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Nonlocal-density-functional theory of inhomogeneous electron gas: Metal surface
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%'e develop a theoretical framework within the density-functional formalism in which the nonlo-
cal characteI' of the exchange and correlation potential is appropriately taken into account in the
description of an inhomogeneous many-electron system near the metal surface. The proposed
theoretical scheme ls sufflclently simple so that the self-consistent calculations of the electron densi-
ty and the associated surface quantities such as the surface energy and work function can be practi-
cally carried out; the validity and accuracy of the approximations introduced for the simplification
are examined and ascertained with the aid of exact sum rules. In the process we derive a useful ana-
lytic expression for the radial distribution function of the electrons at metallic densities.

I. INTRODUCTION

Conduction electrons in metals and related substances
form degenerate electron liquids. A series of microscopic
formulations and variational calculations have been ad-
vanced recently to elucidate the nature of the many-
body effects, such as the exchange- and Coulomb-induced
correlations, involved in such an electron system. The
density-functional formalism, developed by Hohenberg,
Kohn, and Sham has then provided a powerful tool in
analyzing the properties of an inhomogeneous electron
system such as the metal surface and the atoms.

Lang and Kohn carried out a pioneering study of
the metal surface in the density-functional formalism.
They calculated the electron distribution across the sur-
face in the jellium model of the metal where the exchange
and correlation effects are treated with the local-density
approximation (LDA). The values of the work function
so computed showed a good overall agreement with the
experimental values for various metals. The surface-
energy calculation, while in fair agreement with experi-
ments at lour electron densities made a totally inadequate
prediction —to the point of giving the wrong, negative
sign —for higher-density metals such as Al. They correct-
ed this inadequacy by taking an additional account of the
discrete ion-lattice effects.

Across the metal surface, the electron distribution
varlcs so stccply that thc characteristic length assoclatcd
with its variation is estimated to be of the order of an
average interparticle spacing. The applicability of the
LDA to such an inhomogeneous system thus constitutes a
fundamental question that remains to be answered in the
treatment of the electron distribution.

A 1111111bcl' of lllvcstlgators considered Rll 1111plovc-
mcnt ovcx' thc LDA schcIDc by including those terms
stemming from the density-gradient expansion. Basically
this ls a pcrtulbatlon-thcorctlcal calculation ln which thc
dcnslty varlatlon ls assumed to bc weak. OplQlon about
the usefulness of including those gradient corrections in
the exchange and correlation functional has been divided,
however. Ma and Brueckner found that for heavy atoms

tllc colTclatlon cllcl'gy duc to tile densjty-gradjcnt cxpan
sion overestimates thc llcccssal'y colTectjon by about R fac-
tor of 5. Gupta and Singwi estimated that wjth thc usc
of thc first grRdlcllt, coITcctloll tllc lemaining error in thc
IIlctR1 surface cIlcl'gy was only a, fcw percent. I„au
Kohn, "and Perdew, Langreth, and Sahnl, ' demonstrated
that tllc flist dcllslty-grRdlcllt colTcctloll to thc LDA glvcs
no improvement to the surface energy and worsens the
density profile.

Other investigators used various approximation
schemes to treat the nonlocal-density functional.
Langreth and Perdew, ' considering the surface energy in
terms of fluctuations at various wavelengths, interpolated
between the LDA, accurate in the short-wavelength limit,
and the random-phase approximation in the long-
wavelength limit. In the process they concluded that the
LDA gave reasonable accuracy (better than 10%) for the
surface energy. Gunnarsson, Jonson, and Lundqvist'
llotcd tllc 1111portallcc of securing ccrtR111 collscIvatlon
properties in the nonlocal, exchange and correlation hole.
The proposed approximation schemes, however, turned
out to be fairly complex so that the self-consistent solution
for the density distribution has not been obtained.

Recently, Sun, Li, Farjam, and %oo' carried out a
variational calculation of the metal surface problem in the
jellium model through the method of the correlated basis
function. Their surface-energy results differed signifi-
cantly from those of the LDA calculation.

