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Theoretical high-pressure equations of state and phase diagrams of the alkali metals
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A two-parameter Heine-Abarenkov local pseudopotential is used to fit experimental room-

temperature isotherms of lithium, sodium, and potassium up to pressures of 100 kbar. Lattice
dynamics and one-component-plasma fluid variational theory are then used to compute solid-solid

and solid-liquid phase boundaries, which are found to be in good agreement with experiment. The
theoretical shock-compression Hugoniot curves differ significantly from experiment near 1 Mbar,
and anomalously low values of the theoretical lattice Gruneisen parameter are obtained at very high
compression. Further improvements in the theoretical models are suggested.

I. INTRODUCTION

In metals the long-range Coulomb interaction and the
partially filled conduction bands lead to interatomic forces
that are inherently many-body and unlike those for rare
gases and small molecules in which two-body interactions
dominate. As a result, practical calculations of the ther-
modynamic properties of metals remain a difficult prob-
lem. However, for certain metals pseudopotential theory
provides a formalism which leads to an effective two-body
interatomic potential, and which has proved of great value
for calculating thermodynamic and transport proper-
ties. '

Pseudopotential models are most appropriate for
nearly-free-electron metals such as I.i, Na, K, Al, and Pb,
in which the electrons in the conduction band are mainly
of s and p character. Many model calculations have
focused on the properties of alkali metals at 1 bar pres-
sure. Although several workers have calculated the solid
isothermal equations of state and shock-compression
curves of the alkalis at high pressure, there has not yet
been a systematic application of the theory to all available
experimental data.

Theoretical work is needed because there is now a sub-
stantial body of experimental high-pressure data on the al-
kalis, including isotherms, ' melting curves, ' ' and
shock-compression Hugoniot curves. ' ' With the rapid
advances in static and dynamic high-pressure technolo-
gies, we can expect future experimental work reaching
into the megabar pressure range.

In this paper we examine the usefulness of pseudopoten-
tial theory at high pressure by a systematic comparison of
experimental Li, Na, and K data with theoretical predic-
tions. Because the thermodynamic properties of rubidium
and cesium depend on the more complex physics of d elec-
trons, we do not consider these two metals here.

In local pseudopotential theory an electron-ion potential
is determined from empirical considerations and then used
in statistical-mechanical models to calculate thermo-
dynamic properties. A proper evaluation of the method
depends to a great extent on the accuracy of these models.

Our plan is first to determine the two parameters of a
Heine-Abarenkov pseudopotential by fitting the 300-K ex-

perimental solid isotherm using the method of lattice
dynamics. We then examine the accuracy with which the
lattice-dynamics and fluid-variational theories predict the
measured high-temperature and high-pressure thermo-
dynamic properties. We find that in general there is good
agreement between theory and experiment up to 100 kbar
pressure, but that the theory becomes less accurate at still
higher pressures.

In Sec. II we review the pseudopotential and the
statistical-mechanical methods. These are used in Sec. III
to calculate isotherms, phase diagrams, and Hugoniot
curves for lithium, sodium and potassium. The overall re-
sults of the calculations are briefly discussed in Sec. IV.

II. PSEUDOPOTENTIAL AND STATISTICAL
MODELS

V(r) = .
Ze

P +Pc
r

l8o~ P (1c

The details of pseudopotential theory have been
thoroughly discussed elsewhere' and we limit our re-
marks to some essential features. The model consists of N
positively charged ions moving in a degenerate and
nearly-free-electron gas of volume V. The electron-ion in-
teraction is approximated by a local pseudopotential.
Many pseudopotential forms have been suggested, but all
have basically the same features. The electron-ion poten-
tial has a Coulomb form at long range, but this is modi-
fied in the short-range core region with a slowly-varying
potential which replaces the Coulomb singularity. This
core potential is introduced to represent the Pauli repul-
sion between the conduction electrons and the atomic core
electrons. Different potential models differ in the treat-
ment of the core region. In the pseudopotential theory,
the potential perturbs the electron gas, leading to an accu-
mulation of electrons around the ions and to a screened
ion-ion pair potential.

