, . . .
(3.17)

are analytic in the UHP and vanish as 1/z when

I
z

I
~ 00. From Cauchy's integral theorem,

dz F„(k,z)=0, n =0, 1,2, . . . (3.18)
C

we obtain an infinite set of sum rules, the imaginary parts

It is also useful to note that (3.20) may be used to rewrite
(3.13) as

X(k,z)=&kIHIk&+ f—d~', ', (3.21)

which implies that X(k,z) has the Herglotz property
(ImX~O for Imz)0) whenever ImX(k, z) is negative
semidefinite on the real axis z =co+ iO+.

IV. CLUSTER EMBEDDIN&

We embed the central cluster in the effective medium
using a technique first developed by Kumar and Joshi. zo

This method was used previously by Bloom and Mattis, '
and has been dlscllsscd 1I1 soIIlc detail by 8100111. Gill'
implementation differs in form and is simpler than that of
previous authors. In Appendix A we establish equivalen-
cy.

One begins by identifying the cluster of atoms whose
internal scatterings are to be subjected to exact treatment. .
For a Hamiltonian of form (2.1) we group the cluster-site
indices il, i2, $3, . . . in a set denoted I. The following ma-
nipulations succeed in replacing the real atoms of set I by
fictitious ones characterized with the effective-medium
off-diagonal matrix elements 8',

z and diagonal ones 8';;.
Hamiltonian (2.1) is written

H =a '"(z)+1?a["(z),

H '"(z)=g —,
' g [@',J(z) I

I & &i I
+@'J',

I J & &I
I ]+&-(z)

I
I & & I

I

i CI allj

+X ~ X (2'?1
I
l &&& I+~P IJ &&I I

)+I'[ ll &&l
I

1&I allj
(4.1)

@a["(z)=$ 2$ [[r,, —a",,(z)] II &&J I+[r,, —a",, (z)]IJ &&I
I ]+[v,—a",, (z)] II &&I

I

i 6I allj

The —,
' factors result from a symmetrization which as-

sumes that the energy in each off-diagonal bond is shared
equally by the connected atoms. Decomposition (4.1) in-
duces a Lippmann-Schwinger series for 6(z),

where

6 (I)(z)
z —a'"+)'0+

(4.3)

6(z) =6 ' '(z)+6 ' '(z)5H ' '(z)G(z),

The embedding procedure is completed with the replace-
ment (an approximation) of 6 [I'(z) in (4.2) with the medi-

(4.2) um propagator 9(z) which satisfies
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z —Ã(k, z)

S'(k,z) = ( k
~

S'(z)
~

k &,

S'(z)=S' (z)+S (z),

S'o(z}= y S';j(z)(1—5,j) ~i&(j ~,

(4.4)

(4.5)

(4.6)

Note that the range of tight-binding matrix elements O',.J
will generally not coincide with that of T~J. This point
vali be discussed in Sec. V.

For a cluster of arbitrary size, the solution of (4.2) with
G ' '(z) replaced by 9(z) assumes the form

++9[,'(T —k—)+V—I ] ~i )(i (
6 )i ),

in which the right-hand-side matrix elements involving 6
are obtained from the coupled equations

(4.9)

Indices iI, i, and i„range over the cluster indexing set I. In the 1SCA„Eqs. (4.9) define a 2)&2 matrix equation whose
solution 18

«J(~)= & i
I
G(~)

1 j& =(I 1 —&I I 2 [T—S"(~)l&(~
I
i & I &~J(~)+ &I

I 2 [T—& '(~) l&(~)
1 j & & -(~))~&(»

(4.10)
R(co)=(1—(i

~
9(RI)I ,'[T k(c—o)]+—V k(—ro}I ~i))I1—(i

~ ,'[T k(R—I)]9—(ro) ~i))

—(i
~

—,
' [T—k (co)](co)I —,

' [T—ko(co)]+ V—kD(co)I ~i )8;;(co) .
i labels the single cluster site.