In light of those recent developments the purpose of the
present paper is to develop a theoretical framework within
the density-functional formalism in which the nonlocal
character of the exchange and correlation potential may
be accounted for, with good accuracy, in the treatment of
an inhomogcncous many-electron systcIQ. %c Rim at
making the theoretical scheme sufficiently simple so that
the self-consistent calculations of the electron density and
other surface quantities can be practically carried out.
The validity and accuracy of the approximations intro-
duclxj for the simplification will be carefully examined
Rnd assured %'ith thc Rld of various sum rules and other
gcQcfal consldcrations.
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The outline of the paper is as follows .In Sec. II we for-
mulate the metal surface problem in terms of the density-
functional theory. The proposed scheme of treating the
nonlocal exchange and correlation potential is described in
Sec. III. Sum rules and limiting behaviors of the pair
correlation function are examined and its analytic expres-
sion is derived in Sec. IV; the expression will be of use for
computational purposes. In Sec. V we investigate the va-
lidity and accuracy of the approximation scheines adopted
for the description of the nonlocal exchange and correla-
tion potential. In Sec. VI we present numerical results for
the solution to the set of the self-consistent equations on
the electron-density distribution and various surface quan-
tities; those are compared with other theoretical and ex-
perimental results. Concluding remarks are made in Sec.
VII. Some of the computational details are described in
the Appendix.

II. DENSITY-FUNCTIONAL FORMALISM

In the jellium model of metal one assumes that the
charge distribution of the crystalline ions may be replaced
by the positive-charge background of average density en.
The metallic surface may then be modeled by a semi-
infinite distribution of uniform ionic density,

density

ground n+

ons n

FIG. 1. Schematic view of density distributions.

n(r)= g (
i)'j;(r)

~

Here the g; refer to those X electronic wave functions ob-
tained as solutions to (5) with the lowest-energy eigen-
values e;, and the effective potential is defined as

n, x(0
n+(r)= 0, o0.

A self-consistent distribution of conduction electrons,
shown schematically in Fig. l, would make an electric
double layer in the vicinity of x=0. A dimensionless den-
sity parameter may then be defined as

r, =(3/4mn)'~ me /R

For simple metals, which we are concerned with here, this
parameter takes on the values 2—6.

Following the density-functional formalism developed
by Hohenberg and Kohn, we express the ground-state en-

ergy of X electrons under the action of the external poten-
tial v (r) as a functional of the electron-density distribu-
tion n ( r ) in such as inhomogeneous system,

v,fr[n;r]=v(r)+e dr '+v„,[n;r],n(r')
/r —r'f

where the exchange and correlation potential is given by

5E„,[n]v„,[n;r]=
5n(r)

As Lang and Kohn have shown, the self-consistent
equations mentioned above can be rewritten in the follow-
ing form appropriate to the present surface problem:

d +v,rf [n;x] gk (x)
2m

(k —kF)+p gk(x), (9)
202

+T,[n]+E„,[n] . (3)

f n(r)dr=tV . (4)

According to the self-consistent formulation of the
density-functional theory by Kohn and Sham, one finds
an exact density distribution through a solution to the fol-
lowing set of self-consistent equations:

2m
V +, v[nff;r] g;=e;i)j;, (5)

Here, T, [n] refers to the kinetic energy of a noninteract-
ing electron system of density distribution n(r), and
E„,[n] denotes the contribution of the remaining ex-
change and correlation energy The dis. tribution satisfies
the normalization condition

v,rr[n;x] =P[n;x]+v„,[n;x]
= —4me f dx' f dx "[n (x") n+(x")—]

X X

+P(a) )+v„,[n;x],
kFf dk(kF —k )[gk(x)]n(x)=

(10)

A' k
p= +P( —~ )+ v„,[n; —oo],

2m
(12)

and the potential difference, hP—:P( ao ) —P( —~ ), is cal-
culated as

&$=4me f x [n (x) n+ (x)]dx . —

where kF ——(3m. n ) is the Fermi wave number in the in-
terior of the metal. In Eq. (9), p refers to the chemical po-
tential,