We have chosen the two-parameter Heine-Abarenkov
local pseudopotential for use in our calculations. Here the
electron-ion interaction is given by
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with a Fourier transform

V(k)= ( w—or, —Ze )cos(kr, )+ sin(kr, )
4~
k

(in Ry), where r„ is the Wigner-Seitz or ion-sphere radius,
' 1/3

3V
4 ~ p

(2)

where Z is the number of valence electrons per atom. For
the alkali metals we set Z =1. %'e regard this potential as
a convenient semiernpirical form which can be fitted to
experimental thermodynamic data.

For this model an expression for the Helmholtz free en-

ergy has been derived that is correct to second order in the
nearly-free-electron approximation. From this expression
all of the thermodynamic functions may be obtained. The
Helmholtz free energy per atom is

(in bohr). Here the hcp value corresponds to the ideal c/a
ratio, c/a=(8/3)'

In the solid, the band-structure term is given by

k 1
Ens —— g V(k) —1

2Vk x 8m ek (8)

(in Ry). Here the sum is taken over all reciprocal-lattice
distances E, with E =0 omitted. The dielectric function
E(k) is given by the Lindhard approximation,

A—=EEL +EI/I +EBs+Ep+ (3)
e(k) = 1 — X(k), (9)

where EFo is the T =0 K energy of the electron gas, EM
is the Madelung energy of point ions in a uniform nega-
tive background, EBs is the band-structure energy arising
from the screened pseudopotential, Eo is the Hartree ener-

gy, which appears as the result of omitting the k =0 term
in Eas, and 2; is the contribution to the free energy aris-
ing from the ionic motion.

The electron-gas energy is given by

EF.G =Ek+Exc
where

where

k3'=
2k

and

T

(1—y') (1+y)+ ln
2m 2 4y (1—y)

' 1/3
9m

4 s

(10)

3 9m.

5 4

2/3 z

Z
Exc 1 e 03937 p 91393rS'

(in Rydberg units), and
1/3

3V
s 4 ~Z

—1
Qp

(in bohr). Here Ek is the kinetic energy of the free-
electron gas, and Exc is an accurate representation' of
the exchange-correlation energy of the electron gas. The
parameter r, is the electron-sphere radius and
Qp =0.529 177& 10 cm is the Bohr radius. These ener-
gies are volume dependent only and are independent of the
phase of the metal. We can safely use the zero-Kelvin
value of Epo as long as the temperature is much less than
the Fermi temperature, which in the alkali metals is of or-
der 10 —10 K.

In the solid, the Madelung energy E~ is known very ac-
curately for the three solid phases considered here':

(in bohr '). We have not introduced exchange and corre-
lation into the dielectric function because we wish to ex-
amine the adequacy of the pseudopotential theory in its
simplest form. In practice, the sum EBs is accurately ap-
proximated by a sum over several thousand reciprocal-
space neighbors in a spherical volume, plus an integral
over the remaining infinite volume.

The Hartree energy for the Heine-Abarenkov potential
is the positive electrostatic energy arising from the differ-
ence between the pseudopotential [Eq. (I)] and the pure
Coulomb potential:

XZ~~,' 4~p 4Z
Eo + (11)

(in Ry). This term, like Eso, is independent of the phase
of the metal.

The lattice-vibrational free energy A; is computed by
quasiharmonic lattice dynamics. In our lattice-dynamics
model, an irreducible wedge of the first Brillouin zone is

sampled with k vectors, dynamical matrix elements

D, (k)Jare computed, and this matrix is diagonalized to
obtain the frequencies v;(k). Then

Z2
bcc: E~———1.79185852

r
3N

' kT ln 1 —exp
hv; hv;

+ (12)

Z2
fcc: E~ ———1.79174723

Z2
hcp: E~———1.79167624

(7) is approximated as a sum of weighted terms. The pre-
cision of A; can be checked by varying the number of
points in the Brillouin zone.

