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Finite-size two-dimensional systems are investigated by numerical diagonalization of the Hamil-

tonian. Both ferrnion systems and boson systems are investigated. The energy of the liquidhike

ground state of the fermion system shows a downward cusp at 3 filling of the lowest Landau level.

This behavior is consistent with the observed fI'actional-quantum Hall effect. The short-range
behavior of the pair distribution function of the ground state is analyzed and good agreement with
Laughlin's trial wave function is obtained.

I. INTRODUCTION

The discovery of the fractional quantum Hall effect by
Tsui et al. ' stimulated theoretical research on the
ground state of the two-dimensional electrons in a strong
magnetic field. The high mobility of the GaAs-GaAlAs
heterojunction, where this effect is observed, indicates that
the effect comes from the property of the ground state.
However, when the effect was first reported, no existing
theory for the ground state, such as the Wigner-crystal
theory or the charge-density-wave (CDW) state theory, '

could explain the experiment.
The fractional quantization is first observed at about

v= —, and —,, ' where v is the filling of the Landau level

defined by v=2mln, w. ith n being the density of two-
dimensional electrons and l being the Larmor radius,
1=(Pic/eB)'~ . In order to explain this effect, Yoshioka,
Halperin, and Lee ' made a numerical calculation for a
finite-size system. They found that the ground state is
not the CD& state, but rather a liquidlike state. They
also found a downward cusp in the ground-state energy as
a function of the filling factor v at v= —,'. It was shown
that the experiment can be explained by the presence of
the cusp in energy. On the other hand, Laughlin suggest-
ed a trial wave function Rt v= I/p wlmre p is an odd in-
teger. He showed that the wave function, which
represents a, liquid state, ha, s a lower energy than the
CDW state. He further argued that the excitation from
this state has a charge e/p with a finite excitation energy,
and that this explains the experiment. A different theory
was presented by Tao and Thouless' for the state at
v= I/p.

After these theories were published, other fractional
quantizations at about v= —, , —, , etc. were found. These
effects can be explained if there are downward cusps in
the ground-state energy at v= —, and —,. Our numerical
results seem to suggest small downward cusps at v= —,

and —,. However, it is difficult to deny the possibility that
the cusps are spurious, resulting from boundary effects.
Moreover, such numerical calculations do not reveal the
origin of the cusps. On the other hand, several attempts
to cxtcnd I aUgM1n s thcoly to cxplaln thc experiment

have been done. " ' However, estimates of the energy
have not been performed in these theories, and hence it is
difficult to tell which theory is a better approximation to
the actual ground state.

The purpose of this paper is to give details on our pre-
vious letter, and to report the results of our further nu-
merical calculations. One of the aims of these further cal-
cUlatlons 1s to cstaM1sh a, connection bctwccn our numeri-
cal results and Laughlin's trial wave function. The differ-
ence in the boundary conditions does not allow us to make
a direct comparison of the wave functions, however.
Hence, here we compare only the short-range behavior of
the wave functions: We investigate how the wave func-
tions behave when two electrons come close to each other.
The behavior of the amplitudes of the wave functions are
compared by calculating the pair distribution function
g(r ). The phases of the wave functions are also com-
pared. We also investigate a system of bosons. Since
statistics RI'c 1111portRilt 111 LaiigllliI1 s WRvc fllIict1011, thc
investigation of the boson system gives further indirect
support to Laughlin's wave function.

Another aim of the present paper is to obtain some
clues to the nature of the ground state at v= —', and —', .
The behavior of the g(r ) indicates that the correlation be-
tween quasiparticles, rather than that between the parti-
cles themselves, is important at such values of v.

In Sec. II the system and the method of the calculation
are explained. The results of the numerical calc'ulation,
the behavior of the g(r ), the v dependence of the energy,
and the behavior of the wave function are presented in
Sec. III. The comparisons of our results with Laughlin's
wave function is also given there. A discussion is present-
ed in Sec. IV.

