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Effect of heavy doping on the optical properties and the band structure of silicon
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We have measured by ellipsometry the dielectric constant of pure and heavily doped n- and @-

type silicon from 1.8 to 5.6 eV. Both ion-implanted laser-annealed and bulk doped samples were
used with concordant results. A red shift of the E~ and E2 critical-point energies, together with a
decrease in the excitonic interaction at the EI energy, has been observed. These results are com-
pared with first- and second-order perturbation-theory calculations of the effect of the impurities on
the band structure of silicon.

I. INTRODUCTION

The effect of doping on the band structure of semicon-
ductors has received considerable attention. ' Much ef-
fort has been spent studying these effects because of their
technological importance since they affect the characteris-
tics and performance of devices. It is also of basic interest
to compare the experimental results with theoretical pre-
dictions of the change of the band structure. Quantities
such as the low-temperature electronic specific heat and
Pauli susceptibility are directly proportional to the densi-

ty of states at the Fermi energy in the degenerate limit
and are capable of giving information on the band struc-
ture. The nature of the states of individual impurities and
of the states at impurity concentrations close to the Mott
transition has been obtained through magnetic resonance
studies and electronic Raman scattering.

Most of the experimental information has been ob-
tained by optical techniques. Two types of distinct phe-
nomena are usually investigated. They are the following.

(a) Effects of doping on the lowest (fundamental) band
edges, both direct and indirect, which have been profusely
studied by techniques such as photoluminescence ' and op
tical absorption '' The .main effect of doping on these
edges is the formation of band tails because of the random
potential, the Moss-Burstein shift due to the filling of the
conduction (valence) band by electrons (holes), and the
shrinkage of the gaps by many-body effects where correla-
tion as well as exchange play a very important role. These
edges are also suitable for studying the Mott transition. '5

(b) Effects on higher edges These edge.s above the fun-
damental ones have received much less attention. The
studies have been carried out only with optical techniques
such as reflectivity' ' and ellipsometry measure-
ments. ' In this case, the exchange term plays only a
small role due to the fact that carriers are located in a
small region of k space different from the region where
the transitions take place. The Mott transition is also ir-
relevant to this problem.

In this paper we report on the optical properties of pure
and ultraheavily doped silicon in the region from the near
infrared (1.8 eV) to the near ultraviolet (5.6 eV). We pay
special attention to the higher interband transitions la-
beled E~(3.4 eV) and E2 (4.25 eV). The E& edge is due to

transitions between the highest valence band and the
lowest conduction band along the A direction in the Bril-
louin zone (BZ) in a region from approximately
k =(n/4a. )(1,1,1) to the edge of the BZ (L point).
The region where the E2 transition takes place is not very
well defined. We will use the points X and (2m. /a)(0. 9,
0.1, 0.1) (Ref. 23) as representative of this transition.

The main effect of impurities in the region of measure-
ment is to broaden the critical points and to shift them to
lower energies. The contribution of free carriers is only
important in the lower part of the spectrum (photon ener-
gies below -2.5 eV) and can be neglected at the energies
where E~ and E2 occur. Thus, direct observation of the
effect of high doping on the band structure and a compar-
ison between donors and acceptors is possible. These ef-
fects are somewhat larger for E~ than for E2 but still im-
portant for the latter.

Ion-implanted, laser-annealed (IILA) and bulk-doped
samples were used, with the impurity concentration rang-
ing from N &10' cm to N-3X10 ' cm . The car-
rier concentration was determined from the minimum in
the infrared reflectivity. As pointed out recently, ' the
use of IILA samples can lead to difficulties in measuring
the absolute values of the optical constants. These effects,
however, are much smaller for the energies and broaden-
ings of the critical point. Modeling of the microscopic
structure of the IILA layers and the adjacent substrate
can be used to obtain the "true" dielectric constants.
However, because of the uncertainties of these models, we
have not followed this path. The ellipsometric data
presented here have only been corrected for natural Si02
overlayers of standard thickness.

In order to obtain the energy of the critical points and
their Lorentzian broadening, a line-shape analysis of the
data was made by fitting the numerical third-derivative
spectra of the complex dielectric constant with respect to
the photon energy, d /decawith analytical expressions.
A two-dimensional minimum critical point with some ad-
mixture of a saddle point was used for E~ and a one-
dimensional maximum was used for E2 The admixtur. e
of the saddle point results from exciton interaction and is
shown to decrease with increasing carrier concentration.
The shifts hE, and the enhancement of the Lorentzian
broadening parameters, ht, were obtained from the best
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fit to the experimental data, taking, as a reference, the fits
for pure Si.

The use of IILA samples provides doping levels an or-
der of magnitude higher than the bulk solubility limit.
We obtain, for the IILA samples, results which join
smoothly with those of the bulk samples, both for the
shifts and the broadening parameters, a fact which justi-
fies the validity of the procedure used. A fit of the exper-
imental data to a N law yields values of a=0.46 for
AEi, a=0.36 for KE2, a=0.63 for vari, and a=0.46 for
ar, .

'

Theoretical work has focused so far only on the lower
edges and mainly on obtaining values for the band-gap
narrowing. ' A study of impurity-band tails has also
appeared recently. The theoretical results differ widely
depending on the approximations used, leading to dif-
ferent dependences of gap energies on concentration. For
these reasons we have performed perturbation theoretical
calculations of the change in the band structure of Si due
to substitutional impurities. Terms of first and second
order in the impurity potential have been included. The
first-order terms, linear in the impurity concentration,
turn out to be too small to be of importance. Because of
the divergence of the Coulomb potential for q —+0, the
second-order term is rather large and yields a dependence
on impurity concentration similar to X with a-0.5.
The 1V dependence is quite close to the X law predict-
ed and observed for the lowest indirect gap of Si, al-
though, in the case of higher gaps, exchange effects are
much smaller. This dependence is also in reasonable
agreement with the experimental results.