Although the concepts discussed in this section- are gen-
eral, most of the equations shown pertain to the one-
dimensional lattice. The principal point of departure of
this work from that of our predecessors' ' lies in our
use of the exact sum rules for the quasiparticle self-
energy, Eqs. (3.19), to determine the effective-medium

self-energy function S'(k, co). Of course, use of a few sum
rules is not able to completely fix the frequency depen-
dence of S'. However, following Bloom and Mattis' '
we find that physically intuitive arguments may be used to
guess at simple parametrized forms for ImS'(co) (also see
Appendix 8). The few ImS' parameters may then be
fixed over the entire range of model parameters (Sec. II)
using the same few number of moment equations. The re-
quirement that the effective medium be causal fixes
RCS'(co) via the Kramers-Kronig relation (3.20), applied
to S'(k, ai). Finally, physical results are obtained by expli-
citly averaging system functions such as G;J(co) over all
appropriately weighted cluster configurations. As will be
seen in the following section, the numerical results ob-
ta111cd from th1s fll'st step 111 'tllc InlS ItcIatlvc sclic111c cail
be surprisingly good both in the vveak- and strong-
scattering limits. For the self-consistent implementation
of this theory to be explored in subsequent work, we

denote by O'I ( k, e) the sum-rule-determined medium
self-energy, and by G(m;n) the cluster propagator ob-
tained from (4.8) with 9' replaced by 9'(co,n), Eq. (4.4),
Rild I»» I'cplRclIlg k 111 botll cqllatioIls. HcI'c,
n =1,2, 3, . . . is the iteration index. Iterations are ob-
tained from (3.11) in the form

1mS'„~I(k, co)=—Im
[(k

/
G(a);n )

/

k )],„
The Kramers-Kronig relation (3.20) is used to compute
RcS «+I(k»co)» while thc cqllatloIls of Scc. IV dctcH111nc

G(m;n+1). Observe that in this straightforward im-
plementation of self-consistency, the sum rules are used
only initially for the determination of S'i.

Conceptually, one of the more satisfying results of the
sum-rule analysis is that unlike the frequency dependence
of S'(k, co), its dependence on k is completely fixed in
"each order" of approximation. Here, "each order" does
not refer to cluster size but rather to the number of sum
rules invoked. If the disordered matrix elements of TJ
occur only between nearest neighbors, we find that the
wcRk scRttcrlllg 11111lt (ovcrlapplIlg 1111purlty bRIlds) is
described sufficiently well with the use of only the first
sum rule, which produces an effective medium with off-
diagonal matrix elements between first and second nearest
neighbors. In the strong-scattering limit (nonoverlapping



impurity bands) and the same TJ, two sum rules are
minimally required, producing an effective medium with
matrix elements between first-, second-, and third-nearest
neighbors. For the one-dhmenstonal case, the sum-rule
analysis proceeds as follows.

We rewrite Eqs. (3.8)—(3.10) in the form
175

(k„~ (~)~
~
k„)= Q A~„cos(nak„), m = 1,2, . . . . (5.2)

The coefficients A „are, from (3.8)—(3.10),

Aio ——g c V~, Aii ——2+c g P(Pa)T p,
a=A, B

equations used to construct a given approximation. Ex-
pression (5.7) is consistent with the structure of the
Q (k„), Eq. (5.4), and the independence of the substitu-
tional from the topological properties of our model. In
the determination of f„(co) there arises the question of
band edges. It is evident that the iterative, self-consistent
implementation of this theory contains a description of
band-edge effects. However, for our present purpose we
limit the bands by the theoretical band limits obtained
from Gershgorin's theorem. ' Once the parameters
occurring in f„(oi) have been fixed, using sum rules (5.6),
the Kramers-Kronig relation (3.20) is used to determine

etc. We rewrite Eqs. (3.16) in the form

(5.3) ReS'(k„,co)=(k„~II
( k„)