II. METHOD

We consider a two-dimensional fermion or boson sys-
tem in a rectangular cell. The cell is in the x-y plane, the
boundary of which is given by x =0, x =a, y =0, and
y =b. &e impose periodic boundary conditions in both
the x and y directions. A strong magnetic field 8 is ap-
plied along the z axis. The magnetic field quantizes the
cIlcrgy spectrum of a charged partlclc 1nto a scrics of Lan-
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dau levels. We consider a system where the particle densi-
ty n is smaller than the degeneracy per unit area of the
lowest Landau level, 1/2~1, namely the filling factor of
the Landau levels v=2m. l n is less than 1. We assume
that the sphtting of the Landau levels fm, is much larger
than the typical Coulomb interaction energy e /e/, where
co, is the cyclotron frequency and e is the dielectric con-
stant. In such a case, we can consider only the lowest
Landau level. In the actual experimental situation, how-
ever, the validity of this approximation is not obvious.
However, we believe that the essence of the fractional
quantum Hall effect is understood without considering
the higher Landau levels. It is also assumed that the Zee-
man splitting is larger than e /el, and thus we consider
the spins of all the particles to be aligned.

For an infinite system the wave function of the lowest

Landau level in the Landau gauge, A=(0,8x,0), is given

dary condition is given as
P 1/2

(XJ+ka)y
cxp l

k= —ao I
yj(r )=

(X +ka —x)
2ll

(2.2)
%'herc I CJ 4Nl.

We consider a system of n ( &m) particles in the cell,
mutually interacting through the Coulomb interaction.
We also consider a uniform, neutralizing, positive back-
ground charge in order to eliminate the divergence due to
the long-range nature of the Coulomb interaction. The
boundary condition modifies the form of the Coulomb in-
teraction, because a charge interacts with another charge
as well as with all its images. Hence the Coulomb interac-
tion is given as

yx(r )=exp i.Xy
I2

(X—x)
2ll

(2.1) V(r)= gg
k, k, eI r+klax+k2by

I

In the present system the periodic boundary condition in
the y direction requires that X be an integral multiple of
2m. l /b. Hence, allowed values for X are written as
XJ.=2m.i j/b with an integer j. The periodic boundary
condition in the x direction requires that at some integer
I, X~ becomes equal to a. Hence the area of the cell ab
111ust be 2~l'm. This cond1tion is equivalent to the condi-
tion that the total magnetic flux through the present cell
is m times the unit magnetic flux Co=bc/e. In such a
cell thc wave fllllc'tloll wlllch satlsfles thc pcrlodlc bollll-

where x and y are unit vectors in the direction of the x
and y axes, respectively. A particle also interacts with the
images of itself. Therefore the Hamiltonian consists of
single-particle terms, which result from the self-
interaction and the interaction with tbc posit'. vc back-
ground, and a two-particle term, which results from an in-
teraction with other particles. The kinetic energy part of
thc Hamiltonian 1s neglected 81Ilcc %'c cons1dcl only thc
lowest Landau level, and then it gives only a constant
shift (n/2)fico, . Hence,

2 a
V(ll) — n f d—x f dy V(r ) aJ. aJ

J
q—+0

a b a b

+ —,
' g g g g f dxl f dyl f dxl f dylq)J*, (r, )pJ. (r2) V(r, r2)yJ, (r2)—pJ, (rl)aJ. ,aJ aJ aJ~,

Jg J2 J3 J4

(2A)

where uJ (aJ ) is the creation (destruction) operator of the
wave function q&J. (r ). When we substitute the Fourier
transform of V(r ).

I

Here S is the classical Coulomb energy of a Wigner crys-
tal %'1th a Iectangular unit cell~ wh1ch ls g1vcn by

ab eq
(2.5)

e
2—g'P lJ2[m'(A, ill, ill)]

Qb

where q =((2n./a)kl, (2m. /b)kz) with kl and kl integers,
then the terms with q =0 are canceled out and we have
the following Hamiltonian:

J J~ J'2 J3 J4

(2.&)

where A, =a/b, and the summation over il and l2 ex-
cludes ll ——12 ——0. On the other hand, A is given by

J)J2J3J4 Jl+J2,J3+J4 2 b g Jl J4&gyb J2w— (2.9)

where the Kronecker 5 with a prime, 5J, J,, becomes 1

when jl ——j2(mod m).
For the system of n electrons in m sites, the filling fac-

tor v is n lm. All of the possible ways to occupy m sites +J$ +J2p + ~ % P +J~ (2.10)

I

by n electrons form a basis, a component being given by

I jl~Jz& ~ ~ ~Jn) =&J',~Jl
' ' '

&J„I0—) ~
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where the equality for j's apply only for a boson system.
The dimension of the basis is

and

for a fermion system
n

for a boson system .m+n —1

We calculate the matrix element of the Hamiltonian by
this basis and diagonalize it numerically. In this process
several symmetries are helpful: Owing to the translational
symmetry along the y axis, the Hamiltonian conserves the

m

total momentum along the y axis, J= g, , j;(mod m).
Hence we can make the dimension of the Hamiltonian
about m ' systems smaller than the dimension of the
basis. Moreover, due to the translational symmetry along
the x axis, two systems with values of J which differ by a
multiple of n are equivalent, and due to the inversion
symmetry, the system with —J is equivalent to that with
J. Hence, the number of values of J which give different
results is very small.