Other thermodynamic functions can be obtained readily



Ao
+&II,—Ho&0. (13)

This means that the true configurational free energy 2, is
bounded above by the sum of the configurational free en-

ergy of a reference system, Ao, and the average of the
difference between the actual and reference potential ener-

gies, taken over all reference configurations. If the refer-
ence system is close to the actual system, then the pertur-
bation will be small and the theory will be accurate.

Such a reference system is the one-component plasma
(OCP) fluid. The OCP variational theory has been
developed and tested against Monte Carlo calculations by
Ross et a/. For the OCP reference system the inequality

Ao(I") 1+ /So q~I —1 gXkT — XkT e q

from the total free energy by standard thermodynamic re-
lationships. Of specific interest here are the pressure

p = —( BA /8 V)T and the energy E = [B(A /T) /d(1/T) ] i .
For the liquid we use a variational theory which is

based on the rigorous Gibbs-Bogolyubov inequality,

Here we use the parameters ' a = —0.897 913,
b=0.952 80, c=0.18907, and d = —0.81773.

The OCP fluid structure factor So(q, I") has been com-
puted by F. J. Rogers at this laboratory using the
hypernetted-chain (HNC) integral equation with bridge
graph correction. The integral-equation solutions for
0.1&I '&180 and 0&q &25 have been made into a table
which is interpolated in I space and then numerically in-
tegrated in q space according to Eq. (14). In Ref. 20 Ross
et al. used an So(q, I") table taken from Monte Carlo cal-
culations. However, we have found that the scatter in
these data was sufficient to cause pressure discontinuities
of about 1 kbar in the calculated pressure. The present
So(q, I ') is in excellent agreement with Monte Carlo calcu-
lations and has the advantage of smoothness.

The right-hand side of Eq. (14) is evaluated and mini-
mized with respect to the variational parameter I", and
this minimum value is taken to be equal to A, /NkT. The
total free energy per atom is then given by the sum of the
configurational, electron-gas, and ideal-gas terms,

~e Ve
+EEo —kT ln

iYA

(I —I ) Uo(1") Eo
I" XkT kT

(14)

q'
'

f (q) = V(q) 8'
The configurational pressure and energy may be computed
directly by using the value of I" at the minimum.

III. CAT CUI.ATION'

Z12I"'=
rg kT

The OCP reference internal energy and free energy have
been very accurately obtained from Monte Carlo calcula-
tions

+d lnI" —[a +4(b —c)]—0.436 .

The pseudopotential parameters r, and tco for I.i, Na,
and K are determined by fitting them to the experimental
300-K isotherms. This is done by fixing ico and varying
r, until p ( V= Vo, T =300 K)=0 as computed by lattice
dynamics for the bcc lattice. The resulting isotherms for
a series of iso values are then compared with experiments
up to 100 kbar and the parameter set in best agreement is
chosen. At thc saIDC tiIIle thc total cncrgy at V= Vo is
the binding energy (cohesive energy plus first ionization
potential) and this can also be compared with experiment.
The pseudopotential parameters and binding energies are
shown In Table I.

The lithium isotherm is shown in Fig. 1. It was not
possible to find parameters yielding a highly accurate fit
to the experimental lithium "p™V curve. All theoretical
isotherms were more or less too stiff. Also, the theoretical

TABLE I. Pseudopotential parameters, theoretical (theor) and experimental (expt) binding energies,
and normal volumes for lithium, sodium, and potassium.

Li
Na
K

(bohr) (Ry)

—0.71
—0.45
—0.29

Eb (theor)
(Ry)

EI, (expt)
(Ry)

—0.518
—0.461
—0.385

~o
(cm /mol)

13.02
23.73
45.61



29 THEORETICAL HIGH-PRESSUIU? EQUATIONS OF STATE AND. . .

100—

80—

I

otherm

Experiment
100—

80—

ium 300 K Isotherm

linger

aidya et al. Experiment
rover
heory

60—
CL

L
lg 60—

CL

4Q— 40—

20—

0
6 10

V(cm /mole)

I

14
QI

8
I

12
I )

16

V(cm /mole)

I

20 24

FIG. 1. Comparison of experimental and theoretical 300-K
pressure-volume isotherms for lithium. FIG. 2. Comparison of experimental and theoretical 300-K

pressure-volume isotherms for sodium.