M+ I
1 ~ f (oi')+g PJ dco

M —QP
cos(nak„) .

m+1
Q (k„)= g S „cos(nak„), m =0, 1, . . . (5.4)

with the coefficients given by

3 2
S22 =Aug —2A ioS12 —2A ioA11 —A iiS11 ~

S23 —A33 ——A 11
—A11S12, Si„——0 for n &4,1 3

~pp ~ 10~ ~01 ~ 11

2 & 2
)$1p =Q 2p

—Q 1p
—~.Q 11 ~ +11=A 21

—2A 1'11

Sip ——Ap2 —TA11, Si„——0 fol n )3,1

3 3 2S2o=Aio —A io —2AioSio —2AioA ii —A»Sii (5 5)

S2i ——Api —3A ioAii —2(AioSii+AiiSio)2

(5 8)

In Sec. VI we present numerical results obtained for two
distinct effective mediums. Visibly, our choices have been
influenced by the work of Bloom and Mattis ' however,
other choices are also possible. Consideration of a few of
these, including a discussion of simple criteria which are
helpful in guiding a selection of S'(k, co), is found in Ap-
pendix B.

(a) Medium 1. This medium is suitable for description
of the weak-scattering, single-impurity-band hmit. This
medium is fixed using only the first moment equation
(5.6) so that M =1 in Eq. (5.7). Denoting Qi and Q2 to be
the theoretical band edges, we take

ImS'(k„, co)= g f„'(ra) cos( nak„), (5 9)

with

etc. The moment equations (3.19) for the effective medi-
um assume the form

6) AP IGl »6)
m+1= —m. g S „cos(nak„), m =1,2, . . . .

Our ansatz for ImS'(k„, oi) is, in the one-dimensional case,
M+1

ImS'(k„,co)= g f„(co)cos(nak„), (5.7)

where the f„(co) are simple functional forms which we
discuss below. In Eq. (5.7), M is the number of moment

lT Q1 QQP Q Q2p fI —Oplp2f„(co)= Q2 —Qi' ' ' '
(51{))

0~ otherwise .

(b) Medium 2. This medium is suitable for description
of the strong-scattering, split-band limit. Two moment
equations are required so that M =2. I.et Q1,Q2 denote
the edges of the lower-frequency band and Q3, Q& denote
the edges of the upper-frequency band; then

3
ImS' (k„,ai) = g f„(oi)cos(nak„), (5.11)

p„, Qi &oi(Q2

[P„(Q3—co}+a+(oi—Q2)], Qp + oj (Q,
1

„(co)= Qs —Q2

A
pg p Q3 Q kP Q Q4,

0, othe&vise .

The first two moment equations (5.6) require that the constants P„,a„satisfy
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[Q2 Qi+ i (Q3 Q2)]p„+[Q4—Q3+ —,(Q3 —Q2)]a„=—mSi„, n =0, 1,2, 3

[Qz —Q, + —,
'

(Q3 Q2)(Q&+2Qz)]p„+ [Q4—Q&+ —,
'

(Q3—Qz)(2Q3+ Q2)]a„=—2m Sz„.
(5.13)

In Fig. 1 we display f„(co).
In view of our numerical results, it is interesting to ob-

serve that the postulate of a nonvanishing ImS' in the gap
region (Qz, Q3) between the separated subbands seems
necessary in order to satisfy the local density-of-states
sum rule, Eq. (6.2). In the split-band limit, all of our at-
tempts at guessing simply parametrized functional forms
of ImS' within the bands with ImS'=0 in the gap have
failed to satisfy (6.2). This result is suggestive of the ex-
istence of some singular structure in the self-consistent
S'(k,z) for z exactly on the real axis within the gap region.
It is known that the CPA yields an isolated singularity
there, in the limit of uncorrelated diagonal disorder. ' In
the CPA case, it is found that for each k, the infinite set
of matrix elements (k