This paper is organized as follows. In Sec. II we
describe the experimental details. The results are present-
ed in Sec. III. In Sec. IV we concentrate on the method of
calculation, and finally in Sec. V the experimental results
are discussed in the light of the theoretical calculations.

II. EXPERIMENTAL SETUP

Pure and n- and p-type bulk doped Si crystals with
doping concentrations ranging from 10' to 4X 1020 cm
supplied by Wacker Chemitronics (Burghusen, Federal
Republic of Germany) were used to prepare samples. The
surfaces to be measured were mechanically lapped and
polished with 0.75-pm Alz03 powder. A polish with
Syton followed. They were finally polished with a

bromine-methanol solution. We also used IILA (Ref.
36) crystals with concentrations from 10 to 3X10 '

cm . The range of implantation doses was (1—5)X10'
cm at 100—350 keV for the As samples, and
(0.1—3)X10'6 cm at 30—100 keV for the B samples.
The crystals were annealed with a XeCl excimer laser at
308 nm. The laser beam was focused to about 0.5X1.5
mm . The annealed surface was obtained by multiple
overlapping laser spots as described in Ref. 37.

We select five of the 22 samples measured in order to
present the complete spectra of e, and e2 and their third
derivatives. For the other samples only the critical-point
parameters are given. The characteristics of these samples
are summarized in Table I. The first sample is very light-
ly doped (n & 10' cm ), and is taken as reference and
labeled as undoped Si in the following. Two samples are
bulk doped with phosphorus [n-type Si(P)] and with bo-
ron [p-type Si(B I)] with carrier concentrations of
n =8&10' cm and p =4X10 cm . The last two
samples are IILA crystals implanted with boron [p-type
Si(B II); p =9.2X10 cm ] and arsenic [n-type Si(As);
n =3X10 ' cm ].

Dielectric-function spectra e(co) =Fi(co)+i'(co) were
measured at room temperature between 1.8 and 5.6 eV
with an automatic rotating analyzer ellipsometer similar
to that described by Aspnes and by Aspnes and Stud-
na. In brief, it consists of a light source (75-W Xe
short-arc lamp), a —,'-m Spex monochromator, Rochon
prisms of crystal quartz as polarizing elements, a pho-
tomultiplier with an S20 response and fused-silica win-
dows to extend its operating range to the uv, and mirror
optics for collimating and focusing the light. The output
of the photomultiplier is digitized and the digital signal
analyzed with the help of a Hewlett-Packard model
98458-HP computer. The spectra can be stored for later
processing of data. The measurements were made at an
angle of incidence of 67.5'.

The samples were mounted and optically aligned in a
windowless cell in flowing Nz to minimize surface con-
tamination. In the treatment we should distinguish be-
tween the bulk and the IILA samples. The bulk samples
were etched in situ prior to measurement following the
prescription in Ref. 35. The procedure was repeated until
real-time ellipsometric measurements showed no more
changes and the highest values of e2 at the E2 singularity
were obtained. For the IILA samples a similar pro-

TABLE I. Samples used for the ellipsometric measurements shown in Figs. 1 and 2.

Orientation

Doping
concentration

(cm 3) (at. %)

Implantation Implantation
dose energy

(cm ) (keV)

Carrier
concentration

(cm 3)

Undoped Si
n-type Si(P)

p-type Si(B I)
n-type Si(As)

p-type Si(B II)

[111]
[111]

polycrystalline
[100]
[100]

8 ~ 1019

4 y 102o

3 / 1021~

1021 c

0.16
0.8
6
2

5~10"
2)( 1016

100
30

8~ )019b

4& 102ob

2)( 1021 b

9.2 && 10"'
'From Rutherford backscattering.
From ir reflectivity minimum, Fig.

'Estimated using data of Ref. 66.
From ir reflection minimum for an

2, Ref. 26.

average hole mass of 0.40.
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we estimate the thickness of the film to be about 20 A
(varying slightly from sample to sample). In this case a
three-phase model (air-SiOz-Si) was used for the treatment
of the data. It was assumed that the overlayer was SiOz
with an index of refraction taken from the literature.
The equations were solved to obtain e(co) using the two-
dimensional Newton method. As a check we have cal-
culated the following integrals which yield well-known
sum rules;~'

2@i
+eg =

z coez(co)dco,
4 ezra t

~m

~u chez(~)
Gi(ciao)=1+ PJ z dco,

o

(la)

(lb)

where P means the Cauchy principal value of the integral,
N„ is the atomic density, and m and e are the mass and
charge of the electron, respectively.