For fixed v and J, we must minimize the energy with
respect to the aspect ratio a/b to find the ground state.

I

m —nm —n j Jzjz~r ~iJ2jij2
jr=~ j2=~

(2.11)

Hence, for the case of the fermion system we can consider
only the system with v& —,'. The results for v& —,

' shown
below are obtained by this symmetry.

To investigate the property of an eigenstate of the
Hamiltonian, especially of the ground state, we calculate
the pair distribution function g (r ),

Since we can interchange the x and y axes, two systems
with aspect ratios of a/b and b/a are equivalent. Hence
we can consider only systems with a/b & 1.

In the case of the fermion system, we have electron-hole
symmetry. The system with n electrons in m sites is
equivalent to that with the n holes or m —n electrons in
m sites. Actually, the off-diagonal matrix elements of a
system of v= n /m are the same as those of
v'=(m —n)/m with a corresponding J value. On the
other hand, the diagonal matrix elements differ only by a
constant value hE,

g(r )= 4' x 5(r~r; —r, ) +)n (n —1)

XX ' ' ' X 'q r
2

'(ji —j3) 6j, j,,q, bn~~+ I ~j,—~j,~j,uj, I
q')

n n —1
(2.12)

where
~

%') is one of the eigenstates, and
q=((2n/a)k . (i2m/b)k )zwith ki and k2 being integers.
This g(r ) is related to the energy per particle of the
eigenstate E,

(efm[q)
n

=S+ f dx f dy V(r )[g(r ) —1] . (2.13)

III. RESULTS

We performed the numerical diagonalization of the
Hamiltonian for n =4 to 8 for the fernuon systems and
n =4 to 7 for the boson systems. The maximum value of
m for each n is chosen such that the dimension of the
Hamiltonian matrix is smaller than 2000. The minimum
of the energy is achieved at the aspect ratio a/b of the
cell at about n/4. Although the position of the true
minimum depends on n and m, and slightly deviates from
a/b =n/4, the energy is not a sensitive function of a/b.
Thus, in the following we fix the aspect ratio at n/4 in
the discussion about the ground state.

When v=q/p with p and q having no common mea-
sure but unity, the ground state is p-fold degenerate.
Namely, the ground states are realized only at p different
values of J; which differ by a multiple of n

A. Pair distribution function

To investigate the nature of the ground state we calcu-
late the pair distribution function g(r ). Figure 1(a)
shows the g ( r ) of the fermion ground state for n =6 and
m =18, i.e., v= —,'. For the sake of comparison, in Fig.
1(b) we show the g (r ) of one of the higher-energy states.
We identify this state as the CDW state obtained by the
Haitree-Pock approximation, ' because the energy be-
comes a minimum at a/b =v 3, which is compatible with
the CDW state of hexagonal symmetry, and the overall
shape of g ( r ) agrees with that of the Hartree-Fock CDW
state. We find this kind of CDW state for n =4 and 6
systems at such values of m that m and n have a common
factor. On the other hand, the g (r ) of the ground state,
Fig. 1(a), has a very different form. There is no long-
range order: The long-range order requires a peak in

g(r ) at (x,y)=(a/3, b/2), because we have peaks at
(x,y)=(a/3, 0) and (O, b/2), but such a peak is not
present in Fig. 1(a). Hence we conclude that the ground
state is a liquidlike state.

The overall behavior of g(r ) for other values of m for
n =6 are qualitatively the same. We have peaks at
(x,y)=(+a/3, 0) and (x,y)=(0, +b/2). The g(r ) for the
n =4 system shows similar behavior: If we remove the
region a/3 &x & —,a from Fig. 1(b) we obtain qualitatively
the same behavior as that of the n =4 system. Because
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following exact form of g (r ) at v= 1:

2

g(r )=1—exp
Zl

(3.2)

For the fermion system, co is always zero because of
the Fermi statistics. Moreover, c~ and c2 become almost
zero for v& —,

'
[Fig. 2(a)], as do c3 and c4 for v& —,

' [Fig.
2(b)]. For the boson systems, co is not zero for v & —,', and
the sign of the c s are opposite of those of the fermion
systems. The coefficients co and ci become almost zero
for v( —,

' [Fig. 2(c)], as do c2 and c3 for v( —,
' [Fig. 2(d)].