~

H"
~
k) are required to fix both

the strength and position of the singularity on the real
axis. Should the existence of such singular structure
prove to be a general feature of cluster mean-field
theories, the arguments of Velicky et al. '9 indicate that,
for off-diagonal and/or correlated disorder, a distribution

of singularities, with a separate one for each k, might be
expected. Such singular structure would explain our re-
sults. From our point of view, its primary function would
be an effective renormalization of the right-hand side of
the moment equations (3.19) to ensure the satisfaction of
Eq. (6.2}. This is precisely what is accomplished by the
presence of a nonzero ImS' in the gap. Note also that in
the limit of connected subbands, when the gap is absent,
seemingly any choice of ImS' will satisfy the density-of-
states sum rule, if the low-order moment equations are
obeyed, and if ImS' is nonzero within the band. These
matters should become clearer on implementation of self-
consistency.

VI. NUMERICAL RESULTS

We confine ourselves to density-of-states results ob-
tained for the one-dimensional disordered alloy of Sec. II
in the 1SCA. First, we show that use of the sum rules, as
outlined in the preceding section, yields an effective medi-
um which is meaningfully dependent on the model param-
eters of Sec. II. We restrict the following considerations
to mediums 1 and 2 defined in Sec. V.

It is well known that the imaginary part of the self-
energy X is inversely proportional to the lifetime of an

k

excitation in the quasiparticle state with wave vector k.
Therefore, we expect that for the model alloy of Sec. II,
the disorder-induced lifetimes will diverge in the majority
subband as the concentration of the minority component
is allowed to vanish. Fig. 2 shows the concentration
dependence of f0, Eq. (5.10), for the case of diagonal dis-
order only: TJ

——1.0, in the weak-scattering limit
V~ = —Vz ——0.5, and in the absence of correlation, s =0.
We note that ImS' is symmetric about concentration 0.5,
reflecting the symmetry of the model parameters, and that
it vanishes at extreme values of the concentration of either
component. The corresponding result for medium 2, Eqs.
(5.11) and (5.12), is shown in Fig. 3 when T~=1.0,
Vz ———Vii ——2.5, and s =0. The figure depicts the depen-
dence on the A-atom concentration of ImS' [po in Eq.
(5.12)] in the B subband. By symmetry, ImS' in the A

subband is obtained from a mirror reflection of the
displayed curve of about Cq ——0.5. The first two sum
rules predict a causal medium 2, with the anticipated
dependence on concentration, except in the extreme dilute
limit of either component where causality is lost. This
possible loss of causality is, of course, ansatz dependent
and may be corrected with a better guess for the frequency
dependence of f„(co) in Eq. (5.7}. After all, the sum rules

are all satisfied by the exact, causal ImX(k, ~},and there-
fore it is no surprise that a simplified guess could cause
difficulties for certain extreme values of the model param-
eters. We find that the presence of off-diagonal disorder
and short-range order have the general effect of restricting
the range of model parameters for which simple parametr-
izations of the frequency dependence of f„(co), in (5.7), re-
sult in a causal medium. This indicates to us the need to
include, in our guesses of the frequency dependence of
f„(ro), certain (yet unknown) gross characteristics whose
presence signals off-diagonal disorder andlor short-range
order in the model. An illustrative discussion of this
point will be found in Appendix B. In any case, where the
sum-rule-predicted medium in causal, we have always
found the expected qualitative dependence on model pa-
rameters. We should also note that these considerations
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FIG. 1. The medium 2, f„(co}is displayed.