We take ed~=1.8 eV, co~ ——5.6 eV, and uo ——2.51 eV.
For m —»0 and AM —»ae, Eq. (la) would yield N, i'd=4
and e, (coo)=@i(coo). The values obtained for N, rr and
ei(~0) are listed in Table 11. N, ri for the pure sample is
only 2.32, well below the number of valence electrons per
atom (four). This well-known fact is due to the poor con-
vergence of Eq. (la) and the low cutoff value of co~ ——5.6
eV. For n-type Si(P), nearly the same value of N, ri is ob-
tained, while for p-type Si(B I), a somewhat lower value,
namely N, rr 2. 19, is f——ound. The latter value of X,rr
may indicate some transfer of oscillator strength to the re-
gion ~ ~ 5.6 eV. However, we hesitate to reach this con-
clusion because of uncertainties in the surface conditions
which may depend on the dopant

The sum rule for ei [Eq. (1b)] converges much more
rapidly than that for X,rr. for the undoped sample and
for n-type Si(P), ei(2. 51 eV) —e, (2.51 eV) is only 1.2.
This value increases to —1.9 for p-type Si(B I), a fact
which confirms the conjecture that we are measuring a
pseudodielectric constant containing small effects of an
uncharacterized surface layer. Surface roughness, de-
creasing the average Si density, is the most likely form of
such a layer. ' In view of the arbitrariness involved we do
not try to model the IILA samples any further.

For sample n-type Si(As) we determined the oxide
thickness by fitting the ez data below 3 eV to the absorp-
tion spectra determined directly for thin IILA silicon-on-
sapphire (SOS) samples. ' The low value of N,&i=1.94
obtained for this sample suggests some density defect in
the laser-annealed layer. For the p-type Si(B II) sample
we assumed the same oxide thickness (20 A) for the
evaluation of ei and ez. This sample seems to be better

behaved than n-type Si(As) with regard to the sum rules
(see Table II).

The lack of interference fringes below 2.8 eV (they were
seen in some samples!) demonstrates that the unimplanted
substrate does not affect the measurements. We note that
free-carrier effects begin to appear in the ei spectra at low
frequencies for all of the heavily doped samples of Fig. 1

(ei is lower than for the pure samples), especially for n-

type Si(As), which has the largest carrier concentration.
In order to compare the shifts and broadenings, we cal-

culate, numerically, the third-derivative spectra, d e/der,
of the complex dielectric function with respect to the pho-
ton energy from our ellipsometric data. The results for
d ez/dc' are shown in Fig. 2 for the five samples. The
solid lines correspond to the numerical derivatives of the
spectra of Fig. 1; the dashed lines are the best fit to the
experimental ones. Note that the change in the line shape
of Fig. 2(e) compared with Fig. 1 of Ref. 22 is due to the
assumption of the 20-A oxide top layer on the sample
which was not taken into account in Ref. 22.

The third-derivative spectra show clearly a red shift of
the energy positions of the E, and Ez critical points from
the pure to the highest doped saIDple, with a correspond-
ing increase in their I.orentzian width I . These spectra
were fitted assuming a two-dimensional minimum for
the Ei singularity and a one-dimensional maximum for
the Ez critical point. Excitonic effects were also taken
into account in a standard way by allowing a mixture of
two critical points. ' Hence, a two-dimensional
minimum and a saddle point were used for the Ei data.
Both the real and imaginary parts of d c/diaz were simul-
taneously fitted.

The mixture of contiguous two-dimensional critical
points can be expressed by

E=A ln(e)o rg) —il )e'—&—,

whe« the»gie q ~ep~esents the amount of mixtu«. In
Fig. 3 we plot the values of tang& obtained from our fits
versus impurity concentration N;.

The red shifts of the critical points E, and Ez found
from measurements of many bulk and implanted samples
are shown in Fig. 4. The points represented by pluses
(+ ) are taken from Ref. 19. They are plotted versus car-
rier concentration in a double-logarithmic scale. The ef-
fect of doping becomes noticeable for concentrations
above 10'9 cm . The use of IILA samples allows us to
obtain doping concentrations above the solubility limit,
and thus increases the range obtained with bulk samples.
The results from these samples join smoothly with those
of the bulk samples, as can be seen in Figs. 4(a) and 4(b).

TABLE II. Effective number of electrons N, ff, real part of dielectric constant obtained through E-E
transformation, e~, and measured real part of dielectric constant eI, for the five samples of Fig. 1.

jeff
Z, (2.51 eV)
ei(2. 51 eV)

2.32
17.7
19.0

1.3

n-type Si(P)

2.31
17.5
18.7
1.2

p-type Si(B I)

2.19
17.4
19.3

1.9

p-type Si(B II)

2.21
16.5
18,5
2.0

n-type Si(As)

1.94
15.7
18.0
2.3
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FIG. 3. Dependence on doping concentration of the excitonic
parameter tang&, de6ned in Eq. {2) for the E~ critical point.
Solid circles, p-type silicon; open circles, n-type silicon. Solid
line, best fit obtained using Eq. {30).

We have not made separate fits for the n- and the p-type
samples since the observed shifts for a given doping level
are independent of type within the experimental accuracy.

The increase in the Lorentzian broadening parameter I"
with respect to the undoped sample obtained from the
linewidth analysis of the E& and E2 critical points are
shown in Figs. 5(a) and 5(b) versus doping. Also here, no
distinction was made between p- and n-type samples since
no systematic differences were observed. We should men-
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(b)
1021 10221019 1020
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FIG. 5. Dependence on doping concentration of critical point
broadening parameter: (a) increasing of broadening parameter
(EI l) for the Ej singularity; (b) increasing of broadening pa-
rameter (AI 2) for the E2 singularity. The symbols have the
same meaning as in Fig. 4. The best fit to a N; law yields
a=0.63 for E~ and a=0.46 for E2.
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tion that these broadenings depend somewhat on the type
of critical point chosen. If we take for the E2 structure
an M2 three-dimensional critical point, we obtain
broadenings which are nearly half of those given in Fig.
5(b). In view of this, a more exact determination of the
type of critical point, using the Fourier-transform
IDethod, %OUld 4e desirable.