These behaviors are consistent with the g(r ) found by
I.aughlin's trial wave function: His wave function is
written as follows:

Vz( r &, r 2, . . . , r„)=g (zj —zk ) exp —g 2
j&k 412

Z =X —l&&.J J ~J (3.3)

FIG. 1. (a) Perspective view of the pair correlation function

g (r ) is plotted. The coordinates are normalized by the dimen-
sion of the cell: (X, F)=(x/a, y/b). The aspect ratio a/b is 1.5.
(b) Perspective view of the g(r ) of the static identified as the
CDW state. Here, the aspect ratio a /b is V 3.

the aspect ratio of the n =6 system is 1.5 times greater
than that of the n =4 system, this agreement is reason-
able. For v( —,', even the g(r )'s of the boson systems
have overall behavior qualitatively similar to that of the
fermion systems.

However, the behavior around the origin has a charac-
teristic dependence on the filling factor v and on the
statistics of the system. This behavior is best seen when
we expand g (r ) around the origin, '

g(r )= g c;(r/l)" .
i=0

(3.1)

We least-squares-fit the calculated g(r ) in the region of
0(r &1.6l to obtain the c s. In this region of r, the
dependence of g(r ) on the direction of r is very small.
Thus we took the angular average and neglected the small
angular dependence. The calculation was done for n =4
to 6 for fermion systems and for n =4 to 7 for boson sys-
tems. The results are shown in Figs. 2(a)—2(d). Al-
though there is small scattering in the data, the c s are
essentially independent of n, and they seem to vary con-
tinuously as functions of v. When v approaches 1, the c s
of the fermion systems tend to values obtained from the

where, for the fermion systems, p is odd, and for the bo-
son systems, p is even. The filling factor for 4'z is 1/p.
Hence, at v= 1/p, g(r ) should be proportional to r i' for
small r. Although our calculated c s with i &p do not
exactly vanish at v= 1/p, the qualitative behavior of the
e s is consistent with Laughlin's wave function. We also
notice that for v&1/p, c~ &

and cz 2 seem to increase
proportionally to v —1/p, and that they also seem to be
smooth functions of v.

B. Ground-state energy

The ground-state energy per particle as a function of v
is shown in Figs. 3(a) and 3(b) for the fermion systems
and the boson systems, respectively. For the fermion sys-
tems, we notice downward deviations of energy at v= —,

'

and —', , although the latter is much smaller than the form-
er. We also notice large scattering of the data at v= —,'.
The deviation at v= —,

' is clearly related to the behavior of
g(r ) for small r. At v= —,', ci and c2 begin to increase,
probably proportionally to v ——,'. Since the ground-state

energy is related to g(r ) [Eq. (2.13)], this behavior of ci
and cz should form a cusp at v= —,

'
in the ground-state

energy per particle. This cusp appears as a downward de-
viation in Fig. 3(a) because we can calculate only discrete
points for finite systems. It is difficult to imagine that
this behavior of ci and cz around v= —,

'
disappears for an

infinite systein. Instead, we can expect the behavior of ci
and cq to become sharper for an infinite system.

The anomalies at v= —', and —,
' are not related to the

behavior of the c; s. It is difficult to tell if the anomalies
remain for an infinite system or not. However, if a down-
ward cusp remains at v= —,

'
and the scattered value at

v= —,
' converges to give no cusp for an infinite system,

this would be consistent with the experiments because a
downward cusp in energy is required for the fractional
quantum Hall effect. ' '" That there is no cusp in the c s
at v= —', indicates that the expected downward cusp at
v= —,

'
is a result of correlation among quasiparticles rather
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FIG. 2. Coefficients c; defined by Eq. (3.1) are plotted as functions of v. (a) e i and ei for the fermion system are plotted by circles
and squares, respectively. (b) c3 and c4 for the fermion system are plotted by circles and squares, respectively. (c) co and eI for the
boson system are plotted by circles and squares, respectively. (d) e2 and e3 for the boson system are plotted by circles and squares,
respectively.