FIG. 2. We plot the sum-rule-determined Im8' for medium 1

as a function of the concentration of A atoms. Our Hamiltonian
parameters at TJ = 1.0, Vq ———V~ ——0.5, and s =0.
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PIG. 3. SUIQ-rulc-determined Im8 in thc 8 band shovvn as a
function of A-atom concentration. The model parameters are
TJ = 1.0, Vq ———V~ ——2.5, and s =0. Causality may be violated
for a sufficiently pooI' guess foI' thc frequency dcpcndcncc of
ImS'( k, co).

are considerably less significant for self-consistent, itera-
tive applications of the method. There, the sum rules are
invoked only in the first step to obtain an initial guess. If
a causal medium is not obtained from the sum rules for
the desired set of model parameters, a causal medium for
some different set of parameters should serve as well, to
initiate the process. In the limit of only diagonal disorder,
the sum rules predict that ImS'(co) is independent of k„.
This is an exact result which does not depend on our an-
satz for the frequency dependence of ImS', nor does it de-
pend on scattering strength.

It is interesting to observe that for the Hamiltonian pa-
rameters of Fig. 2, Bloom and Mattis' ' obtained their
best results for cz ——cia

——0.5 with a guessed value

~

ImS'
~

=0.15. This is to be compared with our sum-
rule-determined value of 0.157. The 1SCA local density
of states, which we compute for the parameters of Fig. 2
and cz ——0.5, is essentially identical to the top of Fig. 2 of
Ref. 18. In Figs. 4 and 5, we show our medium-2 (Fig. 1)
strong-scattering results for the 1SCA local density of
states,

p(co) = ——1m[{i
~

G(a))
~

i )1,„

in the presence of diagonal and off-diagonal disorder,
respectively. Our results are compared with essentially ex-
act histograms taken from the work of Kaplan, I.eath,
Gray, and Diehl. " The dashed line is the sum-rule-
determined input density of states of the medium, while
the solid curve is the first-iteration result. We observe the
atomiclike peak in the minority band and also a very good
description of the mean shape of the spectrum. The finite
density of states in the interband gap (solid curve) is due
to our having ascribed a nonzero density of states to the
medium there (dashed curve). The first-iteration density
of states in the gap is significantly smaller than that of the
guessed medium indicating an approach towards 0 with
further iterations. Within numerical accuracy, the
density-of-states sum rule

6)p N =1

is satisfied by the solid curves of both Figs. 4 and 5.

Wc have dcvclopcd 8 simple, computational, and itera-
tively self-consistent method to calculate the physical
properties of disordered systems in which the distribution
of dlsordcr ls translatlonally lnvaflant. Thc theory en-
compasses diagonal and off-diagonal disorder with arbi-
trary specification of short-range-order distribution func-
tions. Substitutional as well as amorphous systems may
be studied with this method. We have shown strong-
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FIG. 4. First-iteration result (sohd curve) for the single-particle —cluster approximation is shown for T~=1.0, Vz ———V~=2.5,
Cz ——0.3, and s =0. The dashed curve is the sum-rule-determined, effective-medium density of states which was Used as input to ob-
tain the solid curve. The essentially exact histogram is taken from Ref. 11.
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FIG. 5. Same as Fig. 4, except for the presence of off-diagonal disorder: T~ ——T» ——T~~ ——0.5 and T~~ ——1.0.

scattering numerical results for the density of states in the
single-site —cluster approximation for diagonal and off-
diagonal disorder. A planned, forthcoming paper will
present the corresponding numerical results for short-
range order in multiple-site —cluster approximations. This
work has established the usefulness and computational
practicability of the sum-rule method for the study of the
energy spectrum of disordered systems. As a one-step
procedure, the scheme is approximate and analytic by con-
struction. As found here and also by other authors, '7's
first-iteration results can be remarkably good. For each
chosen cluster size, self-consistent results are possible
through repeated iteration. In future work we shall ex-
plore this iterative self-consistency, as well as transport in
substitutional and amorphous systems, and the application
of this technique to geophysical problems of current in-
terest.
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APPENDIX A