IV. THEORY

o p- type bulk

a n-type bulk

t3 p- type ion implanted
100 - ~ n-type

+Aspnes, S
h, E2 (rneV)

FfT
SLOPE 0.3

In order to evaluate the renormalization of the semicon-
ductor band structure in the presence of impurities, we
need a Hamiltonian that describes the coupled electron-
impurity system. I.et us explicitly write the Hamiltonian
as follows:

H=H, +H,I,

10" 10'9 1020

N. (cm 3)

10"
Hg =g e~ cp ~c~k, n 'n k, n

k, n

FIG. 4. Dependence on doping concentration of critical point
energies: (a) red shifts (AEI) for thc E~ singularity; (b) red
shifts (AE2) for the Eq critical point. Open circles, bulk p-type
material; open triangles, bulk n-type material; open squares, p-
type IILA samples; solid circles, n-type IILA samples. Pluses,
Ref. 19. Dashed lines, best fit to a Xt law, yielding o.=0.46 for
E~ and o,'=0.36 for Eq. Solid line, results of the second-order
perturbation-theory calculations. Thc shifts are referred to the
undoped sample.

HI= g (k', n'~ Vg
~

kn) , c, c
kn; k ', n'

(5)

describes the band structure of pure Si. c- and c-
k, n k, n

are the creation and annihilation operators for an electron
with energy e- and wave vector k in band n, respec-k, n

tively. The carrier-impurity part of the Hamiltonian
34,49
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where VI represents the difference between the crystal po-
tential with and without impurities present.

We assume that N impurities are randomly distributed

at sites R;, and that VI can be written as a sum of identi-
cal localized potentials V' centered at the impurities
sites R;,

where X(k,n, n';z) is the self-energy matrix which de-
pends on the band indices n and n'.

If the self-energy X is small it is realistic to use
Rayleigh-Schrodinger perturbation theory to find the
zeros of Eq. (9). Up to second order in the impurity po-
tential, the result is a complex energy E-

k, n'

lE =e
k, n k, n k, n

k, n

=e +X(k,n;E„)
For the e-k we use the pseudopotential band structure

k, n

obtained with the local pseudopotentials of Cohen and
Bergstresser (see Table III).

Using Bloch's theorem, the matrix element in Eq. (5)
can be written

(k', n'~ VI
~
k, n)=S(k' —k)(k', n'( V' ~~ k,n),

with

(7)

S(k' —k)=pe

(S(q)S(—q ') ) =N5- -,+ (S(q) ) (S(q ') ) . (8b)

The energy bands renormalized by the presence of the im-

purities are given by the zeros of

det[(z —e- )5„„—X( k, n, n', z)]=0,
,n

(9)

the structure factor of the impurities, i.e., the Fourier
transform of the density function +,5(r —R;) for the
scattering centers.

In order to take into account the randomness of the im-

purity locations, an ensemble average over these locations

must be performed. The k vector, BZ, periodicity in k
space, etc., which were lost under the random distribution
of impurities, remain clearly defined because periodicity
in r space is restored after this averaging.

With the assumption that there is no correlation for the
location of the substitutional impurities, the impurity
form factor has the following ensemble averages:

(S(k ' —k) ) =N5

+y(&)+y(2)
k, pg

Equation (10) neglects correlated scattering effects from
different impurities, i.e., it assumes that the impurities act
independently of each other.

(III) S A
UG =UG+UG ~

(v) s A
UG =UG —UG

(12a)

(12b)

uG and uG are only known at a few values of G (V 3, v 4,
v 8, and v 11 in units of 2m./a). The uo

' and uG
' need-

ed for calculating the effect of the impurities in silicon

B. First-order perturbation terms

The term X"' in Eq. (10) represents the average first-
order effect and involves the structure factor
(S(k —k ' =0) ) =N. From Eq. (7) we find

X"'(k,n;z)= N(k, n
~

V'
~
k, n) .

This gives a real self-energy correction which depends

only on the k-diagonal matrix elements of V' i'. It takes
into account the fact that the average periodic potential
has been slightly altered.

We have used empirical pseudopotential form factors
for evaluating Eq. (11) for group-V donors and group-III
acceptors. These form factors are estimated from the cor-
responding values for the III-V compounds. The atomic
form factors uG can be evaluated from the symmetric and
antisymmetric form factors uG and uG of a III-V com-
pound with the expression

TABLE III. Pseudopotential form factors V3, V8, and V» (in Ry) used for the calculations of the
first-order effect of impurities on the band structure of silicon. In parentheses are the III-V compounds
from which the pseudopotentials were extracted.

Pseudopotential

Si'
N (A1N

P (GaP, a AlP' InPa)
As (GaAs, ' InAs')

Sb {GaSb,' InSb, ' AlSb')

V3

—0.21
—0.40{1)
—0.33(1)
—0.318(2)
—0.31(1)

+0.04
—0.182(3)
+0.02(2)
+0.009{2)
+0.03(3)

+0.08
—0.09(1)
+0.06(1)
+0.04(2)
+0.04(1)

B (BN" BP )

Al (A1Sb,' A1P" A1N")
Qa (GaP, ' GaSb, ' QaAs, 'Gap")

In (InP, ' InAs, ' InSb')

'From Ref. 50.
From Ref. 67.