binding energy is substantially in error. These discrepan-
cies may be ascribed to the inadequacy of the second-order
theory for lithium. In lithium the valence electrons have
some 2p character but no p core state exists to keep them
away from the nucleus. The second-order perturbation
formalism does not adequately represent this strong pseu-
dopotential, and the result is a theoretical ion-ion potential
which is too repulsive and a theoretical isotherm which is
too stiff. Third- and higher-order terms are needed for
adequate treatment of lithium. The theoretical sodium
and potassium isotherms can be fitted more accurately to
experiment, "as shown in Figs. 2 and 3.

Having fitted the room-temperature solid isotherms
with the pseudopotential, we can then test the liquid
model by making predictions of higher-temperature liquid
isotherms. This is done in Fig. 4, and the agreement be-
tween theory and experiment' for Na and K is good. We
are unaware of comparable data for Li.
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B. Phase diagrams

The pseudopotentials can now be used with the solid
and liquid statistical-mechanical models to compute
theoretical phase diagrams for the three metals. The stan-
dard method for obtaining a phase diagram is to plot the
Gibbs free-energy isotherms of competing phases against
pressure and to locate all crossing points. Each crossing
point represents a I', T point on the phase diagram. How-
ever, this procedure is time consuming and instead we
compute Helmholtz free-energy isotherms for each possi-
ble phase. The differences in Helmholtz free energy M
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FIG. 3. Comparison of experimental and theoretical 300-K
pressure-volume isotherms for potassium.
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Melting-curve calculations employing methods similar
to ours have been reported by Stroud and Ashcroft for
Na. They calculated the solid properties using a self-
consistent Debye method and the liquid properties using
the hard-sphere variational theory. Stroud and Ashcroft's
theoretical melting curve is in good agreement with exper-
iment at p =0, but increases too slowly in pressure with
increasing temperature.

The phase diagram for potassium is shown in Fig. 7.
No close-packed phase is predicted at low temperature,
and none is in fact observed. It is interesting that the
theory predicts a maximum in the melting temperature of
520 K at p =55 kbar. Above this pressure the slope
(Bp/BT) of the predicted curve is negative. This is a
somewhat unexpected result which probably arises from
the softness of the effective ion-ion potential. Although
the experimental melting temperature' appears to be con-
stant at the highest pressures, thus suggesting a melting
maximum in agreement with the theory, these experimen-
tal data are not considered reliable.

The volumetric properties along the melting curve are
also of interest. In Fig. 8, the melting temperature T is
plotted against the midline volume, V =0.5(V, + Vi) for
both experiment' ' and theory. There are significant
quantitative differences, but the same approximately
linear dependence is seen in both experiment and theory.

It should be noted that the OCP variational parameter
I" does not have the scaling property of the hard-sphere
reference fluid, where the packing fraction r/=vcr X/6V
is nearly constant (r/=0. 45) along the melting curve. The
parameter I" will in fact increase with pressure and
exceed the value of the OCP freezing transition ' at
I =178.

700
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Melting Volume

+ Experiment
Theory

hC
500

EI-

400

I

40
{ 1 I

30
v {cms/mole)

FIG. 8. Melting temperature vs the midline volume for Li,
Na, and K. Experiment and theory are compared.

I

5020

C. Very high compression

Experimental shock compression of alkali metals yields
a more sensitive test of the pseudopotential theory for
small interionic separations than static compression data
because the high temperatures generated in the shock pro-

800

Overall, considering the very high precision in free en-

ergies required for accurate predictions, the theoretical
phase boundaries are in good agreement with experiment.
The agreement is especially remarkable for the solid-solid
transitions considering the extremely small volume and
energy changes across the transitions.
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FIG. 7. Comparison of experimental and theoretical phase
diagrams for potassium.
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FIG. 9. Comparison of experimental and theoretical shock-
compression Hugoniot curves for lithium.
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FIG. 10. Comparison of experimental and theoretical shock-
compression Hugoniot curves for sodium.