29 NONLOCAL-DENSITY-FUNCTIONAL THEORY OF . . .

III. NONLOCAL TREATMENT OF THE EXCHANGE
AND CORRELATION POTENTIAL

to be referred to as approximation scheme I, and

n„=n(—,'(r+r ')) . (18)
The principal problem involved in the practical applica-

tion of the density-functional formalism is how one esti-
mates the exchange and correlation potential (8). Since
the electron density is expected to exhibit a steep variation
in the vicinity of the metal surface, nonlocality may play
an essential role in the treatment of U„,[n;8].

The LDA developed by Kohn and Sham and used for
the surface problem by Lang and Kohn, however, as-
sumes that the exchange and correlation energy is given

by

E„,[n]= f e„,[n(r)]n(r)dr,

where e„,(n) refers to the exchange and correlation energy
per particle for a homogeneous electron liquid with num-

ber density n. One can attempt to improve on the LDA
by including those terms which systematically arise from
the density-gradient expansion. Since the typical scale of
the density variation is of the order of the average inter-

particle spacing (-kF ), it is questionable if an inclusion
of the first few terms in the gradient expansion would lead
to a convergent and meaningful description of such a
highly inhomogeneous system.

In this paper we wish to develop an alternative theoreti-
cal scheme by which the nonlocal character of the ex-
change and correlation potential may be appropriately
taken into account even in a strongly inhomogeneous sys-
tem, such as the electrons near the metal surface. The
theory relies on adopting a certain functional form for the
exchange and correlation energy functional E„,[n] whose
validity and accuracy will be examined and ascertained in
the light of sum rules in the inhomogeneous system.

We begin with an exact expression for the exchange and
correlation energy functional, ' '
E„,[n]= —,

' f dr dr'" " f' da(g[r, r', n] —1) .

Here g [r, r ';n] is the pair distribution function of the sys-
tem with a given electron-density distribution n(r) and
the Coulomb coupling constant a (equal to e ); it is a
symmetric two-point function of r and r ', and is a func-
tional with respect to n (r). For consideration of practical
feasibility in carrying through the self-consistent calcula-
tion as exemplified in Eqs. (9)—(11), we approximate the
pair distribution function of the inhomogeneous system by
the radial distribution function of an equivalent homo-
geneous system with an average density n„,so that

to be referred to as approximation scheme II. Later in
Sec. V we sha11 examine and compare in detail the conse-
quences of approximations (17) and (18) in light of exact
sum rules and other considerations for the inhomogeneous
system. We shall then find that assumptions (17) and (18)
lead to markedly different predictions, scheme (17) being
far superior for the description of the inhomogeneous
electrons in the metal surface. It will also be shown that a
third possible choice n,„=[n (r)n (r ')]'~, would behave
analogously to Eq. (18) and therefore cannot be accepted.

We thus adopt (17) in (16) and calculate the exchange
and correlation potential via (8). A nonlocal-density-
functional theory of the surface electrons may thus be ob-

tained by combining Eq. (8) self-consistently with the set
of equations (9)—(11).

IV. ANALYTIC FORMULA FOR THE RADIAL
DISTRIBUTION FUNCTION

g (r) =g (0)+ [g (0)/a~ ]r + (19)

where a~ is the Bohr radius. Yasuhara analyzed the
short-range correlation through the consideration of
electron-electron ladder diagrams, and thereby obtained an
expression,

g (0)= —,
' [z/I ~(z)], z =4(ar, /~)'~ (20)

where I&(z) is the modified Bessel function of first order,
and a=(4/9n)' . Use of (20) in (19) thus enables one to
determine the short-range values of g (r).

