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Electronic-structure calculations on the basis of a self-consistent charge, linear combination of
atomic orbitals band-structure method have been performed for the pyrites FeS2, CoS2, NiS2, CuS2,

and ZnS2. Photoelectron spectra, optical spectra, and Mossbauer parameters are evaluated and are
found to compare well with experimental data. Molecular-orbital cluster calculations have been per-

formed to derive local properties (Mossbauer parameters) only, which are compared with band-

structure and experimental results. Clusters which include Sz anion pairs, i.e., [M(S2)6]', yield

reasonable results, while for the smaller clusters [MS6]~, even convergence could not be achieved.

Our further investigation includes (i) the pressure dependence of EE~ and 5 in FeS2, (ii) the concen-

tration dependence of EEL in the solid solutions Fe„Coi „Sq (x=0.01,0.25,0.5,0.75}; (iii) the sign of
the nuclear-quadrupole coupling constant e qg, which was found to be negative except for ZnS2; (iv)

the various contributions to the electric-field gradient (EFG) tensor (in FeS2 the main contribution

arises from the valence shell, and proceeding from FeS2 to ZnS& in the pyrite series, the valence con-

tribution continuously decreases, and in the d' system ZnS2 only a small and positive lattice EFG is

left); (v) the interpretation of the independence of the Mossbauer line intensity ratio from the single-

crystal orientation with respect to the y beam on the basis of our calculated EFG tensor.

I. INTRODUCTION

There has been considerable interest in the electronic
structure of the transition-metal dichalcogenides because
of their wide range of electric, magnetic, and optical prop-
erties. ' During the last few years many experimental
studies have been reported on the transition-metal disul-
fides MS2 (M =Fe, Co, Ni, Cu, Zn) with the pyrite struc-
ture: Photoelectron spectroscopy has been used to
study the core and valence-band levels of the MS2 series.
Optical experiments have been performed " to gain in-
formation about the empty electronic states. With the
help of Mossbauer spectroscopy the local electronic struc-
ture at the iron site in FeS2, ' and iron-doped
CoS2' ' ' ' ' and NiS2, ' ' was investigated.

Theoretical work has been performed on the basis of
the self-consistent-field (SCF} Xa cluster method, '

but no effort has been undertaken to evaluate expectation
values. Further theoretical work ' has been performed
on the basis of the linear combination of atomic orbitals
(LCAO) tight-binding (TB) band-structure method.
Khan has used the non-self-consistent LCAO TB
method for the calculation of the band structure in FeS2.
Bullett evaluated, with a partially self-consistent
scheme, the band structure and the density of states for
the entire MS2 series. However, both focused their in-
terest on the density of states only. In this paper we want
to present a comprehensive study of the electronic struc-
ture of the MS2 series by using self-consistent molecular-
orbital (MO) cluster and band-structure calculations.
Photoelectron spectra and the imaginary part of the

dielectric constant as well as the local Mossbauer parame-
ters are evaluated. In Sec. II we shall describe the princi-
ples of the methods, and in Sec. III we present and discuss
our results.

II. CALCULATIONAL PROCEDURE

A. Theoretical model

In the LCAO TB method a crystal wave function or
band

~ p, k; r ) with wave vector k and spatial coordinate
r is represented as a linear combination of Bloch basis or-

bitals ~i, k;r ),

~ p, k;r) = gc;„(k)~ik;r, ) .

The Bloch functions
~
i, k; r ) are constructed by a super-

position of equivalent atomic orbitals (AOs) ~i;Ri),
which are centered in the unit cells labeled by the direct
lattice vectors RI,

N, denotes the number of unit cells in the summation.