FIG. 11. Comparison of experimental and theoretical shock-
compression Hugoniot curves for potassium. The theoretical re-
sults assuming a T =0 electron gas and assuming a T correc-
tion are shown.

cess permit the ions to approach each other more closely.
The shock-compression curves (Hugoniot curves) of Li,

Na, and K have been measured up to nearly 1 Mbar. ' '
Because of shock heating, these experimental points are
largely in the liquid state, and they are compared with the
predictions of the OCP fluid model. Hugoniot curves are
calculated by solving the equation E=Eo+0.5(p+po)
X ( Vo —V), where the subscript indicates the initial condi-
tions. Theory and experiment are compared in Figs. 9—11
and the theoretical calculations are summarized in Tables
II—IV. The calculations include thermal excitation of the
electron gas to order T, but this contribution makes a no-
ticeable difference only in K, as shown in Fig. 11. In gen-
eral the agreement is mixed. The theoretical Hugoniot
curve is in good agreement with experiment for K, but it
is too soft for Na and too stiff for Li. In the case of Li,
our results are in better agreement with the Los Alamos
shock data' than with the Soviet data. ' The Soviet pres-

sures are significantly lower, and even fall below the iso-
thermal data of Olinger and Shaner. This suggests that
the Soviet shock data for Li are in error.

A very useful thermodynamic function is the lattice
Gruneisen parameter, defined by

3& Blnv;

3N, , BlnV

This function varies as the second derivative of pressure
with volume' and is therefore a sensitive measure of the
equation of state. Standard calculations' "of y( V) indi-
cate a smooth decrease with compression to a limit of 0.5.
The lattice y functions predicted from pseudopotential
theory are shown in Fig. 12. They are in rough agreement
with measured values at V= Vo, but they decrease to
anomalously low values with compression.

Some insight into these results can be gained by com-

TABLE II. Isothermal and Hugoniot properties for lithium. Isothermal pressures (p), Griineisen pa-
rameters {y), Hugoniot temperatures {T~) and pressures {p~) are listed. For the Hugoniot-curve data,
both the T =0 electron gas (unprimed) and the T2 correction (primed) are included.

V/Vp

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

V
(cm /mol)

13.02
11.72
10.42
9.11
7.81
6.51
5.21
3.91

p
(kbar)

0.2
15.8
41.0
83.4

156.7
293.5
576.8

1259.3

1.017
0.955
0.902
0.854
0.796
0.722
0.647
0.519

TII
(K)

1 006
2 886

11 189
83 590

pH
(kbar)

176.6
361.2
848.2

3390.8

TH

(K)

996
2 802
9 859

53 210

pa
(kbar)

176.6
361.2
848.6

3481.4
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TABLE III. Isothermal and Hugoniot properties for sodium. Isothermal pressures (p), Griineisen
parameters (y), Hugoniot temperatures (TH), and pressures (pH) are listed. For the Hugoniot-curve
data, both the T =0 electron gas (unprimed) and the T correction (primed) are included.

V/Vo

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

V
(cm /mol)

23.79
21.41
19.03
16.65
14.27
11.90
9.52
7.14

(kbar)

—0.4
7.7

20.9
43.1

82.4
156.7
312.1
685.9

0.951
0.907
0.861
0.797
0.715
0.637
0.515
0.273

926
2 644

10219
76 972

PH
(kbar)

91.6
186.7
432.1

1712.1

914
2 544
8 754

44 931

Pa
(kbar)

91.6
186.8
433.5

1772.2

puting the effective ion-ion pair potential as follows: lations, and that significant modifications in the theory
are needed.