—0.285(5)
—0.13(5)
—0.14(4)
—0.17(1)

—0.06(3)
+0.08(2)
+0.05(2)
+0.06(2)

+0.00{5)
+0.08{2)
+0.08(1)
+0.06(3)
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TABLE IV. Linear coefficients EEg /dN~ {in units of 10 i4 eV cmi} of the dependence of optical gaps on substitutional dopant con-

centration calculated by first-arder perturbation theory. A positive —dEg IdN~ corresponds to a red shift upon doping. The limits of
error correspond to calculations using pseudopotentials obtained for different III-V compounds. E;„d(X) and E;„d(L) represent the
lowest gaps at the X and L points, respectively.

dEg

de;
(10-'4 eVcm')

N
P

As
Sb
8
Al
Ga
In

EO

433+10
62+18
88+16
48+4

198+20
—60+ 6

—34+ 15
—24+14

E,'

—23k 8
—38+ 4
—26+ 6
—22+ 8
—18%14

30+ 8
28+10
26k 8

Ei

192+ 8
4k 8

22+10
4+ 5

89+40
—9+ 6
—3+ 8
—6+11

42+ 6
—34+6

—20+ 4
—32+ 6

24%16
10+15
16+12
4+ 6

El

—15+13
—36+ 4
—26+ 6
—21+ 9
—10%10

28+ 8
26+10
24+ 8

E;„d(X)

28+10
—56+10
—37+ 8
—41+ 6

20+14
20+ 14
24+12
16+10

E;„d(L)

177+10
—8+8
13+10
3k 2

84+40
—8+15

4+10
—4+11

correspond to slightly different values of G because of the
fact that the lattice constant of Si is not the same as that
for a given III-V compound. We thus interpolate the vG's

by using the general functional dependence of vG on 6
given in Ref. 51. These vG's so obtained must also be re-
normalized to take into account the change in volume of
the unit cell,

In Table IV we also show linear shifts of Si gaps with
doping calculated as described above. Here and in the rest
of the article positive shifts mean red shifts with increas-
ing doping. The shifts in Table IV are usually about an
order of magnitude smaller than the second-order shifts

(sl) III-v (I v)
VG —— -vG

Si
(13)

where Q represents the volume of the unit cell. The pseu-
dopotential form factors so obtained are listed in Table
III. The values in this table represent the average ob-
tained for all III-V compounds which contain a given
atom. The estimated error bars represent the differences
between the various possible compounds. The average
pseudopotentials vo are not known with certainty. While
they could induce changes in the absolute energies of the
various states, they shift all states by the same amount
and are thus of no relevance for the shifts of energy gaps.

A more accurate method than the direct evaluation of
Eq. (11) is the "virtual crystal approximation" (VCA, i.e.,
the exact diagonalization of the Hamiltonian matrix with
averaged pseudopotentials,

VB+ CB

n- type Si
W = 5. &0'0cm'e-

y (G) ( 1 }V(si)+x y(n or v) (14)

for a small value of x (x & 0.01). By using two values of
x one can convince oneself of the fact that we are in the
linear region, i.e., that the energy shifts are proportional
to x. We have used the VCA, but the linearity of our re-

sults implies that Eq. (11) is equally good for the small

values of x under consideration.
In Table IV we show the results of this procedure for

the Eo(l » 12), Eo(r». r„), E,„,(l », I, ),
E; d(l » ~L i ), Ei(A3 ~Ai), E i (A3 ~A3), and E2 gaps
of Si. For the E2 gap we took the point
k =(2m/a)(0. 9,0.1,0.1). Rather similar results were
obtained at the X point. For the E~ transitions we have
calculated the shifts for all points along the A direction

k=(nx/a)(1, 1, 1) (see Fig. 6} and averaged them for

4 (x(1. At E~ we used the same procedure while

averaging for —,
' &x & 1.

I I I I I I I I

q. II (111 l L
FIG. 6. Self-energy of As-doped silicon with a carrier con-

centration S,=5X 10 cm obtained by first-order perturba-

tion theory along the A direction. Dashed line red shift of the

highest valence band (VB) [EEvs Evs (pure Si}-Evs——{doped)];
dotted-dashed line, shift of the lowest conduction band (CB)

[EEcs——Ecs (pure Si}-Ecs{doped}];solid line, red shift of the

band gap (VB+ CB) (AET ——EEc~—EEv&). The calculation

was made with pseudopotential form factors for As in Si listed

in Table III.
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due to the Coulomb potential and are calculated in Sec.
IV C. The only exceptions are found for some of the gaps
in the case of N and 8 doping. For these atoms, however,
the pseudopotentials are rather ill defined. This is the
only effect considered here which depends on the nature
of the dopant; the second-order effect of Sec. IVC does
not. For a given impurity some gaps exhibit red shifts
and some blue shifts without a clear systematics. Howev-
er, gaps which exhibit red shifts for donors usually show

I

blue shifts for acceptors, as expected. In some cases
where this rule seems to be violated (e.g., As vs Ga), it ac-
tually still holds when the margins of error are considered.

C. Second-order perturbation terms

Thc next term in the perturbation series can be writ-
ten"

&y (kn
~

V™~
~
k+q, m &(k+q, ~

~

I™
~
k, n')

X(~)(k,n, n') =
e 8 +ra

This teITIl corI'csponds to R second-ordc1 perturbatlon via
a virtual intermediate state (scattering of an electron ini-

tially in the one-particle state
~
k, n) into another one-

particle state
~
k+q, m) and back to

~
k,n) again). In

addition to the shift in the band structure given by

3lr Nh
3' 3/'2

(2IIII(h ) )
3/2

2~[D«F)lf (h)= (20b)

i (k, n i
V ~

[ k+q, m) i

k, n (C C )
q, m k, n k+q, m

(16} g
ql(h)

r

(20c)

this term produces an energy broadening I"- (lifetime
kn

~- ),kn

1 1g(q)= —. 1 ——1—
2 g 2

ln
1 —q/2
1+q/2

=mNQ i (k, n
i
V I'i k+q, m) i

q, m

X&(c- —e- ) .
k, n k+ qm

(17)

In this case we assume screened "hydrogenic" Coulomb
scatterers. The Fourier transform of the screened impuri-

ty potential is (atomic units fi=m =e =1 will be used in
the following)

~(q) =~L(q) [+I(ql*—)+Eh(qh—)]
q2

where c'L(q) is the dielectric function of the pure host
semiconductor, and F~(q(') [Ih(qh )] is the Lindhard po-
larizability for the light (heavy) holes. The renormalized

q, labeled q, is defined in Eq. (20c) below.
For the I,indhard polarizabilities I'I and Ih we use the

following set of equations valid for kII T «E~..