For the long-range behavior, we take account of two
sum rules. Firstly, the exchange and correlation energy
E„,(r, ) per electron in rydbergs is directly related to the
radical distribution function via

To carry through the calculation for the solution of the
self-consistent problem as described in the preceding sec-
tion, one must find an analytic expression for the radial
distribution function of the degenerate electron liquid at
an arbitrary density which is simple and accurate enough
for the use in numerical computations. In this section we
shall derive such an expression, satisfying a number of ex-
act boundary conditions and sum rules, and reproducing
the results of the latest variational calculations. '

We begin by noting that the radial distribution function
at short distances can be determined from the solution to
the two-particle Schrodinger equation. Kimball has thus
shown the expansion

g [r, r ',n]~g(
~

r —r '
~,n,„). (16) (21)

Utility of the approximation scheme (16) rests on our
ability to find an appropriate nonlocal-density dependence
n,„sufficiently accurate to represent the inhomogeneous
pair distribution. For reasons of symmetry and simplici-
ty, we shall consider two such possibilities, '

n,„=—,
' [n(r)+n(r ')],

Secondly, we note that the depletion of electron density
n[g(r) —1] around itself, i.e., the exchange-correlation
hole, should contain a unit charge,

4~n f drr [g(r) —1]=—1. (22)

For the exchange and correlation energy per particle of
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FIG. 2. Numerical solutions for D (r, ). Dashed line

represents Eq. (29); dots are the results of the numerical solution
to Eq. (28).
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the electron system in the paramagnetic state, we use the
interpolation forinula for the correlation energy,

E,(r, )=E„,(r, )+0.916jr, ,

due to Vosko, Wilk, and Nusair,

[o.o]

(0.0}

0.0 '

"«o

dE, 1+b)y
r, =bp , y=~r,

«» I+biy +bzy +biy
(23)

FIG. 3. Values of the parametrized formula Eq. (24) for the
radial distribution function g(r) at r, =0, 5, and 10. Lantto
refers to the data of Ref. 24.

where bo ——0.0621814, bi ——9.81379, b2 ——2.82224, and

b3 ——0.736411. Equation (23) is the Pade-approximant fit-
ting to Ceperley and Alder's Monte Carlo data2~ on E,(r, )

at six values of r, We tak.e Eqs. (21)—(23) to determine
the long-range behavior of g (r).

To accomodate boundary condition (19) and sum rules
(21) and (22), we find it appropriate to express

g(r)=1+ A (r, )+8(r, ) +C(r, ) zro ro

+exp
rD(r, )

ro
(24)

Here rp =r Qg,

A (r, )=g(0)—1,
&(r, ) =r,g(0),

(25)

Equations (25)—(27) are derived from (19) and (21); Eq.
(28) is obtained by the use of (27) in (22).

As we find in Fig. 2, the solution to Eq. (28) yields the

C(r, )= z [r,E„,(r, )]
3[D(r, )]' «,

1 1/2

2 [g (0)—1]— r,g (0), (27)
[D(r, )]2 2D r,

and the parameter D(r, ) is the solution to the quaternary
equation,

1/2
r,g (0)[D(r, )] — [g (0)—1][D(r, )]

8

d+— — [r,E„,(r, ) ] D(r, ) + —, =0 . (28)S XC S

values of the parameter D(r, ) which remain almost con-
stant over a wide range of r, . Since a choice of a constant
D (r, ) facilitates the ensuing calculations substantially, we
take

D(r, )=1.4, (29)

V. APPROXIMATION SCHEMES
OF THE NONLOCAL EXCHANGE
AND CORRELATION POTENTIAL

In this section we take up the task of assessing explicit-
ly the validity and accuracy of the nonlocal approxima-
tion schemes I and II introduced in Eq. (16) via Eqs. (17)
and (18).

%e begin by evaluating exchange and correlation poten-
tial (8) according to approximation schemes I and II; the
electron-density distribution necessary for this evaluation
is taken to be that obtained in the LDA by Lang and
Kohn. The results are plotted in Fig. 4 at r, =2 and 5.
We note that u„,[x;n] in the metal interior (x (0) agrees
well in both evaluations. In the exterior (x&0), however,
u„,[x;n] in scheme II begins to diverge towards negative
infinity as x increases, while u„,[x;n] in scheme I gradu-

with good accuracy. Use of (20), (23), and (29) in Eq. (24)
through (25)—(27) completes the present parametrization
for the radial distribution function.