The atomic orbitals
~

i;Ri) used in this investigation are
Slater-type orbitals (STO's) with screening constant g.
The one-electron Schrodinger equation, which may
describe the electronic structure of the many-particle sys-
tem, is (in a.u. )

[—7 + V(r)]
~ p, k;r ) =E&(k)

~ p, k;r),
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where V(r) refers to the periodic crystal potential. Mul-

tiplying Eq. (3) with the Bloch function
~ j,k;r) and in-

tegrating over the electronic coordinates, we obtain the
secular cqUat1on

g [H~J(k) —E„(k)S;q(k)]c;q(k)=0, (¹)

where S&J(k) is the overlap matrix between Bloch func-
tions

Si(k)= ge {i;Ro
~
j;Ri)

l

= pe 'S;, (Ri) .
l

S)J(Ri) defines the overlap between AO's. H;, (k) is the
Hamiltonian matrix,

proximation the atomic model potential is constructed
from a spherically symmetric but exponentially decaying
charge distribution. The decay is controlled by a screen-
ing constant in the form ri=i}o+iiiQ, with Q being the
effective charge of this atom [Eq. (12)—(23) in Ref. 3S].
Solving the Schrodinger equation provides us with band

energies E„(k) and eigenvectors c;&(k), which then can
be used to deduce the population q; of AO's,

(10)

0 is the volume of the primitive unit cell, and the integra-
tion has to be carried out over the volume of the first Bril-
louin zone (BZ). The "bond-order" matrix P;J ( k ) is given
as

P~~(k) =gcj„(k)n(E~(k)) .

Similar to the extended-Huckel MO Theory, the matrix
elements h;;(Ro) are interpreted as the ionization potential
of an electron in an atomic orbital

~

i ) in the sohd. h;;
can be represented, therefore, as a sum of an atomic ioni-
zation potential I; plus a Madelung correction M; and
higher-order crystal-field terms W;, '

h )(R0)= (I;+M;—)+8' .)

The off-diagonal Hamiltonian matrix elements h,j(Ri) are
evaluated on the basis of the Cusach's approximation,

h)J(Ri) = —,
' [2—

~
S)J{Ri)

~
]S)J.(Ri){h;)+hjq)

(i&j if Ri=Ro) . (7b)

Inserting Eqs. (7) into Eq. (6) yields

H,J(k) = —,'F)J(k)(h;;+h~~),

n(E&(k) } defines the occupation of the one-particle state
as defined by Eq. (1), and its values range from 0 to 2.
The effective atomic charges Q in the unit cell are
evaluated from the orbital population number q;. Then
the Hamiltonian matrix [Eq. {8)]is reconstructed, and the
secular equation is again solved until self-consistency is
reached (up to 0.03e).

The density of electronic states D (E) is defined by

D(E)= g J d k5(Eq(k) —E)n(Eq(k)) . (12)

where o„(k,co) is the transition probability from a bound
state

~ p, k;r) to a continuum state
~
c,o~) with energy

fico. o„(k,co) can be represented in dipolar approxima-
tion by

A histogram sampling has been used to evaluate D(E).
The photoelectron intensities I{E)are derived from

I(E)=, g f d'k~„(k, ro)5(Z„(k) —E)n(E„(k)),
8~3 BZ

(13)

with EJ(k) being the complex Cusachs factor matrix.
The atomic ionization potential I; of an electron in an
atomic orbital

~

i ) belonging to an atom with charge Q is
I"cpl cscntcd as

o„(k,co) ~
i {p,k;r

i
r [c,co)

i

= g c „(k )cj~(k ) g e 'o;J (co) . (14)

I; =a(i+ha'Q,
where ao and b,a can be taken from spectroscopic tables.
The Madelung-potential term M~ in Eq. (7a) is calculated
us1ng a fcccntly developed d1rcct latt1cc summation
scheme. M; is recalculated in each iteration vnth the
new effective charges obtained by the previous iteration.
The crystal-field term W; [Eq. (7a)) is taken as the diago-
nal model-potential contribution to the Hamiltonian as
evaluated by Grodzicki [Eq. (9) of Ref. 35]. The zeroth-
order term in the expansion of the model potential has to
be excluded here because this term is already included in
the Madelung potential M;. W; was calculated taking
into account all atoms within the central and next-
neighbor unit cells. In this specific model-potential ap-

Here we have made use of Eqs. (1) and (2), and we have
1nt1oduccd the atomic phot010n1zat1on CI'oss scct10ns
o;J((o). The diagonal elements cr;;(co) can be taken from
atomic calculations ' or from experimental data, s9 while
for the off-diagonal elements we use the approximation

o;J(co)= —,'S;J(Ri)[o;;(co)+o~~(o))] .