Here we establish the equivalence of our embedding
technique, discussed in Sec. IV, with that of previous au-
thors. ' ' ' Consider, for illustration, the treatment of a

cluster of two atoms labeled 1 and 2. The standard tech-

nique develops the Green's function 6(z) in a hierarchical
series

6 =G '"+6 ("5H '"G,

G (I) G (1,2)+ G (1,2)g~ (2)G (1)
(Al)

where in the notation of Sec. IV, 6"' is G' ' when

(I)= [ 1 ), 6" ' is 6 ' ', when (I)= ( 1,2), etc. A simple
manipulation recasts (Al) to a form

6 =6" '+ 6" '(5H "'+5H ' ')G, (A2)

which is identical to (4.2) since by definitions (4.1), 5H ' '

is additive over i EI, and H' ' does not depend on the or-
der with which atoms are inducted into the cluster. The
reader will easily verify that form (A2) is independent of
the number of equations included in the hierarchy (Al).

APPENDIX B

ImS'(k„,~)= g f„(co)cos(nak„),
n=0

(B1)

The infinite set of moment-equations (3.19) completely
determine the wave-vector and frequency dependence of
the imaginary part of the exact self-energy X(k,co). Its
real part is fixed by the Kramers-Kronig relation (3.20).
Formally this follows from (3.21); however, rigorous state-
ments may be found in Ref. 24. A natural question is
how much of the structure of X(k, co) is determined by the
first few moment equations? Or more precisely, to what
extent do the first few moment equations limit the fre-

quency dependence of ImX(k, co)? We limit this discus-
sion to the one-dimensional case when two moment equa-
tins are invoked. It turns out that our ansatz (5.7) for
Im8'.



is, in fact, exact due to the requirements that 8' is invari-
ant under translation by a reciprocal-lattice vector and
under reflection about k„=0. From (5.6) and (5.7), two
moment equations yield four independent sets of two
equations each,

Ct) = —P'S I~

(82)

f dco cof„(co)= —IrS2„, n =0, 1,2, 3 .

As the S~„are all positive semidefinite (numerically this
is invariably the case, although we have no formal proof),
it is not a difficult matter to guess at simple parametrized
forms f„(co) satisfying (82). Once parameters have been
determined by (82), the trial functional form of
1m 8'(k„,co) is given by (5.7), with M =2. At this point, a
new constraint must be imposed on the set of f„(co),
namely that at each co the sum in (5.7) yields a negative
semidefinite value for all values of 0(ak„&2m. We find
that this causal-mode condition is a strong constraint for
systems with off-diagonal disorder and/or short-range or-
der. The implication being that some very specific infor-
mation as to the character of the disorder under study is
coded into gross features of the overall shape of
ImX(k», co). Should this effect survive the transition from
one-dimensional to three-dimensional systems, it is con-
ceivably of some experimental importance. For theoreti-
cal purposes, the strength of this causal-mode condition is
most felt when undertaking studies of trend behavior in
which Hamiltonian and/or disorder parameters are al-
lowed to vary over their entire breadth in range. For then,
this moment technique requires functions f„(co) which
yield mode causality over the entire parameter space.
With the use of three moment equations on a system with
off-diagonal disorder, it is not too difficult to find simple
functions f„(co) which give mode causality over restricted
ranges of constituent concentration. However, we have
not yet succeeded in guessing a suitable set of functions
with mode causality over all concentration ranges. This
explains the conspicuous absence of numerical results for
three moment equations in this work.