Z 4Z IP(r)= + j f(q)
2r m. 0 e(q)

sin( qr) d (20)
QP IV. DISCUSSION

(in Ry), where r is the interionic separation. The pair po-
tentials for the three metals are plotted semilogarithmical-
ly in Fig. I3. The pair potential has the expected repul-
sive form at small r, but it also displays a region of nega-
tive curvature most noticeable for K. The effect of this
potential "softening" is first seen in the melting maximum
predicted for K. If we take the effective interionic separa-
tion rH along the Hugoniot curve to be given by
P(rtt ) =(3/2)kTH, then from Tables II—IV and Fig. 13, it
is clear that the experimental shock data lie within the re-
gion of negative curvature. It is likely that the discrepan-
cies between theoretical and experimental Hugoniot curves
arise from this feature of the potential. The y( V)
anomalies are also correlated with the negative curvature
of the potential as well as with the tendency of the poten-
tial to decrease with compression through the volume
dependence of e(q) (shown for Li in Fig. 13). At suffi-
ciently high compression in Na and K, this leads to
y( V) & 0 and to imaginary lattice-vibration frequencies.

Since very similar y( V) functions are obtained by Vaks
et al. , who used different potentials and dielectric func-
tions, it appears that this unrealistic behavior is indepen™
dent of the details of the pseudopotential and the dielec-
tric function.

It is clear from this discussion that the local pseudopo-
tential theory is not adequate for ultrahigh pressure calcu-

In this paper we have used the experimental room-
temperature isotherms of Li, Na, and K to determine the
two-parameter Heine-Abarenkov local pseudopotential,
and have then compared predictions with experiment in
other regions of V, T space.

The predicted phase diagrams are in good agreement
with experiment, which suggests that a pseudopotential
fitted to experimental isotherms, together with accurate
statistical-mechanical theories, will yield accurate phase
boundaries. The p-T melting curves appear to be the most
accurate so far computed from theory, although there is
still room for improvement, as suggested by Fig. 8.

The effective pair potential which results from the
screened pseudopotential shows unrealistic softening, lead-
ing to a y(V) which becomes negative at high compres-
sion. This anomalous behavior reflects the main weakness
in the theory, and is probably also responsible for the sub-
stantial disagreements between theoretical and experimen-
tal Hugoniot-curve data.

This problem appears to be an artifact of the local pseu-
dopotential model, in which valence charge density in the
atomic core is not realistically calculated. Two ideas for
eliminating this problem without changing the theoretical
framework come to mind. The first is to add a repulsive
term, such as a Born-Mayer exponential, to the pair po-
tential. This approach is widely used in the literature and

TABLE IV. Isothermal and Hugoniot properties for potassium. Isothermal pressures (p), Griineisen
parameters (y), Hugoniot temperatures (TH), and pressures (p~) are listed. For the Hugoniot-curve
data, both the T =0 electron gas (unprimed) and the T correction (primed) are included.

V/Vo

1.0
0.9
0.8
0.7
0.6
0.5
04
0.3

V
(cm /mol)

45.61
41.05
36.49
31.93
27.37
22.80
18.24
13.68

(kbar)

0.3
4.4

11.2
22.8
43.6
83.1

164.3
351.9

0.923
0.870
0.792
0.704
0.626
0.503
0.249

—0.518

887
2 458
9 329

71 430

PH
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FIG. 12. Theoretical Gruneisen parameters vs relative

volume for Li, Na, and K. Experimental values are shown at
V= Vp.
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is considered to represent repulsion due to core overlap.
However, there is little physical justification for this
claim, and such a term should be considered purely empir-
ical. This approach has been used to obtain good theoreti-
cal agreement with experimental Hugoniot curves.
Another approach would be to make the coefficients in
the pseudopotential volume dependent so that the poten-
tial becomes more positive (repulsive) with compression.

A more fundamental solution to the problem would be
to relax the assumption of pseudopotential locality and
adopt a nonlocal model. A recent calculation of y(V)
for K with such a model in fact shows no anomaly.

Improvements are also possible in the statistical-
mechanical theories. Anharmonic effects in the solid are
not negligible and should be included. The OCP varia-
tional theory needs further analysis as to its accuracy. For
example, a still more accurate OCP So(q, I"} function
might make noticeable differences in the liquid free ener-
gies and thus lead to further improvements in the theoreti-
cal melting curves.

10-'
0 2 4 6 8 10 14

FIG. 13. Effective ion-ion pair potentials for lithium, sodium
and potassium at their normal volumes, and at V=0.4Vp for
lithium. Nearest-neighbor distances at V= Vp are marked with
arrows.
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