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The bivalent nearest-available-neighbor distribution I'NAN „ in n dimensions is of interest in the
statistics of recombining particles. %e generalize to arbitrary dimension a calculation of XNAN 3 due
to Dunstan. This derivation, however, is shown to be based on an invalid approximation. A Monte
Car1o calculation of I'NA~ „for n = 1, 2, and 3 gives results significantly different from the Dunstan
form. %e propose the asymptotic form XNAN, (I.)-r -'" for large r.

I. INTRODUCTION

The statistics of recombining particles is of general in-
terest in physics. In this paper we consider the case where
there are two species of particles, A and 8, in equal num-
bers, and each distributed randomly with a finite density
in a given volume. Each particle is assumed to be local-
1zcd and immobile, and to intclact only by rccoGlbining
with a particle of the opposite species. Furthermore, the
recombination rate is assumed to be a sufficiently rapidly
decreasing function of distance, so that each particle will
recombine only with the nearest particle possible. In this
limit, the kinetics of the recombination will be determined
by the distribution of recombination distances. A possible
example of the application of this model is the recombina-
tion of electrons and holes created by photoexcitation in
an exactly compensated crystal.

It 1s tempting to suggest that the dcs11cd recombination
distance distribution is simply the distribution of inter-
species nearest-neighbor distances, PzN „(r) in n dimen-
sions. For this system P~N „ is of the form'

PNN „(r)=pnu„r" ' exp( pu„r"), —

where p is the density of each of the species, and u„ is the
volume of the unit n-dimensional sphere,

u„=m"~ /I( ,'n+1) .—

This distribution is not appropriate, however, because the
nearest-ne1ghbor relat1on that 1t descr1bes 1s not commuta-
tive. If Al is the nearest neighbor of 81, then 8, is not
necessarily the nearest neighbor of A l. In fact, it is easy
to show for this bivalent system that in any dimension ex-
actly half of the particles are the nearest neighbors of
their nearest neighbors.

It is this asymmetry that makes the nearest-neighbor
distribution inappropriate for the description of recombin-
ing localized particles. Recombination is inherently com-
1Illltatlvc: lf A I lccolllblllcs wltll 81, tllcll 81 IIlust
recombine with A &. A commutative nearest-neighbor re-
lation is required; we call its associated distribution
Pz~N „(r), the bivalent nearest-available-neighbor (NAN)
distribution in n dimensions.

The NAN relation is commutative by construction. A
particle A l RIld R part1clc Bl Rrc NAN s 1f each 1s ava11-

able at the distance of the other. The definition of availa-
bihty is recursive: Al is available at distance r if there is
no particle 80 at distance r ~r, which itself is available
at distance r'. When applied to a finite collection of par-
ticles, the definition of NAN pairs is equivalent to
sequentially selecting, without replacement, the pairs of
particles with the least separation. The relation to local-
ized particle recombination is now obvious. The NAN
pairing process is unambiguous only for random distribu-
tions of particles, where any problems entailing equidis-
tant particles exist only for a vanishingly small subset of
all the particles. We also note here that the assumption of
two species of particles, and the type of pairing allowed
determine the form of the NAN distribution.

II. ANALYSIS

An ansatz used by Dunstan to derive an analytic form
PD, „(r) («f. 4) for the NAN distribution is based on the
standard probabilistic derivation of PNN„(r). In this
method the probability of a particle Ao finding a NAN at
distance r is the product of three subprobabilities: the
probability that Ao has not found a NAN nearer than r
(i.e., that Ao is available at distance r), that there is a par-
ticle 80 at r, and that 80, in turn, has not found a NAN
nearer than r. Thus I'~ is written as

'2
PD „(r)dr =pnu„r" 'dr 1 —f Pu „(r')dr' . (2)

This equation can be solved by elementary methods (see
Appendix A) to give

PPl U~ P'

PD, n«) =
(1+pu„r")

QN~x, n(") = f„

QD „(x)= 1

1+U~x

where x=p r is the normalized pair separation. One
may also calculate the mean NAN pair separation
( rN~N „)111 n d1111cllslolls as
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In the Dunstan ansatz this becomes

( rD „)= ( pu„) ' "(m./n ) csc(m/n ) .

In this calculation (rD „)converges only for n & 2.
The Dunstan ansatz, although easily solved, is based on

the critical assumption that the three subprobabilities used
in Eq. (2) are independent. This is not the case, however,
as can be seen in Fig. 1. For generality, we draw the
counterexamples in one dimension. In Figs. 1(a) and 1(b)
we show that the probability that Ao has not yet found a
NAN by the distance r is not independent of the existence
of a particle 80 at r. In Figs. 1(c) and 1(d) we demon-
strate that the probability that Ao has not yet found a
NAN by the distance r is also not independent of the
same probability for Bo. Similar examples do not exist
for the nearest-neighbor relation; the second independence
is not required by the nearest-neighbor calculation.
Therefore, the assumption of independent subprobabilities
in Eq. (2) is a decoupling approximation, whose accuracy
we wish to investigate.