than correlation among electrons.
For thc boson Systems wc clearly scc a downward cusp

in energy at v= T, which can be explained in exactly the
same way as the case of the fermion systems at v= —,

' . We
have another downward deviation at v= —,'. This observa-

tion is interesting, because recent theories' ' formulated
to explain the —, and —, fractional quantizations of the fer-
mion system rcqmrc downwaI'd dcv1at1ons at v= 3 RIME 5,
when appl1ed directly to the boson system. However» 1t
seems difficult to explain the large downward deviation at
v= —', using Anderson's theory. ' According to his theory,
the v= —, state should be explained as a superposition of
four v= 6 states. If the energy of such a state shows a
large downward deviation, thex'e should also be another
downward deviation at v= 6 with a magnitude similar to
that at v= —', , but we observe only a small, if any, devia-
t1OIl at V= 6 .

The ground-state energies of the fermion system and
the boson system coincide within 0.03% at v= », and the
difference becomes much smaller for smaller v. At first,
th18 agrccIIlcnt seems strange because theI'e 18 a qUalltatlve
difference in the behavior of g(r ) at small r between the

fermion and boson systems. However, this is not so
surprising, because at such a low value of v there is little
probability for two particles to come close to each other,
Rnd thc ground-state cnc1gy 18 determined RlIDost entirely
by the long-range part of the Coulomb interaction. In-
terestingly, even at such a low value of v, that the statis-
tics are not important, and that the energy is determined

by the long-range part of the Coulomb interaction, the
ground state is still a liquidlike state. We calculated the
ground-state energy and the energy of the CDW state
down to v= —, for the n =4 ferrnion system, but the
CDW state still has the higher energy. However, if we ex-
trapolate the energies, the energy. of the CDW state be-
comes the state with the lowest energy below about
v=0.075.

Laughlin calculated the energy of his trial wave func-
tion, and his results agree quite well with ours. He ob-
tained —0.4156e /el and —0.3340e /el at v= —, and —,,
respectively. On the other hand, we obtained
—0.4152e /el for n =4, —0.4127e /el for n =5 and
= —0.4128e /el for n =6 at v= —,', and —0.3322e /el
for n =4 at v= —,. The difference between the two calcu-
lations is much smaller than the difference between the
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TABLE I. Elcvcn Inost iIllportant states in thc glound state
of the n =4 system at v= 3 together with their amplitudes

& ~J j 1J2~J31Ja)

~ ~J l.1J21J31J4)

0.4236
0.4236
0.3356

—0.3284
—0.3284
—0.3284
—0.3284

0.1228
0.1228
0.1228
0.1228

(3
Q
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present liquidlike ground state and the Hartree-Pock
CDW state, the energy of which is —0.3885e /el at

C. 'Wave function

Our wave function can be written by a hnear combina-
tion of the basis as

+= $+(J1 Jz. ~ ~ .Js)ag, aj, ' aj„I
0) .

UI

The eleven largest coefficients ia (ji,ji,j&,j&) of the
ground state of the fermion system of n =4, m =12,
(v= —,

'
), and J=2 aic sllown 111 Table I. T11c amplitude

of the state where elect~ons occupy the Landau orbitals
with equal spacings, in this case ui(2, 5, 8, 11), is not very
important. This state, a2a5asa»

~
0), is the starting point

FIG. 3. (a) Ground-state energy per particle of the fermion
system is plotted vs v. Open cir'cles, solid circles, triangles, in-

verted triangles, and squares show the results for n =4, 5, 6, 7,
and 8 systems, rcspcct1vcly. Crosses sho& thc cncI'gy of thc
Hartree-Pock COW state of the infinite system (Ref. 6). (b) Plot
similar to (a) for the boson system.

of the perturbation theory of Tao and Thouless. ' Thus
our calculation for a finite system does not support their
theory, although our system may be too small to compare
with their theory.