[ V (q)] =S(q}V (q) = S(q),
c(q)ql

wllcI'c S(q) ls fhc 1111purlty structure facfol' 111 thc ulllf,

cell.
The calculation should be performed separately for

both donors and acceptors. Both cases differ because of
the details of the corresponding band edges. Here we per-
form the calculation for acceptors. The case of donors
will be published elsewhere. The results are not very dif-
ferent from those for acceptors.

In thc cRsc of Rcceptors, Rnd 1Il thc randoGl-phase ap-
proximation (RPA} the dielectric function e(q} is

+I (h)(q}=—I [D(Ez)]I (hg(qI (h)} (20e)

(2) &h(rk, n k, n (q2+q 2 }2 (q 2+~~1/3)Z

where C is a constant.
Terms with a small q transfer to the intermediate state

yield a contribution proportional to Xh . On the other
hand, terms with a large q transfer yield a contribution

where EF ls tllc Fermi energy, [D(Ez)]I (h) is the density
of states at the Fermi energy, and ml (h» of the effective
mass of light (heavy) holes. We use the values m =0.154
and 0.523. X~ is the hole density whereby we assume all
the impurities to be ionized.

For the q-dependent dielectric constant of the pure
semiconductor we have used Penn's interpolation formu-
la,"

2 —2

eL(q)=1 D 1+ DI/I
s g

where D =1—,'(Eg/Ez}, co& is —the plasma frequency

(re ——47TN„, wltll N„dcnol tngt11c valcIlcc clcctl011-coll-'
centration), kz is the Fermi wave vector, and Eg is a pa-
rameter representing an average energy gap (the Penn
gap). In our case (Si) the following values were used:
co& ——16.6 eV, EF 12.5 CV, kp ——0——.96 bohr, and Es =4.8
CV.

The second-order terms can be divided roughly into two
categories. They Rre more clearly seen when one takes the
Thomas-Fermi (TF) approximation for the dielectric con-
stant. In this case, Eqs. (16) and (17}take the form
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proportional to itli, .The total result depends on which of
both processes is dominant, but it will lie between Ni,

'

and XI, .
We now proceed to compute the two expressions 6,'-'

k, n
and I' . Equation (15) can be rewritten as

k, n

dE'X' ' (E)= lim J, . A „(E'), (22)
k, n s + E E'+i8 k, n

where A(E), the spectral electron-impurity operator, is
defined as

A (E)=Xi, g [V™]
~

k ', m )
k ', rn

X&(E —e-, )(k', m
~

[V' i'] . (23)

where V(G) is the local pseudopotential form factor and
S(G)=cos(G~). The coefficients c (G) are chosen tok, n

be real.
The matrix elements of Eq. (24) are easily worked out

to yield

( kn,
~
[V 3']

~

k', m)=P(k, n;k', m)+i8(k, n;k', m),
(28a)

P(kn;k', m)= g c„(G)c„, (G')
-+ -+,
G, G'

X V ~(k —k '+G —G')

Its matrix elements are
Xcos[(k —k '+G —G') ~] . (28b)

A „(E)=Xi,g (k, n
~
[V ~]

~

k'm )
k', m

X (k ', m
~

[V™]
~

kn,)5(E —e-, ) .

Using the Dirac identity, Eq. (22) can be written

(24)

A „(E')
X' ' (E)=PJ '", dE' inA- (E—), (25)

where P means principal value.
In this way,

A -„(E')

k, n

I = —1m[X'-' (e-„)]=nA-„(e-„. ) .

(26a)

(26b)

QI[(k+G)2 —e ]5- -,~ IG

+ V(G —G')S(G —G')Jc- (G')=0,

II—1/2+c (G) i( ke+ 6 ). r

k, n k, n
G

gc „(G)=1,
G

Here we calculate I „ through direct integration over

the BZ and b' ' by performing the Hilbert transform of
k, nr

k, n

We restrict ourselves to the case of the diamond struc-
ture (Si); the impurities are substitutionally located at
places R (l, ir), where l labels the primitve cells and ~ la-
bels the two sublattices. The origin is taken midway be-
tween the atoms so that their coordinates are
i= +~& ———~3——(a /8)(1, 1, 1).

The electronic wave functions are eigenvectors of the
secular equation

8 is identical to P except that the cosine is replaced by the
sine of the same argument.

We now evaluate the spectral function A- (E) for the
k, n

conduction and valence states which correspond to the E~
and Ez gaps in Si. The matrix elements of Eq. (28a) are
calculated using pseudo-wave-functions. The values of
V(G) are taken from Ref. 50 (see Table III). Because of
the large time required, most of our calculations were
made for 15 plane-wave energy bands. The calculation
with this 15X15 Hamiltonian gives results similar to
those performed with a 59X59 secular equation ' (to
within 20%). The sum over the BZ was performed over a
discrete mesh of 89 k points in the irreducible —,', th
wedge of the BZ. The spectral functions were computed
with the use of the tetrahedron method. The calcula-
tions take -5 min of CPU (central processing unit) time
for a state at the I' point on a Honeywell-Bull 66-80P
computer.