%'e illustrate the above discussion with an example.
Consider an off-diagonally disordered system with

&~a=Ts~ =0 6 Tax=0.» ~~ = —~a= l 0
and without correlation s =0. Gershgorin's theorem
gives two pRrtlRlly ovcilapplllg bands (Ql, QI) =(—2.2,
0.2) and (Q&, Q4) =(—1.0, 3.0). As a first guess we take a
simple functional form

f,'(co) =&„'(co)+&„'(co),

Pg, Q I (co & Qi8„(co= .
0, otherwise,

a„, Ql & co & Qq

0, otherwise,

where the self-energy has been taken to be a constant in
each subband and additive in the overlap region. The
point illustrated here is quite general and is independent
of this additivity assumption. Using (83) in (82) one

solves for the parameters P„,a„. We ask over what range
of concentration c~ does the resulting ImS'(k„, co), Eq.
(5.7), satisfy mode causality'? We find that it is satisfied
for cz in the range 0.229—1.0. At Cq ——0.228 and for fre-
quencies Q] Qdp Q Q3, we obtain

Im 8'( k», co ) = —0.0626 —0.0796cos(ak„)

—0.0168cos(2ak„)

—3.8X10 ' cos(3ak„),

which is positive (acausal) at k„=m./a. Loss of mode
causality tends to first appear at Brillouin-zone edges, al-
though not invariably. Continuing the search for better
f„'s, we consider ones with more structure, such as

f„'(co)=8„"(co)+A„"(co),

P„[(co—Qi)/(Qb —Qi)], Qi & co (Qb

a„"(~) P„[(Q,—~)/(Q, —Q, )], Qb &~&Q,
0, otherwise,

a„[(co—Ql)/(Q, —Ql)], Qs &co(Q,
2„"(co)= a„[(Q4—co)/(Q, —Qb)], Q, &co&Qq

0, otherwise .

A triangular form is assigned to each band with additivity
in the overlap. The four triangles in the 8 subband
(n =0, 1,2, 3) have their cusps at co =Qb, while those in the
A subband have their cusps at m =Q, . Parameters Qb and

Q, shall be considered adjustable. They parametrize the
overall shape of the f„'s. For each selected pair of Qb and
Q„ the moment equations (82) are applied, as before, to
the determination of the triangle heights p„and cz„. As a
first guess using form (85), we take Qb and Q, in the
center of their respective bands and search for the range
of cz satisfying mode causality. We find that the causal
I'Rilgc of cg ls llllcllallgcd (0.229—1.0). Wc liow slllft Qb
to various different values in its allowed range (—2.2, 0.2),
and for each choice test for the causal range concentration
cz. Again, it is unchanged indicating that failure of mode
causality at small concentrations c~ is probably not due to
our poor guess of the overall shape of X over the range of
fl'cqllcllclcs col I'cspolldlilg to subband 8. When cg ls
small, causality does not impose a significant condition on
the overall frequency dependence of X in the range (—2.2,
0.2). Applying this analysis to the A subband produces a
striking result. We choose Qb ——1.0, at the center of sub-
band 8, and vary Q, . We find that the causal range of c~
is extremely sensitive to the overall frequency dependence
of X in subband A. When Q, = —0.9, the range of causal
cg ls dlmlnlshcd to (0.727—1.0), wllilc if Qg 0 1.94, all
concentrations of c~ are causal. If Q, is decreased slight-
ly below 1.94, causality fails first at ak»~2. 2. These re-
sults suggest that at small values of cz the exact X(k», co)

should exhibit an enhanced magnitude in the frequency
range (0.2, 3.0). More generally, it appears that at least
for certain values of the system parameters, the require-
ment that all effective-medium modes be causal imposes
the presence of identifiable gross characteristics in the fre-
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quency dependence of X(k,ro). This matter is expected to
become clearer in self-consistent calculations. It should
be noted that the triangular self-energy (B5) does not yield
a satisfactory local density-of-states spectrum, apparently
due to the rapid decrease of ImS' near the band edges.
The resulting density of states exhibits an accentuated nar-
rowness. Therefore, it appears that the constant com-
ponent of ImS' is necessary in order to obtain good spec-

tra. Pointed structures such as (B5) should be included
only as corrections to the constant component. The above
analysis, which uses (B5) alone, addresses essential points
while avoiding unnecessary complications. Evidently, our
conclusions of this Appendix will only be quantitatively
affected by the presence of the proper constant component
of ImS'.
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