Because of the difference in the boundary conditions it
is difficult to compare the present wave function with
Laughlin's. As an indirect comparison of the wave func-
tion we have already calculated the pair distribution func-
tion g(r ), and have seen that the short-range behavior of
the wave functions show qualitative agreement. Here, we
examine the phase of the wave function, which does not
appear in g(r ). For the comparison we fix the position
of n —1 electrons and examine the phase of the wave
function as a function of the position of the one remain-
ing electron. Halperin' pointed out that Laughlin's wave
function is characterized by the property that around each
fixed electron the phase always changes by 2mp for a
v=1/p state, and there is no other "vortex, " the point
around which the phase changes more than or equal to
2m. That is, his wave function gives only 2m@ vortices.
For our wave function the distribution of the vortices de-
pends on the configuration of the fixed electrons. For the
case of v= —, we have a 6m vortex, but only for some spe-

1

cial configurations. For other configurations, only one 2~
vortex exists at the position of each fixed electron instead
of a 6m. vortex, although there are always two other 2ir
vortices near each fixed electron. The separation between
the fixed electron and the accompanying vortices is usual-
ly less than /. Hence, when we examine the phase of the
wave function on a scale larger than I, we have qualitative
agreement between our wave function and Laughlin's.
The discrepancies on a shorter scale are related to the fact
that ei and ci in Eq. (3.1) do not exactly vanish at v= —,

'

in our system. These discrepancies between our wave
function and Laughlin's come from either the finite size
of our system or from the fact that Laughlin's wave func-
tion is not an exact wave function of the ground state, or
both.

IV. DISCUSSION

We have diagonalized the Hamiltonian for a finite sys-
tem numerically, and found that the ground state is a
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liquidlike state. The short-range behavior of the pair dis-
tribution function g(r ) shows a peculiar behavior, and it
agrees very well with Laughlin's wave function. From the
v dependence of the c s, which are the coefficients in the
expansion of g (r ), Eq. (3.1), we can confirm the presence
of downward cusps in energy at v= —,

' for the fermion sys-
tem and at v= —, for the boson system. We remark that
the absence .of special behavior in the c s at v= —,

' and —',
does not deny the presence of downward cusps in energy
at v= —', and —,

' for the fermion system. This is because
we also do not observe speciality in the c s at v= —,

' for
the fermion system, although the presence of a downward
cusp there is guaranteed by electron-hole symmetry. An
observed fractional quantum Hall effect at v= —,

' and —',

indicates that, at these filling-factor values, correlation
among quasiparticles, rather than correlation among elec-
trons, is responsible for the downward cusp in energy, just
as the correlation among holes is responsible for the
downward cusp at v= 3 .

The downward cusps in energy are necessary to explain
the fractional quantum Hall effect, as discussed else-
where. ' '" However, degeneracy of the ground state is
also a requirement for fractional quantization. In our
gauge, it is evident that when v=q/p with mutually
prime integers p and q, the ground state is at least p-fold
degenerate, each state being specified by different values
of the total momentum in the y direction, J. On the other
hand, in Laughlin's gauge the degeneracy is not evident.
If we had no degeneracy of the ground state, Laughlin's
gauge-invariance argument' for the integer quantum Hall
effect would allow only integer quantum Hall values

o„z——(e /h) &&integer, because we have an energy gap for
the excitation from the v= —,

'
ground state. When we ex-

amine how one of the degenerate ground states transforms
to another ground state in the cylindrical geometry of
Laughlin's gauge-invariance argument by increasing the
central flux by a unit value, we find that the degeneracy is

consistent with the fractional quantum Hall value

cJ„~=(q/p)(e /h) at v=q/p.
Thus we have shown that our numerical investigation

supports Laughlin's wave function as a good approxima-
tion of the ground state of the present system at v= 1/p.
It is also shown that his wave function is also appreciable
to the system of bosons. From the behavior of g(r ) we
have confirmed the presence of a downward cusp at v= —,

'

for the fermion system. This cusp and the threefold de-
generacy of the ground state at v= —, is consistent with
the fractional quantum Hall effect. The downward cusp
in energy at v= —,

' for the boson system gives some clue to
the understanding of the v= —', and —,

' fractional quantum
Hall effect.

Note added in proof. In the text it is pointed out that
for the fermion system, c s [Eq. (3.1) and Fig. 2] around
v= —', are smooth functions of v. However, it turns out
that there actually is a cusp at v= —', , which is obscured by
scattering of the data from different values of v. If the
data are plotted for each n, the cusp shows up clearly.
This cusp is necesary to have a downward cusp in energy
at v= —, , because the energy is given by Eq. (2.13}and the
short-range part of the interaction is responsible for the
cusp in energy. We can also expect cusps in c s at v= —',
and —', , which would be difficult to recognize because of
the discreteness of the data. Hence I withdraw the discus-
sion that the smooth behavior of c s at v= —', and —,

' indi-

cates that the correlation among quasiparticles is respon-
sible for the downward cusp in energy.
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