In Fig. 3 we compare those parametrized values of g (r)
at r, =O with the Hartree-Pock evaluation, and at r, =5
and 10 we do the same with Lantto's variational calcula-
tions on the basis of the Fermi —hypernetted-chain approx-
imation. We find that the agreement is satisfactory in
the wide range of those r, values.
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FIG. 4. Nonlocal exchange and correlation potential calculat-
ed in approximation schemes I and II [Eqs. (17) and {18)].LK
refers to the LDA values of Lang and Kohn I',Ref. 6).

ally approaches the zero level, a tendency analogous to the
image potential of the metal surface.

In scheme II, because of the negative divergence, it was,
in fact, impossible to carry through the entire iterative cal-
culations for the solution to the self-consistent equations.
These features reflect a fatal flaw involved in approxima-
tion scheme 11» thc following we demonstrate this de-
fect first by a sum-rule argument and then through physi-
cal 1cason1ng.

If. ls known that the 1nhoIDogcncoUs pa1r d1sfnbUtlon
function satisfies an exact sum rule,

Pl I' g I', r,'Pl —1 r =—1, (30)

the inhomogeneous counterpart to Eq. (22). Since we have
adopted approximation {16),it is relevant to examine the
values of the integral

J= n r' g r —r', n„—jI r'. (31)

~c have fhUs compUted th18 lntcgI'al Rf, fg =2 Rnd 5 ln ap-
proximation schcnlcs I Rnd II with the electron-density
distribution taken again from the I.DA calculation. As
we observe in Fig. 5, the computed values of J start with—I 1Q thc metal interior Rnd stay rather close to —1 cvcn
111 tlM exterior doi11R111 for scllcIIlc I, while J lfl scllcIIlc II
substantially dcvlRtcs below —1 towards IlcgRtlvc IIlfl111ty
for x ~ 0. It thus appears that approximation scheme I is
inherently capable of sustaining the sum rule (30) for the
1nhoIIlogcncoUs system.

A physical origin of these drastically different predic-
t1ons bctwccn thc schemes I Rnd II IDay bc tI'aced Rs wc 1c-
call sum rule (30) for an inhomogeneous system. Since

~
g[r, r ', n] —1

~

does not generally exceed unity, we note
that the major contribution to sum rule (30) stems from
the region where n(r ') is large (i.e., the metal interior),
and there g[r, r ';n] would vanish roughly in the sub-
domain

~
r —r '

~
([3/4nn(r ')

]lani.

In . approximation
(16), g(

~
r —r '

~,n,, ) would likewise vanish within a ra-
dius, r,„=(3/4nn,„)'~'as Eq. (22) indicates.

%'hcn both r and r ' are located in the metal interior,
inhomogeneity arising from the surface does not play an
iHlportant part; schcIDcs I Rnd II woUld lead to RIl idcnti-

0.5 1.0
X (2~lkF)

FIG. 5. Values of J, Eq. I',31), according to approximation
schemes I and II.

n,„=n(—,(r '+r))=0.
In the latter case, the range of the exchange and correla-
tion hole woUld diverge; hcncc 1ntcgral J woUld tend to
diverge negatively as r moves towards far outside the met-
al. It is clear that a third choice of n,„,such as
[n (r )n( r ') j'~, would behave analogously to (33) and thus
cannot bc acccptcd.

The foregomg argument and examination have shown
the validity and accuracy of the use of Eq. (17) in Eq. (16),
1.c., scheme I, 1Q RpproxiQlating thc Qonlocal exchange Rnd
correlation potential (8). Although this scheme of
evaluating U„,[n;x] may still contain a certain element of
ambiguity in the far exterior of the metal, we expect that
such an ambiguity should not cause much difference since
the electron density itself is vanishingly small there. The
validity of such an expectation is sustained as we find that
the effective single-particle potential [Eq. (7)] calculated in
scheme I closely rescGlMcs thc classical 1IIlagc potcnflal
far outside the metal surface.