Eq gap

The I point case is the simplest because Eq. (28a) then
has full cubic symmetry: sums over the BZ can be re-
stricted to the irreducible zone. For a general point k
along A (E~ transitions), the k sum is also carried out
over the irreducible part of the BZ. A sum is then per-
formed over all vectors in the star of k in order to obtain
A (E). Since the sum was carried out in the irreduciblek, n

—,', th wedge of the BZ, the contributions corresponding to
the eight vectors of the star of

~
k

~ I 1,1,1I were calculat-
ed and added to obtain A (E).k, n

The calculated spectral functons vrA (E) are shown
k, n

in Fig. 7 for the states at the L point, i.e., L3 and L &, for
a concentration of 5X10~ cm 3, together with the densi-
ty of states (DOS). In the case of the valence band (L3 ),
this function is strongly peaked close to the band edge and
the other bands in the DOS are strongly suppressed. The
spectral function calculated for the conduction band (L ~ )

follows the curve of the DOS much more closely; the ma-
jor contribution also comes close to the band edge, but the
other contributions are not as strongly reduced as in the
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FIG. 7. Bashed line: spectral function mA for a valence-
band state at the 1.3 point. Dotted-dashed line: spectral func-
tion for a conduction-band state at the I.l point. These curves
correspond to a carrier concentration NI, ——5 Q 10 cm . The
DOS of Si is also shown as a solid line for comparison.

valence-band case. The spectral function for the mainly
s-like I.j conduction band is particularly large at the en-
ergies of the lowest valence bands (also s-like). Similar
observations, which can be explained on the basis of
orthonormality, can be made for the LI valence band.
Keeping in mind that the shifts in the bands are obtained
through a Hilbert transform of the spectra functions, Fig.
7 shows the Importance of a complete band-structure cal-
culation using real Bloch states instead of plane waves.

The I.orentzian-broadening parameters of the valence
and conduction bands (VB and CB, respectively) together
with the total I =I va+I cq along the A direction are
shown in Fig. 8 for holes in Si with a carrier concentra-
tion of 5X10 cm . This parameter vanishes at the I'
point for valence-band states, as expected from the DOS,
bllt has a fllIllte value of 50 IlleV fol' collduc'tloll-balld
states. The major contribution is seen to arise from the
conduction-band states and from k points close to
(Ir/4z)(1, 1,1). For

J
k

f
& i

(m./2a)(1, 1,1)
f

the major
contribution arises from the valence-band states.

In Fig. 9 the shifts (real part of second-order self-
energy) are shown also for p-type Si with N&

—5)&102o
cm along the A direction. The total red shift arises
mostly from a down shift of the conduction band and up
shift of the valence band (b,Er ——b,EcB—b,Eva). The
contribution of each of both bands to the total shift de-

pends on the particular k point of the BZ, but both con-
tributions are of the sam. e order of magnitude over a large
part of the I Lpoin—ts. The directly measurable quanti-

es, the total shifts, and the increases of Lorentzian
bmadenings, for the El singularity, are taken to be the
average of those from k =(Ir/4a)(1, 1, 1) to the L point [a
mesh of 0.02 (2n/a) was used]. The calculated averages
are shown by a solid line in Figs. 4(a) (shifts) and 5(a)
(broadenings) as a function of carrier concentration to-
gether with the experimental points and the best fit
(dashed line) to a X law. The agreement between theory

VB+ CB

VH+ CB

p- type Si

N = 5x 10 Cm
I 4 S ~ I I I I

q ll '111'

I I I I I l

q II [111.i
-SO—

PICx. 8. Lorentzian-broadening parameter along the A direc-
tion for holes in Si %vith a caffier concentfation XI, ——5+10
cm . Dashed line: broadening of states at the highest valence
band (I vz). Dotted-dashed lines: broadening of states at the
lowest conduction band (I ca). Solid line: total broadening pa-
faQletcf~ I =I can+I CB.

FIG. 9. Energy shifts obtained by second-order perturbation
theory for a p-type silicon with a carrier concentration
N~ ——5 g 10 cm along the A direction. Dashed hne: real
part of the self-energy for states at the highest valence band
(VB). Dotted-dashed line: real part of the self-energy for states
at the lowest conduction band (CB). Solid line: total second-
order red shift of the band gap (VB + CB).
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For the E2 critical point we have made calculations at
the point (2m. /a)(0. 9,0.1,0.1) (here labeled P). In this

case the star of k contains 24 points; the calculation took
-2 h of CPU time. The region of k space where most of
the E2 transitions take place is not very well determined.
Hence, we have also calculated the self-energy at the X
point of the BZ, i.e., the X4 and X& points for the valence
and conduction bands, respectively. The results are sum-
marized in Table V for two concentrations, 0.01 and 1

at. % and for both points X and P In v.iew of the better
agreement between theory and experiment for the P point,
we have taken this point as being a better representative of
the Ez singularity. .The k-space multiplicity of this point
also supports this choice. In Figs. 4(b) (shifts) and 5(b)
(broadenings), we show the theoretical results together
with experimental points and their best fit with N .
Again, the agreement between theory and experiment is
satisfactory.