In the actual calculation the 5 function in Eq. (13) is re-
placed by a Gaussian of linewidth (P=0.4 eV) to simulate
the spectrometer resolution,

5(E„E)~ exp[ ——(E„—E) l2Pz] .
2irP

In order to compare the calculated band structure vnth
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X&( lE„(k)—E„(k)
l

—E),

where Z»(k) refers to the transition matrix element

(p, k; r
l
r

l
v, k; r ). Proceeding in a similar fashion as in

Eq. (14) the transition matrix elements can be reduced to
the evaluation of dipole matrix elements between AO's,

Z„„(k)~gc„(k)ci,(k)ge (i;Rol r
l
j;Rr) .

(17)

The 5 function in Eq. (16) was replaced in the actual cal-
culation by a Gaussian with linewidth P=0.1 eV.

The calculation of the electric-field-gradient (EFG) ten-
sor at the nuclear site of, e.g., a Mossbauer isotope con-
sists of first dividing the total charge of the solid into the
positive point charges q of the atomic cores, and then into
the charge distribution of all electrons. The EFG tensor
then can be represented as the sum of a core and an elec-
tronic part,

y y'COI'C+ yC1 (18)

Since the core wave functions of an atom are strongly lo-
calized it is a reasonable approximation to evaluate V&&"

on the basis of a point-charge model. The direct lattice
summation scheme of Ref. 34 has been used to evaluate
this contribution. V~, however, has to be calculated, in
general, by direct evaluation of the proper matrix elments,

V" = f d kg n(E„(k))(p, k;r
l Vz&(r) lp, k;r),

(19)

with V~ ( r ) being the EFG-tensor operator,

2
3ppfq —p 5~V~(r)=[1—y(r)] (p, q =x,y, z) . (20)

y(r) represents the Sternheimer shielding function"' which
describes the polarization of the frozen electronic core of
the Mossbauer atom by external charges. Inserting the
expansions of Eq. (1) and (2) into Eq. (19) yields

optical data, we evaluate the imaginary part of the dielec-
tric constant e2(E) in the dipolar approximation using the
relation

e,(E) ', yy f d klZ„„(k)l'
p v

phasize here that the usual separation of the EFG tensor
into a valence part and a lattice part is only justified if the
EFG contribution from the overlap charges between the
Mossbauer atom and its ligands is small compared to all
other contributions.

B. k-space integration

If in band-structure calculations functions have to be
integrated which have the full symmetry of the lattice [as
in Eq. (12)], the integration is generally performed in the
irreducible part of the first Brillouin zone. For these in-
tegrations we have used (a) products of one-dimensional
Gauss or Chebyshev and not Gauss-Chebyshev formu-
las, (b) the special-point approach of Monkhorst and
Pack, and (c) the special-direction formulas of Fehlner
et al. However, if the functions do not possess the re-
quired symmetry [as in Eq. (21)], a straightforward appli-
cation of the irreducible-zone concept is not possible. In
such cases the integration was performed over the entire
Brillouin zone with Gauss or Chebyshev product formu-
las. The number of quadrature points was varied from 64
(4 ) to 2744 (14 ), but already at 64 points, stable results
were obtained. Comparing the three integration schemes
it turned out that the Gauss or Chebyshev product formu-
las are slightly more efficient than the special-point for-
mulas. However, it should be mentioned that this state-
ment cannot be generalized, since the efficiency of in-
tegration formulas will always depend on the function to
be integrated. If the special-direction scheme with low-
order integration formulas is used to calculate the density
of states D (E), at first only small differences with respect
to the other integration formulas occur. However, if this
technique is used to evaluate the photoelectron spectra,
emissions are found from the es bands of FeS2, although
these bands should be empty. If the integration is im-
proved by using higher-order formulas this emission di-
minishes and finally disappears. This result can be ex-
plained by the fact that the special-direction formulas are
not normalized to the volume of the Brillouin zone:
When integrating the volume of the zone, the correct
value is approached from below if the accuracy of the in-
tegration is increased. For a small number of integration
points, each point carries insufficient weight. Calculating
photoelectron spectra, one therefore has to integrate to
higher-energy terms (which actually should be empty), in
order to fill in all electrons. To overcome this problem
the special-direction formulas should always be normal-
ized to the volume of the Brillouin zone.