To estimate numerically the degree of uncertainty in-
volved in the evaluation of U„,[x;n] in the far exterior of
the metal, we have carried out the following control calcu-
lations. Up to the point x =0.3(2m./kF) at r, =2 or
x =0.2(2~/kr) at r, =5, where the integral J starts to
cxcccd —1, wc llsc f [U;Ix], nto bc calclllRtcd sclf-
conslstcntly with schcnlc I 1Q Scc. VI. FGI x Q x~,
U,rr[x;n] is matched to the image potential,

Ujmg e(x) 8 /4(x xo) (34)

with the effective position of the metal surface xo. The
electron-density distribution thus obtained from Eq. (9)
differs from the results obtained in Sec. VI only by 0.7%
of n.

cR prcdiction since n n in eitller scheme. ~hen r is
located GUts1dc thc mctRl, howcvcl, the contribUtion to J
arising from the r ' integration inside the metal differs di-
ametrically in schemes I and II: In scheme I, wc note

n„=—,
' [n(r ')+n(r)]= —,'n .

In scheme II, when —,
' (r+ r ') is located outside the metal,

we find
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FIG. 6. Numerical results for the exchange and correlation
potential U„,(x), the electrostatic potential fix), and the effective
potential v,ff(x) for r, =2. LK refers to the LDA values of Lang
and Kohn (Ref. 6).

FIG. 7. Electron-density distributions in the surface region at
r, =2 and 5. LK refers to the LDA values of Lang and Kohn
(Ref. 6).

VI. SELF-CONSISTENT CALCULATION
AND NUMERICAL RESULTS

The long-range nature of the Coulomb potential makes
a straightforward application of the iteration scheme to
the self-consistent problem, Eqs. (5)—(8), rather unstable.
To circumvent such an instability, Lang and Kohn dev-
ised a fairly complex method. In the present calculation
we alternatively adopt the self-consistency procedure sug-
gested by Nieminen in his analysis of bimetallic systems.
The outline of the procedure is described in the Appendix.

In Fig. 6 we plot the numerical results of the exchange
and correlation potential U„,(x), the electrostatic potential
P(x), and the effective potential v,ff(x) computed in the
present scheme for the r, value of 2; those are also com-
pared with the LDA values obtained by Lang and Kohn.
A notable feature in this comparison is the flattening of
the exchange and correlation potential at the surface re-

gion, resulting from inclusion of the nonlocal effects.
Figure 7 shows computed results of the electron-density

distribution at r, =2 and 5; again a comparison is made
with the I.DA calculation. We thus find that the first
peak inside the metal surface is lowered and broadened in
the nonlocal treatment, a tendency analogous to the case
of the surface potentials.

In Table I we list the computed values of the electro-
static dipole barrier AP of Eq. (13), and the work function,

A' k
+u„,[n;x = —ao ]

2HZ

For comparison the LDA values are also listed. In Fig. 8
we compare the computed results of the work function
with the LDA values and with the experimental values ob-
tained for polycrystalline samples. We observe in Fig. 8
that the present results, although staying somewhat above
the I.DA values, agree fairly well with the experimental
values.

The surface energy, the energy required per unit area of
a new surface formed by splitting a metal, can be written
as a sum of three contributions,

(35)

with

os+xc+Oes ~ (36)

~, =(2A)-'(2T, [n] —T, [n ]),
o„,=(2A) '(2E„,[n]—E„,[n']),
a =(2A) '(2E [n] —E„[n']).

(37)

(38)

Here A refers to the area of newly exposed face on each
fragment, n (r) and n'(r) denote the density distributions
for the split and unsplit metals, and E [n] is the electro-
static energy defined and calculated as

TABLE I. Comparison of present values of the dipole barrier and the work function with the LDA
values of Lang and Kohn (LK) in Ref. 7. Present results are obtained from Eq. (13). See the Appendix
for the meaning of the numbers in the parentheses.