A more general approach not based on approximations,
reproduced in Appendix B, allows one to write PNAN in
the form of an intractable integral. One may still write
for sufficiently small r

PNAN, .«)=pnU. 1" '

valid before any NAN competition becomes important.
For intermediate and large r we propose a Monte Carlo

calculation of PNAN „using the following algorithm:
Generate N random particles of each of two species, in a
unit n-dimensional cube. Using periodic boundary condi-
tions, find the pair (A;,BJ ) with the smallest pair separa-
tion r, . Record r„delete A; and 8&, and repeat until all
the particles are exhausted. When N is sufficiently large,
the distribution of r, will give an adequate approximation
to PNAN „(r) with p=X. This algorithm is equivalent to
the recursive definition for PNAN „(r) given above.

III. RESULTS

We wrote a FORTRAN program that performs the
PNAN „(r) algorithm with execution time -N . As a test
of the algorithm, the program also generated the nearest-
neighbor distribution as an intermediate step. In all cases
this Monte Carlo nearest-neighbor distribution converged
well to the forin of Eq. (1). The data generated for
PNAN „(r) converged well at small r to the form required
by Eq. (8). 10000 particles of each species were used for
the one-dimensional calculation, and 5000 for the two-
and three-dimensional calculations.

In Figs. 2, 3, and 4 are presented the results for the
NAN distribution in one, two, and three dimensions,
respectively, plotted as logipQNAN (x) versus logiox. For
comparison the predictions of Eq. (5) are also shown. In
all three cases the large-x dependence of QNAN „(x) is
markedly shallower than that of the analytic form Qii.
For x &4, the analytic form is too low by at least a half
an order of magnitude for n =2 and 3. In Fig. 5 the ra-
tios of the Monte Carlo results to QD for n =1, 2, and 3
are shown. It is clear that the decoupling approximation
ansatz consistently underestimates the number of NAN
pairs with large separations and becomes increasingly
inaccurate for higher dimensionalities.

~ The large-x dependences of QNAN „(x) in Figs. 2—4 all
fit well to a power law

—bn
QNAN „(x)-a„x " (large x) .

The deviations from'this power law at the largest x seen
in the figures can be attributed to the finite number of
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FIG. 1. Nearest-available-neighbor complexes showing the

correlation of the subprobabilities used in Eq. (2). (a) In this
configuration Ap and B~ are NAN's, as are A& and Bp. Ap is
not available at distance r. (b) Same as (a), but now Bp is miss-
ing. Now B~ and A~ are NAN's, and Ap is available at distance
r. For this pair of cases, the existence of Bp is linked to the
availability of Ap at the distance of Bp. (c) In this configuration
Ap and Bp are NAN's, as are B~ and A ~. Ap is available at dis-
tance r, as is Bp. (d) Same as (c), but 8~ is shifted towards Ap.
Now Ap is no longer available at distance r, and neither is Bp.
For this pair of cases, the availability of Ap at the distance of
Bp is linked, via the exact position of 8~, to the availability of
Bp at the distance of Ap.
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FIG. 2. One-dimensional nearest-available-neighbor distribu-
tion. Analytic theory (dashed line) and Monte Carlo calculation
(solid line). N =10 particles of each type were used in the cal-
culation.
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FIG. 3. Two-dimensional nearest-available-neighbor distribu-
tion. Analytic theory (dashed line) and Monte Carlo calculation
(solid line). %=5)&10 particles of each type were used in the
calculation.
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FIG. 5. Ratio of Monte Carlo results to analytic calculation

of nearest-available-neighbor distribution for n = 1 (solid line), 2
(dashed line), and 3 (dotted line).

particles used in the calculation. The analytic theory
would predict an „——U„' and bD „n —I—n F. ig. 6 we plot
the results of a least-squares fit of Eq. (9) to the Monte
Carlo data, as a„and b„versus n. The statistical uncer-
tainties of the fit are smaller than the size of the symbols.
For the one-dimensional case the asymptotic power law is
quite good, and is of the form

Qz&N &(x)-0.38x '
( large x)

or, equivalently,

PNAN &(r)-0.19p ' r ( large r) .