C. Parametrization

Xge'" '
&i'Rol Vre(r) Ij Rr) .

l

The EFG-tensor matrix elements between AO's can then
be evaluated with the same techniques as described by
Grodzicki et al. For further discussion, we wish to em-

The atomic valence orbitals li;Rr) [Eq. (2)] which
have been used in this investigation are 4s, 4p, and 3d or-
bitals for the metal atom, and 3s and 3p for sulfur. Since
four metal and eight sulfur atoms belong to the primitive
unit cell of the pyrites, we are concerned with a basis di-
mension of 68 AO's. Slater exponents g, ionization poten-
tial parameters o.o and Aa, as we11 as the model-potential
parameters go and g1, are summarized in Table I. All pa-
rameters have been chosen in accordance with our previ-
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TABLE I. Ionization potential parameters ao and ha, screening constants g of Slater-type orbitals,
and model-potential parameters go and g~.

Atom

Fe

Orbital

4s
4p
3d

(eV)

4.2
3.7
7.0

Aa
(eV)

8.0
8.0
8.0

(a.u. ')

2.00
2.00
2.87

YjQ

(a.u. ')

3.6

(a.u. ')

0.7

Co 4s
4p
3d

3.8
3.3
6.9

9.0
9.0
9.0

2.04
2.04
3.10

3.7 0.7

Ni 4s
4p
3d

3.4
2.9
6.7

10.0
10.0
10.0

2.10
2.10
3.25

3.8 0.7

4s
4p
3d

3.6
3.0
6.8

12.0
12.0
12.0

2.00
2.00
3.50

4.0 0.7

Zn 4s
4p
3d

5.4
4.9

17.4

8.0
8.0
8.0

2.20
2.20
3.50

4.0 0.7

3s
3p

22.0
8.0

11.0
11.0

1.82
1.82

2.5 0.9

ous molecular-orbital work, ' and only a few adjust-
ments had to be made. We have used slightly larger
Slater exponents for the metal 4s and 4p AO's compared
to our MO work. This contraction of wave functions in
the solid state is expected to be largest for wave functions
which are already extended in the free-atomic case. These
findings agree with our previous band structure calcula-
tions on BaTi03. '

D. Structural data

The cubic pyrite structure with space group T~ is a
common feature of all crystals being investigated in this
work. The pyrite structure can be considered as a NaC1-
like lattice where the metal atom M occupies the Na posi-
tion while the chlorines are replaced by S2 pairs directing
along the four (111) directions of the cubic unit cell.
The structural data used here are identical to the one used

by Bullett. For the pressure-dependent calculations in
the FeS2 system the lattice parameters have been taken
from Vaughan and Drickamer, ' but in order to allow a
comparison with the slightly different lattice parameters
quoted by Bullett, the lattice constants have been renor-
malized to Bullett's zero-pressure values. A similar renor-
malization has been applied for the structural data in the
solid solution series Fe„Co& „S2 (x =0.01,0.25,0.5,0.75),
where the data have been reported by Gallagher et al. '

E. MO-cluster calculations

In order to allow a comparison with MO-cluster
methods we additionally performed cluster calculations
for the MS2 series using a standard iterative extended-

Hiickel theory (IEHT) MO method. For a [MS6]
cluster we have not been able to arrive at a meaningful
converged result. In FeS2 this arises because the energy
splitting between occupied t2+ and empty eg levels is too
small. We have therefore extended the cluster by includ-
ing Sq pairs, thus yielding a [M(S2)6]' cluster. Based
on such clusters, we have calculated, according to the
methods described in Refs. 43 and 49, the EFG tensor and
the charge density p(0) at the M site.