V. DISCUSSION

Perhaps the most conspicuous effect of the doping seen
in Fig. 1 is the blurring of the E& peak which has become
a shoulder for Nz, 3X10 ' ——cm . Similar effects have
also been noted in Refs. 19 and 60. In order to describe
the effect quantitatively, in Fig. 3 we have plotted tang&

[see Eq. (2)] vs¹.tang) represents, within the simple
contact-interaction model, the amount of excitonic in-

teraction in the E~ structure. ' Figure 3 clearly shows
the decrease of excitonic interaction with increasing N, .
We assume that this interaction is screened by the free
carriers according to the expression

2

v(q) =
+qTF

Contact-interaction theory corresponds to a q-independent

TABLE V. Self-energies and broadening calculated for the

gaps at X (X4.~X~) and k=(2m/a)(0. 9,0.1,0. 1) for two im-

purity concentrations. These k points are representative of the
E2 transitions.

2V;

(cm )

5X 10"
k point

(0.9,0.1,0.1)
X

E2 shift

(meV)

E2 broadening

(meV)

5 X10" (0.9,0.1,0.1)
X

37
30

7S
59

and experiment is satisfactory. The measured b,I, .depend
somewhat on the type of critical point chosen for the fit.
They may decrease if exciton effects are properly taken
into account.

2. Eq gap

V. In order to approximately extend this theory to the
potential V(q) of Eq. (29), we replace q by an average
value q=r, „'—where r,„ is an effective exciton radius.
With-this assumption we obtain

4)& 3' m*X'
tang=A 1+

E'0%
(30)

where m~ is DOS mass (m~ =1.06 for n-type Si and 0.58
for p-type Si). We have fitted all the points of Fig. 3 with
an average value of the mass, mq=0. 82 and obtained
r,„=9 A, a reasonable result in view of the value of
10 A, for the E~ exciton of GaAs. '

We have fitted the shifts of Figs. 4(a) and 4(b) with the
function CN; (C =const) and find values of a=0.46 for
E, and 0.36 for E2, nearly the same in view of the fit
confidence of a ( —+0.05). The first-order perturbation
shifts given in Table IV are negligible except for N; ~ 10 '

cm (the only exception may be the E& gap for B dop-
ing). However, even for the few samples with these high
values of N; we find no evidence for these linear shifts
and thus neglect them. The prediction of the second-
order perturbation calculation is quite satisfactory for E&
although the value of a found theoretically (0.64) is some-
what larger than the experimental one. For the Ez gap
the theoretical a is 0.53. The calculated shifts are smaller
than the experimental ones, a fact which may be due to
the extended nature (in k space) of these transitions. The
k points chosen for the calculation may not be fully
representative of the actual transitions.

In this paper we have discussed the electronic effects
due to the screened pseudopotentials. A few words re-
garding possible effects of the hard cores of the impurities
are in order. These effects manifest themselves as changes
in the lattice constant which should only be important in
the case of boron (ha/ao- —5X10 ~N; for B; &10
for P and As). ' The effect of this strain on energy
gaps can be estimated with the deformation potentials of
the E~ and E2 gaps given in Ref. 64. It amounts to a
blue shift of 30 meV for E~ and 20 meV for E2 in the
case of N;=4X10 B atomscm, the maxim. um bulk
doping investigated. Since the electronic effects are sub-
linear in N;, this effect can be neglected for most of the
bulk samples measured. For the ion-implanted samples
the hydrostatic strain should be half of that estimated
above because of the lateral constraint of the substrate.
This would make the strain effect negligible within exper-
imental scatter except for the maximum boron concentra-
tion measured (10 ' cm ), at which blue hydrostatic
shifts of 40 meV for E~ and 25 meV would be expected
for E2. The uniaxial component of the strain should be
negligible for the [100] surfaces measured. These shifts
may be somewhat larger if surface microcracks release, in
part, the lateral constraint. The rather uncertain red
shifts estimated in Table IV for boron by first-order per-
turbation theory are likely to offset the strain shift dis-
cussed above, which, in any case, is not clearly observed in
Fig. 4 (note, however, that the measured point for
N; = 10 ' B atoms cm lies slightly below the fitted line,
as would be expected for a blue shift due to strain).
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Similar considerations may be made for the broaden-
ings of Fig. 5. The experimental and theoretical slopes for
the E& transitions are the same (0.63). The calculated
hI I, however, are nearly twice as large as the measured
ones. Although this difference is not very critical, a pos-
sible explanation may be the neglect of excitonic reso-
nances implicit in our fits. This may also explain why the
increases in the widths calculated for the Ez structures
[Fig. 5(b)] agree rather well with experiment (measured
slope 0.46, calculated slope 0.56). These structures are not
severely modified by exciton interaction.

We have performed our first- and second-order pertur-
bation calculations neglecting multiple scattering up to
relative impurity concentrations of 1 at. %. In the case of
short-range impurity potentials these calculations should
certainly be a good approximation. Because of the rela-
tively long range of the screened Coulomb potential some
questions are left as to the validity of the approximation.
More elaborate calculations, such as those based on the
coherent-potential-approximation, %ould be desirable.
Ultimately, one would also like to compute the complete
dielectric function in the presence of the impurities.
Such calculations, however, are beyond the scope of this
work.

We have measured the effect of heavy doping (up to
3&(10 ' cm ), both n and p type, on the optical critical
points of silicon. Both HI.A and bulk samples give con-
cordant results. Band-structure calculations of these ef-
fects, i.e., of the self-energies of the critical points, agree
with experimental results. An erosion of the excitonic ef-
fects on the Et critical point has also been observed and
quantitatively studied. It can be attributed to screening of
the excitonic interaction by the free carriers.
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