(10)

0.0

Because higher-dimensional space is more difficult to
sample using a Monte Carlo approximation, the asymp-
totic form for n =2 and 3 is less certain than the one-
dimensional case. In two dimensions the algebraic ex-
ponent for Q is near —1, so it is uncertain whether

(rN&N2) converges. We can calculate the mean NAN
separation for n =3 by numerical integration of the data

of Fig. 4 by using Eq. (6). The result is (rN~N3)
=0.9p ', compared with (r+3)=0.75p ' for the
analytic form.

IU. CONCLUSION

We have generalized to arbitrary dimension the Dun-
stan ansatz for the nearest-available-neighbor distribution,
PNAN „(r). This derivation, however, is shown to be based
on the inaccurate approximation of independent probabili-
ties. By a Monte Carlo technique we approximate
PNAN „(r) and show that the number of NAN pairs with
large separation is consistently larger than previously cal-
culated, and that the deviation is larger for higher dimen-
sionality. In the present calculation the asymptotic form
of PNAN, is shown to be r in one dimension. The
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FIG. 4. Three-dimensional nearest-available-neighbor distri-
bution. Analytic theory (dashed line) and Monte Carlo calcula-
tion {solid line). %=5)& 103 particles of each type were used in
the calculation.

DIMENSION

FICx. 6. Parameters a and b of a least-squares fit Q =ax
to the asymptotic form of QNAN „ for n =1, 2, and 3, compared
with the predictions of the analytic theory.
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APPENDIX A

We generalize the integral equation used in the Dunstan
ansatz:

r
Pg(r)dr =g(r)dr 1 —f Pg(r')dr' {A1)

and assume m&1 for now. Now using the definition of

Qg(r) = f Pg(r')dr',

the integral becomes

G—,Qg(r)=glQg1

This differential equation has the solution
r ' 1/(1 —m)

QG(r)= ()—m) h —f g(r')dr'

where h is a constant determined by the normalization of
PG,

data for higher dimensions indicate that PN~N z and

PNAN3 behave approximately as r and r 3, respective-
ly, for large r. The large-r dependence is very important
for the recombination kinetics of localized particles, for
there it is assumed that the recombination time is a rapid-
ly increasing function of the distance. Even a small error
in the estimation of a typical recombination distance
would lead to a large error in the recombination time esti-
mate. For a system with a large distribution of recom-
bination times, the present calculation demonstrates that
the density of quasistable distant pairs is significantly
larger than previously predicted. Furthermore, because
the shape of the distribution of pair separations is dif-
ferent from the former approach, the kinetics of recom-
bination must be of a different form. In light of these re-
slllts, aily theory tllat depelids oil tile form of PNAN ))
must be reevaluated.

Qg(r)= 1 —(1—m) f g(r')dr'
0

{A6)

Now for m =2 and g(r) =pnu„r" ', this becomes

QD,.(r) =(I+pu. r")

the solution of the Dunstan ansatz.
If, on the other hand, we take the limit of Eq. (A6) as

m —+1, and use the definition of the exponential, then for
the same g(r) the result is the familiar nearest-neighbor
distribution

QNN „(r)=exp( pu„—r") .

APPENDIX 8

The n-dimensional NAN distribution may be written as
a hmit of a multidimensional integral. I.et there be &
particles of each of two species, distributed randomly in a
volume V. I,et r ~,

. e& and r~, . r~ be the n-

dimensional coordinates of the N particles of type A and
8, respectively. %e choose to number the particles in
NAN pairs, in order of increasing NAN pair separation.
Thus the 2'-dimensional space of volume V, which
describes the positions of all the particles, is divided into(¹!)equivalent subvolumes, each with the pair ordering

where Rk —=rz —~z„. Now the other restriction inherent
in the NAN selection procedure is that the kth NAN pair
is that pair with the least separation, after the removal of
the NAN pairs 1, . . .,k —I. This restriction may be writ-
ten

(82)

Then wc may wH, te

(N!)'
PN~N ))(r)= liiil

2& dry ' dry dry ' ' dry+2% V~ $ Pf

V—+co,
N/V=p

)& g 5(r —
I
Rk

I
) (83)

f Pg(r)dr =Qg(0) =1, (A5)

so that for suitably reasonable g(r ), Ii =1/( I —m ).
Hence,

where Va is the 2'-dimensional integration volume sub-
ject to the restrictions (81) and (82). Alternatively, the
geometric constraints (81) and (82) may be converted into
multiplicative factors in the integrand to give

(¹!)
PN~N ))(r)= hm 2& f dry ' ' ' dry dry ' ' dry g 5(r —

I Rk
I

)
k=t

V—+oo,
N/V=p

II e{I&
I

—I& — I)
k=2

(84)
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where

1, x)0
e' '=

o, (o

and p is the unrestricted 2'-dimensional integration volume of volume V . It is the intractability of this exact ex-
pression that leads to the use of a Monte Carlo approximation technique.
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