III. RESULTS AND DISCUSSION

With the method being described in the previous sec-
tion, we have calculated the electronic structure of the
MS2 series. Orbital occupations, net atomic charges and
quadrupole splittings are summarized in Table II. It is in-
teresting to observe that the orbital occupations are very
close to the values reported by Bullett, despite the fact
that in the former calculations self-consistency was re-
tained only in the diagonal d blocks of the Hamiltonian
matrix. Calculated and experimental photoelectron spec-
tra are shown in Figs. 1(a) to 1(e). The ratio between the
subshell photoionization cross sections has been taken as
cr(S3, ):cr(S3~):cr(M3d)=4:1:1for all elements in the series,
while the atomic calculations of Scofield on neutral
nickel atoms reveal a ratio of about 4:1:5. To come to a
better understanding of the photoelectron intensities it
would be desirable to have access to photoelectron cross
sections for ions and not only for neutral atoms. In the
following we want to discuss our results for the various
elements of the MS2 series.
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TABLE II. Band-structure results for the pyrite series MS2 (M =Fe,Co,Ni, Cu, Zn). The entries in
the table are as follows: Q(M) is the net atomic charge at the metal atom M (based on a Mulliken
division of overlap charges). N4, (M), N4~(M), N3~(M), N3, (S), and N3p(S) are the orbital populations
of the metal and sulfur AO's, respectively; they do not contain any overlap contributions. Calculated
and experimental quadrupole splittings at the ' Fe nucleus are given in mm s '. In CoS2, NiS2, CuS2,
and ZnS2, hE~ has been calculated for low iron concentrations x in Fe„MI „S2, and it was assumed
that iron has the same electronic configuration as the metal host atom. For comparison b,E~ s obtained
by MO-cluster calculations on [M(Sz)6]' clusters are added in parentheses.

System
Configuration

of free
metal atom

Q(M)
N4, (M)
N4, (M)
N3g(M)
N3, (S)
N3p(S)

FeS2
3d 4$

0.85
0.1

0.2
6.8
2.0
4.2

CoS2
3d 4s

0.65
0.1

0.2
7.9
1.9
4.1

NiS2
3d'4s'

0.35
0.1

0.2
9.0
1.8
4.0

CuS2
3d' 4s'

0.32
0.1

0.3
9.8
1.8
3.9

ZnS2
3d' 4s

0.80
0.2
0.5

10.0
1.8
4.2

gEGSlc
Q

—0.74
( —0.89)

—0.23
( —0.76)

—0.24
( —0.62)

—0.07
( —0.55)

0.004
( —0.49)

gEexPt
Q 0.61'

+ 0.62~
—0.62d
—0.65'

0.32'
0.33g

—0.34g

+ 0.31'
+ 0.32"

—0.27"' 0.05'

'References 12, 14, and 15.
"Reference 18.
'Reference 20.
Reference 19.

'Reference 21.
Reference 16.

N'Reference 17.
"Reference 25.
'Reference 26.
'Taken from chalcopyrite CuFeSz [D. Raj, K. Chandra, and S. P. Puri, J. Phys. Soc. Jpn. 24, 39 (1968)].