Dipole barrier (eV)
Present

Work function (eV)
Present

6.80
2.32
0.91
0.35
0.04

7.58
2.80
1.20
0.57
0.28

3.89
3.50
3.06
2.73
2.41

4.76( —0.34)
3.95(+0.23)
3.24(+0. 11)
2.79(+0.06)
2.48(+0.02)
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FIG. 8. Computed results (solid curve) of the work function
compared with the LDA values (dashed curve) of Ref. 7, and
the experimental values for polycrystalline metals.

is because the surface-energy calculation involves the de-
tailed shapes of both the surface potential and the electron
distribution. The work function, on the contrary, depends
only on the far interior and exterior values of the poten-
tial, and so its value is not so sensitive to the fine details
of the calculation.

Finally, we present another example illustrating such
sensitivity by altering the magnitude of D (r, ) used in Eq.
(24): Instead of 1.4, we carry out the self-consistent calcu-
lation by choosing D (r, ) = 1.3 or 1.5, which may represent
a lower or upper limit in the light of Fig. 2. The values of
the work function computed at r, =2 and 5 by assuming
D (r, ) =1.3 or 1.5 are found to be almost identical to those
with D(r, )=1.4; the work-function calculation is rather
insensitive to a slight change of the value of D(r, ) around
1.4. Analogous calculations for the surface energy are
shown by the two dotted curves [upper: D(r, )=1.3;
lower: D(r, )=1.5] in Fig. 9. Here the margin of uncer-
tainty is considerable, especially for a high-density metal
with r, &3.

VII. DISCUSSION AND CONCLUSION

e Id,d [n(r) —n][n(r ') —n] (4 )

Table II lists the computed values of those surface ener-
gies and compares them with the LDA calculation of
Lang and Kohn. Various theoretical evaluations of the
total surface energy are plotted also in Fig. 9 together
with the experimental values which are the linear extrapo-
lations to zero temperature of measured liquid-metal sur-
face tensions. It is notable in Fig. 9 that the present
nonlocal calculation for the jellium model follows the ex-
perimental data rather closely and stays positive even at
higher densities, while the LDA (jellium) calculation by
Lang and Kohn turns into negative for r, (2.5. The jelli-
um calculation with the correlated basis functions by Sun,
Li, Farjam, and Woo' predicts the surface-energy values
somewhere between the present nonlocal results and the
LDA values. Those authors achieved an agreement with
the experimental values by taking additional account of
the cleavage energy and the local ion-pseudopotential con-
tribution.

As we have just noted, the surface-energy values are
quite sensitive to the ways in which one carries out its cal-
culation even within the confines of the jellium model. It

We have presented a self-consistent calculation of the
electron distribution and the associated quantities, such as
the surface energy and the work function for a jellium
model of metal surface, on the basis of a nonlocal-
density-functional formalism. The nonlocality of the ex-
change and correlation potential has been taken into con-
sideration through the use of the parametrized radial dis-
tribution function at an appropriately selected average
density; the validity and accuracy of the approximation
have been carefully examined.

The values of the work function and the surface energy
computed in this scheme for the jellium model have
shown an overall agreement with the experimental data
obtained for real metals. The agreement on the work
function may not be fortuitious, since its calculation does
not involve the fine details of the electron distribution and
of the potential.

We have also noted, through comparison with other
theoretical calculations, that the predicted values of the
surface energy can differ substantially from each other in
the high-density domain (r, (3.5), even within the con-
fines of the jellium model; the calculation of the surface
energy depends critically on the detailed structure of the
electron density. We do not, therefore, take the agreement
between the present surface-energy calculation and experi-

TABLE II. Surface energy 0. and its components in units of erg/cm . Present results are compared
with the LDA results of Lang and Kohn (LK) in Ref. 6.