A. Iron pyrite (FeSz}

Iron pyrite is a diamagnetic semiconductor with the
metal being in the ferrous low-spin state. ' ' From opti-
cal and conductivity measurements various values for the
band gap, ranging from 0.84 to 1.2 eV, have been report-
ed. In Fig. 2 the energy dispersion of the bands in FeSz
along some principal symmetry directions in the Brillouin
zone are displayed. This result is in reasonable agreement
with the calculations of Bullett, although the bands near
the Fermi level are broader in his investigation. Owing to
the relatively flat nature of the bands, a relatively small
number of quadrature points (about 64) is sufficient to ob-
tain stable results. The bands in FeSz can roughly be la-
beled as indicated in Fig. 2. However, it should be men-
tioned that except the t2g band all other bands contain sig-
nificant admixtures from other orbitals. The es band, for
example, has contributions arising from sulfur p orbitals,
resulting in a small antibonding character. Therefore, if
one moves through the series from FeSz to ZnSz, it be-

comes more and more difficult to add another electron
into the eg band. This explains why CuS2 and ZnS2 can
be synthesized only under high pressure.

In Fig. 1(a) the calculated x-ray photoelectron spectrum
(XPS) is compared with two different measurements, and
the various structures are labeled according to their origin.
The calculation reveals a direct band gap of 0.97 eV and
an indirect gap of 0.91 eV, which is in excellent agreement
with the valuesz ( -0.9 eV) deduced from experiment.

The imaginary part of the dielectric constant ez(E),
which is related to transitions from the occupied to the
empty bands, is displayed in Fig. 3. The first peak at the
low-energy side of the theoretical curve is entirely due to
transitions from the Fe tzs to the Fe es band, while the
remaining structures arise from transitions between the S
p bands and the eg band. All peaks observed in the exper-
imental ez(E) curve are resolved in the theoretical curve;
there is, however, a slightly too large separation between
the first two peaks at low energy in the calculated curve.
Since the calculation of ez(E) is based on ground-state
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FIG. l. (a)—(e): Experimental and calculated photoelectron spectra for the Msq series. (i) Ref. 2, (ii) Ref. 7, and (iii) Ref. S.

properties under the condition of Koopman's theorem,
electronic relaxation effects during the photoabsorption
process could account for the energy shifts required to
move the two peaks towards each other. The strong ab-

sorption occuring at about 2 eV in the experimental
curves could therefore be explained on the basis of an
overlapping of t2g~eg and S p ~et transitions.

A great deal of work has been performed to study the
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With I" and II being the intensity of the high- and low-

energy lines of the quadrupolar-split Mossbauer spectrum,
respectively, and with ep and eq describing the direction
cosines of the y ray with respect to the coordinate system
in which Ipq is given, then the line intensity ratio is
given as,

h
mac

I"+I Ipq ep eq (25)

An immediate consequence of the form of the intensity
tensor given by Eq. (24) is that the line-intensity ratio in
Eq. (25) is always —,

' and independent of orientation of the

y beam with respect to the single crystal. This was
proved experimentally by Guettinger and Williamson
and explained by Liu ' with symmetry arguments. We
could verify this now on the ground of electronic struc-
ture calculations.

We have extended our theoretical analysis also to the
pressure dependence of the EFG tensor of iron pyrite.
The experimental data are taken from Vaughan and Dric-
kamer. ' Calculated quadrupole splittings AE~ and iso-
mer shifts 5 are shown in Fig. 4. It can be visualized
from this figure that the experimentally observed changes
of b,E& and 5 as a function of pressure are well accounted
for by the theoretically derived electronic structure.
Vaughan and Drickamer' explained the pressure-induced
changes of b,E& and 5 as only being due to the change of
lattice contributions, while we find that both lattice and

valence contributions are almost equal in importance
when explaining the pressure-induced changes.

B. Cobalt pyrite (CoS2)

The calculations on the ferromagnetic metal, cobalt py-
rite, have been performed assuming four unpaired spins
per primitive unit cell. Calculated and experimental pho-
toelectron spectra are shown in Fig. 1(b). Similar as in
Bullett's calculation we have found that the t2s levels in
CoS2 move downwards to lower energies by about 1.1 eV
(0.9 eV in Ref. 30) as compared to FeS2. The bandwidth
of the es state is about 0.6 eV.