Present
~xc

Present Present Present

—5600
—720
—145
—30
—5

—6100
—880
—220
—70
—25

3260
750
260
115
55

5800
1600
620
300
170

1330
170
45
15
10

1700
270

75
30
15

—1010
200
160
100
60

1400
970
480
260
160



680 ICHIRO YAMASHITA AND SETSUO ICHIMARU 29

1500-

4

'~

\

N
~ 1000-
Ql

500-
tX:
LUz
Lal

0 g /
V I /

/

LL, /

K /
I

Ch -500- ~

l
I
I

I

I

-1000-I
J

2
s

1

5 6

~ ~

I
I

Present Work
——-- LK
———SLFW

~ Experiment

balance between those considerable uncertainties involved
both in the jellium calculation and in the pseudopotential
correction.

It is in the sense as stated above that we still regard the
jellium theory of the metal surface as containing open
problems. The present study has been undertaken in the
hope to reduce the range of uncertainty in the treatment
of such a jellium model.
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APPENDIX: SELF-CONSISTENCY PROCEDURE

To overcome the numerical instability associated with
the Coulomb potential, we follow the suggestion of Niem-
inen, and recast the electrostatic potential in Eq. (10)
into the form

FIG. 9. Computed results (solid curve) of the surface energy
in the jelliurn model compared with the LDA values of Lang
and Kohn (LK) (Ref. 6), and the experimental values. SLFW
refers to the values of Sun, Li, Farjarn, and Woo (Ref. 15). See
the text for the meaning of the two dotted curves.

P[n;x] = f dx'e1

2g

&( I 4vre2[n (x') n+ (x—') ]+q P[n;x'] I

—q(x —xI ) —q(x2 —x)+C)e +C&e (Al)
ment on its face values, since the important pseudopoten-
tial corrections due to discrete ions have not been taken
into account in the calculation.

In this connection we wish to comment on the agree-
ment achieved between the experimental values of the
metal-surface energy and the pseudopotential calculations
by Lang and Kohn and by Sun, Li, Farjam, and Woo. '

Those authors first computed the surface energy for the
jellium model, the results of which differed substantially
from the experimental values; the computed results in
some cases fell into negative domain. Therefore, a sub-
stantial margin of uncertainty still remains among various
theoretical calculations of the surface energy in the jellium
model.

The pseudopotential corrections were then computed
perturbation theoretically with the use of the electron dis-
tribution obtained in the jellium model. It turned out that
the resulting corrections were substantially large in magni-
tude; this would invalidate the perturbation-theoretical
treatment.

As Fig. 6 of Ref. 6 would clearly illustrate, the rnagni-
tude and even the sign of such a correction depend sensi-
tively on the fine structures of the electron distribution
and the adopted pseudopotential. We thus remark that a
large margin of uncertainty exists also in the calculation
of the pseudopotential corrections. The excellent agree-
ment between the experimental results and the pseudopo-
tential calculations has been achieved through a delicate

Distant perturbations are screened out due to the exponen-
tial factor and the overall charge neutrality matters no
more. Here the electrostatic potential appears in both
sides of Eq. (Al) and we iterate Eqs. (9)—(11) and (Al)
with respect to both the electron density and the electro-
static potential. The constants C& and C2 are determined
to satisfy the boundary conditions P(x&) and P'(x2)=0.
As x2 and x&, we take 2.0(2~/kz) and —40( 2~ /kz);

q =(7/2n. )kF is adopted.
We prepare, as the trial electron density and the electro-

static potential, the form of Eqs. (2.7) and (2.8) in Ref. 29
and adjust the parameter p there until the fastest-
converging procedure is obtained. It was essential to take
as the input in each iteration a mixture of the input and
output of the previous iteration.

Equation (Al) introduces a source of numerical error,
because the electrostatic potential barrier calculated from
the right-hand side of Eq. (13) may not be identical to
P[n; oo ] P[n; —o—o ] obtained directly from Eq. (Al).
The difference between those two evaluations may thus be
looked upon as an indication of errors inherent in the
adoption of Eq. (1) for convergence. The values of the di-
pole barrier and the work function listed in Table I are
those computed on the basis of Eq. (13). The work func-
tion calculated on the basis of Eq. (Al) can be obtained by
the addition of the values in the parentheses to each result
in Table I.
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