In Fig. 5 the imaginary part of the dielectric constant is
displayed. The large absorption occurring at low energies
( & 1 eV) is entirely due to transitions from occupied eg
states into empty eg states, while the small peak at 1.3 eV
arises from transitions t2g~eg The .broad structure be-
tween 3 and 5 eV is associated with transitions from the S
p band to the empty es levels. With these findings the
structures found in the experimentally derived e2(E) curve
can be assigned.

Solid solutions of iron in CoSz have been also studied
by means of Mossbauer Spectroscopy. ' ' ' ' ' For low
Fe concentrations, a quadrupole splitting of about 0.32
mms ' has been found. As in FeSz the sign of the cou-
pling constant e qg has not been clearly resolved. Wood-
hams et al. ' demonstrated that their spectra can be fitted
by either sign. Wortman et al. " resolved a positive sign
using an external magnetic field of 6 T. However, an ex-
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FIG. 4. Quadrupole splitting bE~ and isomer shift 5 in the

pyrite FeS& as a function of pressure. Solid triangles refer to the
experimental values of Vaughan and Drickamer (Ref. 14), open
squares arise from MO-cluster calculations on a [Fe(S2)6]'
cluster, and open circles are the result of band-structure calcula-
tions.

FIG. 5. Experimental and calculated imaginary part of the
dielectric constant e2(E) for CoS~. The experimental curve was
derived from the complex refractive index N =n +ik of Ref. 8
using the relation e2 ——2nk.
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trapolation to zero magnetic field does not seem to be jus-
tified in this case, because the system reveals a large mag-
netically induced quadrupole splitting. Ward and Ho-
ward found, on the basis of point-charge calculations, a
positive sign. However, the valence contribution, which
turned out to be the dominating term in FeS2, was com-
pletely neglected in their study. McCann and Ward con-
cluded a positive sign; however, their fits with positive
and negative sign, respectively, hardly show any differ-
ences.

We have calculated the EFG tensor at the iron site in
the solid solutions Fe Co] S2 with concentrations
x =0.01, 0.25, 0.5, and 0.75. Structural data and experi-
mental quadrupole splittings have been taken from Gal-
lagher et al. ' Since our band-structure program does not
allow the handling of low Fe concentrations (x =0.01) we
have assumed instead that, for low concentrations, iron
has the same electronic structure as a cobalt atom. For all
other concentrations one, two or three cobalt atoms in the
primitive unit cell have been replaced by iron. In the or-
der of ascending Fe concentration we have calculated
EEg to be —0.23 mms ' (0.32 mms '; x =0.01),
—0.47 mms ' (0.40 mms ', x =0.25), —0.70 mms
(0.54 mm s ', x =0.5), and —0.71 mm s ' (0.54 mm s
x =0.75), where the values in parentheses refer to the ex-
perimental results of Gallagher et al. ' As in FeSz, the
EFG arises in the isostructural CoSz primarily from the
valence contribution, and e qQ is negative.

The magnetic hyperfine field at the iron nucleus in
Fe„Co~ „S2, with low concentrations x, was found to
range from —0.6 to —1.0 T ' the minus sign here
means that the hyperfine field at the iron nucleus is oppo-
site in direction to the magnetization of the cobalt sublat-
tice. For Feo z&CoQ 75Sz, we have calculated the amount of
unpaired spin density in the 4s and 3d orbitals of iron
from the band-structure results. These spin densities ori-
ginate only from small admixtures of Fe orbitals in the eg
bands of cobalt and should not be mixed up with super-
transferred spin densities. Estimating the effect of spin
polarization of the iron-core s orbtials via the 3d spin
along the lines described in Ref. 49 and 51, the contact
field is found to be B'(3d) = —1.0 T, while the direct con-
tribution of the 4s spin yields B'(4s)=0.3 T. The total
B' then takes the value —1.6 T. Each of the six nearest-
neighbor sulfur atoms carries, due to covalency, a small
spin density on the order of 0.03. This will give rise to an
additional supertransferred field, which will be positive
(e.g., the same direction as the cobalt sublattice magneti-
zation) and will therefore yield a somewhat smaller hyper-
fine field compared to B'= —1.6 T.

C. Nickel, copper, and zinc pyrite (NiS2, CuS&, and ZnS2)

Experimental and calculated photoelectron spectra for
the pyrites NiS2 and ZnS2 are displayed in Figs.
1(c)—1(e). It is observed that the metal d states continu-
ously move through the sulfur p bands as we proceed in
the series to ZnS2. NiS2 is characterized as a Mott semi-
conductor, while CuS2 exhibits metallic character and a
weak Pauli paramagnetism. Finally, zinc pyrite, ZnS2, is

a semiconductor, again with a completely filled d band.
From the bright yellow color it was estimated that the
band gap should be on the order of 2.5 eV. This is in
agreement with our calculation which shows a direct band
gap of 2.7 eV. Calculated quadrupole splittings at the
iron site in solid solutions of iron in NiSz, CuSz, and ZnSz
in the low-concentration limit are summarized in Table II.
As in CoS2 it was assumed that iron has the same elec-
tronic environment as the host metal atom. While the
nuclear-quadrupole coupling constant e qg was calculat-
ed to be negative in NiS2 and CuSq, a positive sign was
found in ZnSz. This arises because in the d' system ZnSz
only the positive lattice contribution to the EFG tensor is
left. Zinc Mossbauer spectroscopy would be extremely
useful to check this statement experimentally. Unfor-
tunately, no experimental results are available for ZnSz so
far. However, if the calculated quadrupole splitting is
compared with the results obtained for ZnS [bEt'z" '-0.0
(Ref. 54)], reasonable agreement is obtained.

IV. CONCLUSIONS

Using a semiempirical and self-consistent LCAO tight-
binding method we have calculated the electronic struc-
ture of the pyrite series MSz (M =Fe, Co, Ni, Cu, Zn).
The results obtained are in reasonable agreement with the
recent band-structure investigation of Bullett, where self-
consistency was retained only in the diagonal d blocks of
the Hamiltonian matrix. Photoelectron intensities have
been calculated, and it was found that the theoretically de-
rived photoelectron cross sections for neutral atoms can-
not account for the observed intensities. From calcula-
tions of the imaginary part of the dielectric constant ez(E)
in FeSz and CoSz, the structures found in experimental
studies could be assigned to appropriate transitions. Evi-
dence was found that the strong absorption at about 2 eV
in FeSz is due to a superposition of tzg~eg and S p~eg
transitions. The Fe Mossbauer parameters have been
calculated in FeSz and Fe-doped MSz (M =Co, Ni, Cu,
Zn). The pressure dependence of b,E~ in FeSz, as well as
the concentration dependence of bE& in the solid solu-
tions Fe„Co~ „Sz (x =0.01,0.25,0.5,0.75), was investigat-
ed. These studies yielded that, except in ZnSz, the sign of
the nuclear-quadrupole coupling constant e qg is nega-
tive. The EFG tensor in FeSz primarily arises from a
nonspherical distribution of electrons in the metal valence
shell, while the lattice contribution to the EFG is small
and positive. Proceeding from FeSz to ZnSz, the valence
contribution continuously decreases, and in the d' system
ZnSz only the small and positive lattice EFG is left.

MO-cluster calculations have been performed on
[MS6] clusters, but convergence could not be achieved
properly. However, the use of [M(Sz)6]' clusters yields
results which are in reasonable agreement with the band-
structure calculations and with experiment. It is therefore
concluded that the use of the Sz-anion pairs is extremely
important for MO-cluster calculations in the pyrite sys-
tem. Especially local properties at the metal site [such as
the EFG tensor and the charge density p(0) at the nuclear
site of Fe] can be obtained by choosing appropriate clus-
ter size and symmetry.
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